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Abstract: This paper presents an experimental investigation of 
the dynamics of a custom-designed spindle test system under 
different operation conditions and at various stages of its service 
life. Unlike classical modal analysis techniques where known 
input excitation from hammer strikes are employed to excite the 
spindle, the presented output-only modal analysis method applies 
the stochastic subspace identification algorithm to the spindle 
response measured during its operation such that the modal 
parameters of the spindle as well as their variation are identified. 
This method accounts for the structural excitations during the 
spindle’s operation, which are not considered if the spindle 
remains stationary in the experiment. The obtained modal 
parameters provide insight into structural changes of the spindle 
during its service life, and can be used as indicators for enhanced 
spindle condition monitoring.  
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1   Introduction  
Spindles are essential components of most machine tools. 
Identifying and monitoring vibrating characteristics (i.e., 
mode parameters) of spindle structure are necessary for 
health diagnosis in the future generation of “smart” 
machine tools. Modal parameter identification on 
non-rotating spindles has been performed by various 
researchers using hammer strikes to generate defined 
inputs [1-3]. Through mathematical modeling, researchers 
have found that the modal parameters of a spindle change 
in accordance with its operating conditions. As examples, 
the natural frequency of a spindle was seen to fluctuate 
periodically with the shaft speeds and its harmonics [4], and 
stiffer spring characteristics due to a high axial preload on 
the bearing have resulted in higher natural frequencies [5,6]. 
Identifying such parameter changes during a spindle’s 
operation can as well provide insight into the spindle’s 
present working status and its future performance, as the 
spindle degrades due to wear and tear. Such insight can 
also help devise more effective and efficient signal 
processing algorithms, e.g., by selecting proper scales 
needed for signal decomposition using the wavelet 
transform [7]. 

However, based on experimental observations from a 
realistic, custom-built spindle test system, the rotating 
spindle’s response to instrumented hammer strikes was 
often overwhelmed by noise contamination. Figure 1a 
illustrates such an example of the measured output 
vibration signal from the spindle. Its corresponding 
correlation with the input hammer strike is weak, as 
indicated by an average value of less than 0.5 in the 
coherence function between each frequency component of 
the input and output signals (Figure 1b).  Such low 
coherence values imply that a valid Frequency Response 
Function (FRF) of the spindle system cannot be derived, 
thus affecting the accuracy of the identified mode 
parameters if the classical modal analysis technique is 
applied. Furthermore, striking a rotating spindle is invasive 
and generally not acceptable due to interference with 
production and potential damage to the machine tool. This 
motivates the investigation of new techniques that could 
better enable modal parameter identification of a rotating 
spindle under changing operation conditions and during 
the various stages of its service life. 

 
(a) Measured vibration signal 

   
(b) Coherence function 

Figure 1.  Coherence function of a rotating spindle, showing 
no clear pattern of correlation between hammer strikes and 

the spindle’s structural response. 

 



Output-only modal analysis has been initiated and 
extensively studied in the area of civil engineering [8-14], 
due to the following advantages, such as: (1) Testing is 
relatively simple and fast, as no excitation equipment (e.g., 
vibration shaker or impact hammer) is needed; (2) Testing 
does not interfere with the operation of the structure, thus 
enabling in-situ testing; (3) Measured response is 
representative of the real operating conditions of the 
structure; and (4) this method is capable of identifying the 
same modal parameters as the traditional experimental 
modal analysis, except for not being able to estimate the 
stiffness of the structure. Of various techniques (e.g., the 
natural excitation technique [8,9], stochastic subspace 
identification [15], frequency domain decomposition [16], 
and random decrement technique [17]) used for output-only 
modal analysis,  the stochastic subspace identification  
(SSI) technique has attracted increasing attention, and its 
application has been extended from civil engineering [18, 19] 
to aerospace [20, 21] and mechanical engineering [22, 23]. For 
example, the SSI technique was applied to in-flight data 
measured on a helicopter to validate and update its ground 
test models [20]. In another study, the SSI technique was 
used to analyze operational vibration data from a laser 
cutting machine. This study has revealed an additional 
mode of vibration with direct influence on the cutting 
results, which could not be identified by the classical 
modal analysis [22].  

 

k

By utilizing advantages of the output-only modal 
analysis, and referring to successful application of the SSI 
approach, this paper presents an experimental investigation 
of SSI-based in-process modal parameter identification for 
rotating spindle condition monitoring under varying 
operation conditions.  Instead of fitting an empirical model 
to the FRF from artificial excitations, only the spindle’s 
measured output was used by the SSI technique to extract 
modal parameters [15, 20, 24]. This technique accounts for 
dynamic changes caused by the rotations of the spindle 
without the need for artificial excitations [11], and thus does 
not suffer from the inherently low signal-to-noise ratio 
typically associated with hammer-striking a rotating 
spindle as shown in Figure 1.  

The rest of this paper is organized as follows. Section 2 
introduces the theoretic formulation of the SSI-based 
technique, in which its ability to identify mode parameters 
of structures subject to general force input is verified 
analytically. The application of the technique to spindle 
condition monitoring is then conducted on a 
custom-designed spindle test system - an accelerated 
run-to-failure test discussed in detaile in Section 3. Finally, 
conclusions are drawn in Section 4. 
 
 
2   Stochastic Subspace Identification  
Stochastic subspace identification is a time-domain 
technique for output-only modal analysis, and is 
formulated using state-space models. Assuming that the 
vibrational behavior of a continual mechanical system 
(such as a spindle) can be analytically approximated by 
that of an equivalent, multiple degree-of-freedom (MDOF) 
system (e.g., a series of mass-spring-dampers), and the 
structural response is linear and time-invariant, the 
corresponding discrete state-space model of the spindle 
can be expressed as:  
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where xk=x(kΔt) is the discrete-time state vector, uk is the 
structural input displacement vector resulting from a 
known excitation force, yk is the system response vector, A 
is the state matrix, B is the input matrix, C is the output 
matrix, and D is the direct transmission matrix. The two 
components, wk and vk, represent the disturbance noise to 
the spindle and measurement noise due to sensor 
inaccuracy, respectively, and are stochastic in nature. The 
state space dimension n is determined by the number of 
independent variables needed to describe the physical 
system, i.e., the number of mass-spring-dampers as the 
constituent elements for spindle modeling. Given that no 
known excitation force is applied to the spindle when 
performing the natural input model analysis, the term uk 
would vanish, and the system is then represented by the 
stochastic state-space model as [7,8]: 
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                                         (2) 

Equation (2) indicates that the new state of the spindle 
physical system, xk+1, can be obtained by the sum of the 
state matrix A (n×n) multiplied with the old state vector xk 
(n×1) and the disturbance noise vector wk  (n×1). Thus the 
dynamics of the spindle are completely characterized by 
the state matrix A, and the modal parameters can be 
extracted from its eigenvalues. Also as shown in equation 
(2), the measured system response vector yk (m×1) contains 
the observable part of the state vector Cxk (m×1) and the 
measurement noise vector vk (m×1), with m being the 
number of sensors used for the measurements.  

In order to identify the state matrix A from the measured 
system response (vibrations of the spindle), an optimal 
estimator of the state-space model must be obtained based 
on the measured system response. This requires that such 
measured system response must be a Gaussian stochastic 
process with zero mean, which leads to 
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where iΛ is the output covariance matrix describing the 
Gaussian stochastic process, i.e., the measured system 
response. This means once the state space model with the 
covariance matrix iΛ  can be estimated, it will completely 
describe the statistical properties of the measured system 
response. The corresponding estimator that can generate 
the state space model is then considered as the optimal 
estimator.  Furthermore, equation (3) implies that the input 
noise processes wk and vk are also zero-mean Gaussian 
(E[wk]=0 and E[vk]=0), which are defined by the 
covariance matrices as: 
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where pqδ  is the Kronecker delta function, and Q, S, and R 
are the noise covariance matrices. Similarly, the state 
vector xk is also zero-mean (E[xk]=0) with the state 



covariance matrices and the updated state-output matrices 
defined using the noise covariance matrices as: 
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Based on the covariance matrices defined in equations (4) 
to (6), the output covariance matrices can be rewritten as: 
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These covariance matrices are also called the system 
matrices because they describe the stochastic properties of 
the state-space systems. They are used for the estimation of 
the state-space model, and thus the identification of the 
state matrix A. Another system matrix needed for 
estimation is the extended observability matrix, which is 
defined as:  
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Two types of algorithms are commonly employed for 
state-space model estimation: data-driven and 
covariance-driven algorithms [15]. For the presented study, 
a reference-based data-driven algorithm was investigated. 
A Kalman filter is employed for the optimal prediction of 
the state vector xk+1 by making use of the chosen reference 
sensor measurements, which is denoted as . A Kalman 
filter state sequence can be formed by the various Kalman 
filter state estimates as: 
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Once the Kalman filter state estimates are obtained, 
numerical techniques can be applied to estimate the 
state-space model, e.g., using the QR-factorization 
technique [15], which essentially projects the row space of 
the future outputs into the row space of the past outputs. 
The projection can be factorized as the product of the 
observability matrix and the Kalman filter state sequences: 

                                                 (10) 

Thus, the Kalman filter state sequence is expressed as: 
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By applying equation (11) and extending equation (2), the 
state-space spindle model is then obtained in the form of a 
set of linear equations: 
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ρ  are the 

quation

Since the dynamic behavior of
the state matrix A, the eigen-frequencies an odal 

residuals. Since the residuals are uncorrelated with iX̂ , the 
system matrices A and C can be solved in e  (12) as: 
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 the spindle is represented by 
d m

damping ratios can be obtained from the eigenvalues of 
state matrix A, using known decomposition techniques. 

It should be noted that the SSI-based output-only modal 
analysis can also be extended to deal with applications 
where they don’t satisfy the condition requirement of white 
noise input, which is often the case encountered in 
mechanical systems.  This is achieved by assuming that the 
white noise input drives a virtual loading structure to 
generate force input to the structure of interest [25], e.g., the 
spindle, as illustrated in Figure 2. With this representation, 
the measured response contains information on dynamics 
of both the loading structure and the spindle, thus the 
corresponding identification process includes not only the 
vibration modes associated with the structure of interest 
itself, but also the modes that belong to the virtual loading 
structure. However, the modal parameters of the structure 
of interest are separable from those of the virtually excited 
modes of the loading structure. This is verified as follows.  

 
Figure 2.  Illustration of output-only identification . 

 
Based on the illustration shown in 

system

Figure 2, the 
following relationship can be obtained as:  
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where W(S) denotes the white noise inp
generated from the loading structure and applied to the 

ut, F(S) is the force 

structure of interest. Y(S) is the measured system response. 
HLS(S) and HSI(S) are the transfer function of the loading 
structure and the structure of interest, respectively. The 
transfer function HS(S) of the system is defined as: 

( ) ( ) / ( )SH s Y s W s=                            (15) 

Combining equation (14) with equation (15), the system’s 
transfer function can also be expressed as: 

( ) ( ) ( )S LS SIH s H s H s= ⋅                       (16) 

Suppose there are n and m modes for the loading structure 
and structure of interest, respectively, the transfer function 
HLS(S) and HSI(S) can be expressed as: 
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ρ Substituting equations (17) and (18) into equation (16), the 



 

transfer function of the system can be further expressed as: 
2 2 2 2

1 1 1 1

2 2

( )( )

           = [ ]

s
i j i ji j i j

n m
i j i j

s s s s

a b a b

1 1

2 2

1 1

( )

( )( ) ( )( )

           = +

n m n
j i ji

i j i i j j j i

n m
ji

i ji j

b aaH S

s s

BbAa
s s

m b
α β α β

α α β β β α

α β

= =

= =

= =

− − − −

− −

∑ ∑ ∑∑

∑ ∑

where A and B are constant, and can be calculated as: 
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Equation (19) verifies that all of the modal parameters of 
the structure of interest can be identified using the 
SSI-based output-only mo
though the requirement of white noise input is not satisfied. 

SI-based 
chnique for monitoring an operating spindle. The spindle 

ntact ball bearings 

 
Figure 3.  Spindle te nsor positions. 

 
The sampling frequency of the data acquisition board 

was set at 20,000 Hz, with the cut-off frequency  the 
an  
su  
ass

impact tests were 
onducted. Impacts of 13,300 N in magnitude and 25 ms in 

plied to the spindle shaft, 

of candidate state space 
mo

=∑                                           

dal analysis technique even 

The only issue is to identify and eliminate those modes 
related to the virtual loading structure from the system, 
which can be done based on human knowledge. 
 
 
3   Monitoring an Operating Spindle 
A series of experiments was conducted on a spindle test 
system to evaluate the applicability of the S
te
is supported by four 42 mm-angular co
(Figure 3), which are mounted as a duplex pair with two 
bearings on each end of the spindle shaft. Two air cylinders 
applied constant and impulsive loads to the spindle, 
simulating static preload (e.g., when machining a 
workpiece under constant speed and feed) and shock load 
(e.g., when impacted due to tool-workpiece collision) to 
the spindle. Eight sensor positions, denoted 1-8 in Figure 3, 
were chosen for measurements. The odd numbers specify 
measurement in the horizontal direction, and the even 
numbers along the vertical direction.  

st-system setup and se

 of
ti-aliasing filter being 10,000 Hz. For stochastic
bspace identification, the i put noise terms are usuallyn
umed to be white. It was observed from preliminary 

experiments that the rotating spindle also contains certain 
dominant frequency components, such as the spindle 
rotational frequency and bearing characteristic 
frequencies. These frequency components cannot be 
separated from the eigen-frequencies of the system, and 

thus will appear as poles of the state matrix A. On the other 
hand, it was noted that the highest dominant frequency of 
the spindle (ball passing frequency for inner raceway of the 
bearing) and its harmonics that contain noticeable energy 
content were all below 2,000 Hz, for the highest spindle 
speed investigated (879 rad/s or 8,400 rpm). To simplify 
data analysis, the measured vibration signals were first 
high-pass filtered at 2,000 Hz, in order to focus on spindle 
behavior within the frequency range of 2,000 Hz to 10,000 
Hz, which is the Nyquist frequency.  
 
3.1 Effect of dynamic impact 
To investigate the effect of shock load to the spindle at the 
various stages of its service life, 
c
duration were consecutively ap
under a constant rotational speed of  377 rad/s (3,600 rpm), 
for a total of 1,100 times. Vibration signals were collected 
before the impact test and at 400 impacts, 700 impacts, and 
1,100 impacts, respectively, without interrupting the 
operation of the spindle. To study the effects of speed and 
load, other rotational speeds (126 rad/s (1,200 rpm), 630 
rad/s (6,000 rpm), and 879 rad/s (8,400 rpm)) and static 
loads (70 N, 419 N, 839 N, and 1,258 N) were also applied 
while measuring the signals. 

Modal analysis of the spindle was subsequently 
performed using the SSI method described above. Since 
the true model order, i.e., the exact state space dimensions 
of the system, is unknown, a range 

dels were used. To ensure accuracy, the number of 
dimensions was over-specified (i.e., 80) initially, and the 
appropriate dimension was iteratively determined to 
extract the modal parameters.  The estimated models were 
plotted in the stabilization diagram.  An example of such a 
diagram for the measured data under 126 rad/s (1,200 rpm) 
speed, no static load, and after 700 dynamic impacts is 
shown in Figure 4, where the estimated eigen-frequencies 
for each state space dimension is shown with the cross 
markers along the frequency axis. 

 
 

 
Figure 4.  Stabilization diagram for the data set of 1200 rpm 

speed and no static load.  
 

For the SSI analysis, noise (computational) modes are 

noise m
made by the algorithm itself noise modes are 
spr

also estimated in addition to the structural modes. These 
odes are results of the non-fulfilled assumptions 

. Typically, 
ead in a non-repeated way and can be eliminated by 

establishing a threshold for damping ratio, typically 5%. 
This is because the structural modes are usually lightly 
damped (e.g., spindle damping ratio was found to be less 
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than 4%); whereas the noise modes are more heavily 
damped. Furthermore, the structural modes would appear 
“stable” across the various state space dimensions with the 
estimated modal parameters. As shown in Figure 4, there 
are six stable modes presented in the diagram, between 
2,000 Hz and 10,000 Hz. The modal parameters can then 
be obtained by either finding one state space dimension 
where all modes are stable or by choosing different 
dimensions to determine each individual mode.  

Using the SSI method, the natural frequencies and the 
spectral densities of the spindle were estimated for all data 
sets collected during the impact tests. Figure 5 shows a 
comparison of the estimated spectral densities (so

th the measured spectral densities (dotted lines) for the 
data sets for 126 rad/s (1,200 rpm) speed and no static load. 
Good agreement was found in the frequency range from 
2,000 Hz to 10,000 Hz.  
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(b) After 400 impacts 
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(c) After 700 impacts 
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(d) After 1100 impacts 

Figure 5.  Comparison of the estimated spectral density with 
the measured spectral density for the data set of 126 rad/s 

(1200 rpm) speed and no static load. 
 

 

  
  

 

 
Figure 6. Change of spindle natural frequencies as a function 

of the impacts, obtained at 126 rad/s (1200 rpm). 

It is apparent that the dynamics of the spindle have 
changed as a result of the accumulated impacts. Before the 
impact application, when the spindle is defined as in a 
“healthy” state, the spectrum showed only four structural 
modes being identified, as shown in Figure 5(a). After 400 
impacts, two additional modes appeared in the frequency 
range of 8,000 Hz to 10,000 Hz. The magnitudes of these 
two modes increased with an increasing number of the 
impacts. In addition, the magnitude of mode  also has 
appeared to be increasing. The estimated natural 
frequencies and the change of their magnitudes with 
impact numbers at different stages of the impact tests are 

A d to 
listed in Figure 6. 

wavelet enveloping analysis was then conducte
investigate the condition of the spindle after 700 impacts 
[26]. As shown in Figure 7, several characteristic 
frequencies associated with the spindle unbalance and 
bearing inner raceway defect were detected successfully, 
indicating such damages have been developed on the 
spindle as the impacts accumulated. It is thus concluded 
that the change of the spindle dynamics is the result of the 
structural damage. The data sets collected for other 
speed-load combinations also showed the same change of 
spindle dynamics. Further impact tests are being 
conducted, and it is expected that they will help reveal 
more conclusively the nature of the changes. 

 

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

Frequency (Hz)

PS
D 

(W
att

s/H
z)

 
Figure 7. Wavelet envelope spectrum of the vibration signal 

measured after 700 impacts. 
 

3.2 Effect of loading 
To study the effect of static loading on the spindle 
dynamics, the natural frequencies for four loading 
conditions were extracted, under four different speeds. 
Data sets were collected after 700 impacts. It was found 
that for all six modes identified in Figure 5, the natural 
frequencies show an increasing trend, as the static load 
increases. Examples are given in Figure 8, illustrating 
changes of the natural frequencies for modes  and .  
 

 
(a) Natural frequency of mode 1 

 
(b) Natural frequency of mode 5 

Figure 8. Effect of static load on spindle natural frequencies 
related to modes  and . 



 

A similar trend was identified for other structural 
modes. This can be explained in that increased static load
has led to increased stiffness of the spindle structure and 
thus the natural frequencies. Such a finding is in agreement 
with the investigations reported in [5] and [6]. Further
experiments are planned to improve the accuracy of
analysis. 
 
 
4   Conclusions 
The output-only modal analysis technique has been stu
to identify changes of spindle dynamics due to load and
speed variations, at various stages in its service life. Such a
technique does not require known inputs to the spindle,
and is performed when the spindle is under realistic 
operation con or struct ral

stationary durin  Using
the

dynamics, and the information obtained provides 
sight into its present working status and future

. and Altintas, Y., Identification of spindle 
 force sensor's transfer function for modular end

N., Some characteristic parameters affecting the 
natural fFrequency of a rotating shaft supported by defect 

bearings, Proceedings of the Institute of Mechanical 

 1992. 

ental Modal Analysis, 10(4):260-277, 

 and Fisher, S., Real-time modal 

odal parameter 

tion, 282:215-230, 2005. 

of an arch 

nical Systems and Signal Processing, 13(6):855-878, 

sing frequency 

tion of ambient responses, In: Proceedings of the 

onditions: 

 subspace-based 

l, 23:668-676, 2001. 

6. 

R., Brincker, R., Asmussen, J.C., Modal 

e, K., Spindle health diagnosis 

 

20

 

9.

 the 1995. 
10. Kirkegaard, P.H. and Andersen, P., State space identification 

of civil engineering structures from output measurements, In: 
Proceedings of SPIE, 3089:889-895, 1997. 

11. Tasker, F., Bosse, A.,
died 

 
 
 

parameter estimation using subspace methods: theory, 
Mechanical Systems and Signal Processing, 12:795-806, 
1998. 

12. Ren, W. and Zong, Z., Output-only m

ditions. It therefore accounts f u  

 

id

excitations, which are not considered if the spindle remains 
g experiments using hammer strikes.

 stochastic subspace identification (SSI) algorithm, a 
series of vibration signals measured on a custom-designed 
spindle test system was analyzed. Modal parameter 
changes were identified as a result of the accumulated 
impacts on the spindle. The technique presents a new, 
complementary approach to analyzing a spindle’s 
structural 
in  199

performance. 
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