
On enabling a model-based systems engineering 
discipline

Peter Denno
National Institute of Standards and Technology

Gaithersburg, Maryland, USA
peter.denno@nist.gov

Thomas Thurman and
John Mettenburg

Rockwell Collins, Inc.
Cedar Rapids, IA, USA

Dwayne Hardy
American Systems 

Chantilley, VA, USA

  Published and used by INCOSE with permission.

Abstract. This paper considers the requirements of a model-based systems engineering (MBSE) 
discipline and the benefits that would be realized from it. A premise of MBSE is that the 
technical environment supporting systems engineering has evolved, and is still evolving. We 
analyze the basis of systems engineering decision making in conjunction with the technical 
environment in which it may soon be performed.  The analysis provides insight into the 
requirements that, when met, enable a model-based systems engineering discipline. We report on 
our practical experience toward meeting the requirements using UML, SysML, AADL, AP233, 
and a systems engineering tool interoperability testbed.

Introduction
This paper describes requirements to enable a MBSE discipline. The use of “model” in the term 
“model-based systems engineering” may appear vacuous since models  have always played a 
large role in engineering and systems engineering specifically.  However,  it  is not the use of 
models that distinguishes MBSE but rather how models may be used. In MBSE, the models must 
enable a family of more sophisticated tools, and thereby, new processes. Among these tools are 
parametric  modeling  and decision-support  technology.  These  two  technologies  could  play  a 
larger role in future MBSE practices – whatever challenge the systems engineer might face, these 
illuminate the space of potential solutions. And it is the ability to understand and navigate this 
space that is the essence of systems engineering. Focus on agile application of these technologies 
is also consistent with the future described by the INCOSE 2020 Vision (Sage, 2006). 

Yet, in practice, the use of parametric modeling and decision-support technology is throttled by 
the high cost of transforming information to a form that these tools can use. MBSE techniques 
can lower this cost. Models, and the formal description that they provide, can be paired with 
information  mapping  engines  to  lower  the  cost  of  information  transformation.  Further,  the 

mailto:peter.denno@nist.gov


integrity  of models can be verified by tools mechanizing the constraints on usage found in the 
formal description.  

Enabling  agile  use  of  parametric  models  and  decision-support  technology  places  certain 
requirements  on  the  models  used.  We  call  these  the  requirements  of  MBSE.  They  are  the 
distinguishing characteristics of MBSE as we define the term.

1. Formal specifications of viewpoint are employed.
2. Specification of the correspondence of information across viewpoints is possible.
3. A characterization of the validity of actual instances of this correspondence is possible.
4. Traceability is a mechanistic outcome of the design process.

This paper argues that a new, model-based discipline of systems engineering will emerge as the 
four characteristics are realized. Progress toward an MBSE discipline will remain evolutionary. 
The characteristics are interrelated: partial achievement of (1) and (2) above enable solution to 
(3) and (4). (1) and (2) can be considered near-term goals;  (3) and (4) long-term goals.

On an infrastructure realizing these characteristics,  it  will be possible to provide the systems 
engineer with a stratum of sophisticated tools, including agile parametric design technology and 
evidence-based decision support. These tools will provide the principal benefits of MBSE.  

The remainder of this paper elaborates these points and reports on our experience. Section 2 of 
the  paper  describes  the  systems  engineering  (SE)  problem  space  in  terms  of  its  technical 
environment  and  the  basis  of  its  decision  making.  This  leads  to  an  understanding  of  the 
requirements that should direct work toward a MBSE infrastructure. Section 3 discusses each of 
the  challenges  in  turn  and  describes  the  role  that  various  technologies  play  in  a  MBSE 
infrastructure. Section 4 concludes the paper.

Although this  paper  reports  on our  experience  with  elements  that  may lead  to  MBSE,  it  is 
important  to  keep  in  mind  that  this  paper  is  about  requirements of  MBSE.  Our  work  may 
illuminate a path to the solution, but it is not the solution. 

The SE Problem Space – technology perspective
For the purpose of this paper, we define systems engineering broadly,  and without regard to 
whether it is “model-based.” It is any methodical approach to the synthesis of an entire system 
that (1) defines views of that system that help elicit and elaborate requirements, and (2) manages 
the  relationship  of  requirements  to  performance  measures,  design  constraints,  system 
components,  and  discipline-specific  system  views.  The  technical  environment  supporting 
systems  engineering  includes  a  design  process,  product  data  management  (PDM)  systems, 
discipline-specific  analytical  tools,  modeling tools,  (for (UML 2007) and (SysML 2006),  for 
example)1 engineering ontologies and their schemas (e.g. SysML, (MARTE, 2005),  (AP233, 
2004)  information  mapping  engines  (e.g.  (QVT,  2005),  ATL  (Jouault,  2006),  (Express-X, 
2003)), catalogs of parts and their characteristics, and authoritative references.

The variety of engineering ontologies used in a typical SE environment and differences in the

1 An index of the abbreviations and acronyms used is provided in section Acronyms.



technologies employed in expressing them present technical challenges that will be discussed in
this paper.  Figure 1, adapted from Sudarsan (Sudarsan, 2006), illustrates the scope of various 
standards relevant to systems engineering and the product lifecycle. The vertical axis represents 
the specificity of scope,  e.g., UML and OWL have wide applicability, so they are low on the 
vertical axis; OAGIS BODs are specifically for messaging so it is high.). The height of the ovals 
has no meaning. 

Figure 1. Lifecycle role of various standards, specificity of domain

Basis of  SE decision making: In  the following,  adapted from an earlier  work,  (Denno and 
Thurman,  2005) we analyze  the basis  of systems engineering decision making.  This is  done 
mindful of the technical environment in which decisions are made. In the process, we identify 
the differing notions of traceability that are employed in systems engineering.

The constituents of the basis are
 Change  process: Knowledge  of  the  existence  of  precursors  and  the  history  of  the 

properties that distinguish them.
 Origin in requirements: Relationships that indicate how the data are related to

requirements (such as design rationale and trace relationships). This is the sense of
traceability usually intended when the term is used by systems engineers. 



 V&V process: Knowledge of the deliberate steps taken to ensure that data is consistent 
with  other  beliefs  and  with  requirements.  Typically  these  “steps”  are  defined  in  the 
design guidelines of the enterprise, in regulations, and in quality standards.

 Origin in other belief: Relationships that indicate the logical basis for the belief and the 
history of its logical support. Examples include correspondence of the data to an idealized 
model, or an entailment from that model made available from a validation process (but 
not  the  process  itself,  which  is  the  subject  of  the  previous  constituent).  The  logical 
support of a belief may change over time. The assumptions on which it rests may no 
longer be true, or may be found to have been false all along. This is a logical sense of 
traceability.

 Authority: The power that data has, due to an approval it is granted or an estimate of its 
maturity. Approvals and estimates of maturity ultimately are underwritten by a role in the 
organization.  Lesser notions of authority are applied when, for example,  a decision is 
supported by component characteristics from a supplier.

 Origin in media: Relationships that indicate where the data reside. ``Media'' might not 
be as concrete as “on the disk of computer xyz” but rather “in the CAD repository of 
designs approved for manufacture.” This is a logistical sense of traceability. It is closely 
related to the constituent authority above. 

 Logical consistency: This includes type awareness, interpretation constraints, and   well-
formedness  conditions.  Type  awareness  concerns  knowledge  of  the  type  of  thing  to 
which the data refer. Type reference data may include units of measure. Interpretation 
constraints are assertions about what roles a particular type can serve. For example, a 
“thrust-specific fuel consumption” value can only refer to an object that consumes fuel 
and produces thrust. Well-formedness conditions constrain the structure of the data to be 
consistent with the system of expression (syntax, domain of values) in which it is defined.

 Measurement Conditions: This is  knowledge of the process by which a datum was 
measured  or  computed,  an  expression  of  confidence  in  the  value,  or  a  statement  of 
accuracy.

 Associativity across views: Knowledge of relationships among properties conceived in 
differing viewpoints. There are two forms of ignorance of these relationships
 A conceptualization gap is the absence of the knowledge that two conceptualizations 

can be used for the same purpose. For example, a time period could be specified by 
either a start and stop time-point,  or a start time-point and a duration.  Bridging a 
conceptualization gap (which can often be done  a priori) may make existing data 
governed by the schemas more useful, without explicitly referencing any of the data.  

 A recognition gap is the absence of the knowledge that two references refer to the 
same thing. For example, that a geometric feature in a tolerance stack-up analysis is 
the same feature in a CAD model. Bridging a recognition gaps makes available 
additional information about the things being referenced. 

The notion of conceptualization gap emphasizes an analytic and intensional viewpoint on 
associativity. Recognition gap emphasizes a synthetic and extensional viewpoint. 
Collectively they are referred to as associativity gaps (Peak, 2003). Associativity gaps are 
accidents of nature when they occur across disparate views. They are modeling errors 
when they occur within a single view.  



When a conceptualization gap concerning identity conditions (Guarino and Welty, 2001) 
is   resolved (by equating identity conditions across viewpoints), it may be possible to 
resolve recognition gaps among the individuals identified by those conditions. 

A proposition is a complete though that is expressed by an indicative sentence. It is whatever can 
be asserted, denied, contended, maintained, assumed, supported, implied, or presupposed. The 
same proposition may be expressed by different sentences. (Johansson, 2007) Any  proposition 
relevant to the system under study may be qualified by, or related to, other propositions about the 
system that fit the nine categories above. For example, if for some hypothetical property P, the 
proposition “The value of P is 0.05” is asserted, the following propositions might also apply:

 “Our ability to achieve requirement x diminishes as P exceeds 0.07.” (origin in 
requirements)

 “The value of P we calculated for this design is close to that found in earlier designs.” 
(change process)

 “The value of P is confirmed through an engineering simulation that is routinely 
performed  in the validation of this product line.” (V&V process)

 “A value of 0.05 when used in equation Q, provides a value of R that is consistent with
observations.''  (origin in other belief)

 “Supplier provided characteristics also suggest that P=0.05 is obtainable.” (authority)
 “This value of P was obtained from the aero model in the preliminary design library.” 

(origin in media)
 “The units of P are m/sec, which are valid units of measure for observations of P.” 

(logical
consistency)

 “This value of P was observed under 1 ATM pressure, 20% humidity and 20 degrees 
Celsius.” (measurement conditions)

 “If P=0.05 in the static analysis, it can be expected that P=0.055 will be found in the 
dynamic analysis.” (associativity across views)

The  nine  constituents  above  overlap  and  interrelate  in  complex  ways.  For  example,  the 
constituent measurement conditions includes an assessment of ``the degree of confidence.''
Each of the eight other constituents also contributes to an assessment of a degree of confidence, 
however, these other constituents interrelate propositions. Measurement conditions only concern 
the  proposition  asserting  the  measured  value,  and  the  degree  of  confidence  expressed  is 
abstracted  to  an  elementary  measure  (such  as  an  ordering)  of  an  undifferentiated  notion  of 
confidence.

The Roles of Models 
Achieving the aim of the four challenges  listed in the introduction provides two positive 

results.  First,  it  becomes  possible  to  communicate  essential  SE  information  to  the  decision 
support and parametric design tools that can automate SE processes. Second, the investment in 
models with these four properties makes clear the relationships inherent in the information and 
processes  employed.  This  may have  far-reaching  consequences  in  the  ability  to  manage  the 
enterprise and its projects. Models provide an enduring repository for institutional knowledge. 
Models can be improved iteratively. They seldom become wholly obsolete. 



Systems engineering currently makes little use of evidence-based decision-support tools. It is 
difficult to integrate them into a process that lacks a methodical means to draw information from 
multiple views. The need to do so is critical to decision support.

Systems engineering makes better use of parametric design tools, and the value of such tools is 
well known to most systems engineers. But again, the difficulty of obtaining information that 
would drive the process is an obstacle.  Without the benefits of a MBSE environment,  it will 
remain necessary to (1) intervene manually to resolve associations across views, and (2) translate 
analytic  results  to  implications  on  requirements.  This  situation  prevails  despite  the  fact  that 
technical frameworks for more agile application of  parametric design already exist (Peak, 2000). 

The critical difference that has made the use of parametric design technology a mixed success, 
and the application of decision-support tools largely a failure, is that the former can be applied in 
routine design scenarios where the cost of implementation can be amortized over the long period 
in which those design scenarios persist. In contrast, decision support is used in more ad hoc 
situations and toward more elementary decisions. While this ought to be an advantage, the setup 
cost makes it infeasible.

A  meta-object  framework  is  a  key  enabler  of  a  MBSE  environment.  Figure  2  illustrates 
relationships  among  elements  of  a  meta-object  framework.  N.B.:  It  depicts  an  abstract 
conceptualization, not an architecture diagram. The figure depicts elements from two disparate 
technologies, UML and STEP. The inclusion of two or more technologies not sharing a common 
metamodel may be typical of actual implementations.

The technologies  are  integrated  through the use of a  Meta Object  Framework (MOF) based 
metamodel for EXPRESS-based data. This metamodel is being developed as part of the MOF2 
EXPRESS Interoperability and Coexistence (MEXICO) project (Barkmeyer, 2007) (Krause & 
Kaufmann, 2007). Using the “MEXICO Injector” an MOF-based translation of an EXPRESS 
schema  (in  this  case  for  AP233)  is  produced.  This  schema  conforms  to  the  EXPRESS 
metamodel.  The  schema  is  used  as  source  objects  in  a  mapping  of  EXPRESS  to  UML, 
(producing the “UML-based AP233 Schema” depicted). The UML-based AP233 schema is used 
to map AP233 objects to a repository in a manner similar to how SysML or MARTE objects 
would be mapped. A similar procedure could be used to map other STEP application protocols 
that might be relevant to the domain. One such protocol is AP210, the electro-mechanical design 
application protocol.



Figure 2. Components of a MBSE Architecture

The next section describes the four challenges from the Introduction in turn, with reference to the 
decision-making constituents, the  metaobject framework, and their implication on enabling the 
technologies.

Challenge 1: Formal Specification of Viewpoint
A viewpoint  is  expressed  as  the  selection  of  concepts,  relationships,  and  constraints  on 

interpretation  identified  in  some universe  of  discourse.  A viewpoint  may  be  expressed  in  a 
technology such as the UML, EXPRESS, and OWL (W3C, 2004). In order to understand the 
value  that  formality  brings  to  the  specification  of  viewpoints,  it  is  useful  to  view  these 
technologies as knowledge representation languages (KRLs). Fikes (Fikes, 2004) defines a KRL 
as consisting of a logical  formalism, an ontology,  and a proof theory.  By reference to proof 
theory,  this definition might seem ill-fit to UML, and EXPRESS,2 which were not conceived 
having one. Yet, some aspects of proof theory apply to these languages and, as described below, 
provides the principal benefit of the formalization of the language.

Proof  theory  (Buss,  1998) seeks  to  characterize  mathematically  the  soundness  and 
completeness of the  rules of inference of a logical formalism. Typically, proof theories may be 
mechanized, thereby providing a tool implementing the inference rules of the logical formalism. 
Resolution-based reasoners (Robinson, 2001) exemplify tools in which a proof theory (of first-
order  logic  in  this  case)  describes  a  means  of  mechanization.  The  Process  Specification 
Language (PSL,  2005) exemplifies  an ontology germane to  SE that  is  specified  in  a logical 
formalism that has a proof theory. 

2 EXPRESS is the information modeling language (“logical formalism”) of several 
application protocols (“ontologies”) including AP233.



Mechanization of proof theories provides two principal benefits. First, it provides a software 
tool to check the consistency of the theory (by identifying contradictions). Secondly, the same 
tool can be used to derive a proof of any statement that follows from the theory. (This is true of 
logical formalisms that are said to be “complete”  – a property typically demonstrated through 
the proof theory).  “The theory”  involved in the consistency checking and proof above is,  to 
return to the definition of Fikes, the ontology. An ontology in the framework of Fikes consists of

1. a set of non-logical symbols defined or restricted
2. definitions of non-logical, non-primitive symbols
3. a set of axioms restricting the interpretation of primitive non-logical symbols

In (1) and (2) above, non-logical symbols are distinguished from logical symbols in that the 
former are elements of the vocabulary of the universe of discourse and the latter are elements of 
the logical formalism. This is analogous to the difference between the name of a class in a UML 
class diagram (non-logical) and the notation for generalization in UML (logical). In (2) above, 
non-primitive symbols are distinguished from primitive symbols in that necessary and sufficient 
conditions are provided for the former (they are “defined”) but not for the latter.  In (3) “axioms” 
refers to statements in the ontology that express a truth concerning a concept represented by a 
primitive symbol, but do so with less than necessary and sufficient conditions. 

To summarize the above in the context of expressing a viewpoint by means of a KRL, a proof 
theory of a logical  formalism provides tools  to test  the consistency of the ontology and,  for 
semantically complete proof theories, to provide proofs of any true statement about the ontology. 
Further,  the  distinction  between  definitions  and  axioms  provides  an  epistemic  property  of 
statements made in the ontology (an aspect of the constituent origin in other belief). In fact, there 
is  another  distinction  that  can  be  made  here  –  that  between  definitions  that  introduce  new 
primitives and those that do not. (The latter are called conservative definitions.) 

Mechanized proof theories theoretically provide the capability to test the validity of information 
intended to conform to an ontology. Such information may be provided by an exchange file from 
a tool that  operates in the context of the viewpoint. In earlier,  but incomplete work (Denno, 
2006),  we  implemented  this  approach  using  a  first-order  logic  (FOL)  reasoner,  Vampire 
(Raizanov, 2003) and an ontology for the management of intercontinental supply chain transport. 
The ontology was defined as an extension of the Suggested Upper Merged Ontology (SUMO) 
(Niles,  2001)  and  information  from exchange  files  (ebXML (OASIS,  2007)  messages)  was 
extracted to ground facts. In a FOL KRL, it is not necessary (nor easy) to make a distinction 
between the  information originating from the ontology and that originating from the exchange 
file – it is all uniformly represented in the logical formalism of the KRL.

A significant advantage of this FOL approach is that it is not necessary to define specific tests of 
consistency – it is enough to query the reasoner for a proof of any statement known to be false 
with respect to the ontology. If the combined ontology plus exchange file content is inconsistent, 
the proof returned will make use of a contradiction in those statements. A disadvantage of this 
approach,  however,  is  that  it  can  be  difficult  to  automate  the  process  that  determines  what 
inconsistency in the ontology and exchange file enabled the proof.

Important differences exist between KRL technology possessing a proof theory and technologies 



such as UML, EXPESSS, SysML, and AP233. However, these latter technologies are specified 
sufficiently to enable mechanized  conformance checking tools, that assess whether populations 
conform to their respective ontologies. For example, a SysML conformance-checking tool may 
confirm that a population obeys the stipulation that an “ItemFlow” must be associated with a 
“Connector” or “Association.”  Unlike first-order logic, where a formal proof theory specifies a 
mechanization  of  the  rules  of  inference,  the  implementation  of  tools  for  these  languages  is 
guided largely by an understanding of its object model and expression language, which together 
are used to specify an ontology.  An  object  model concerns the notions of type composition, 
inheritance,  properties,  relationships,  and  mechanisms  for  abstraction  of  an  object-oriented 
formalism. An expression language is a subset of the logical formalism consisting of operators 
composable to expressions that can be used to further constrain the ontology.3 Implementing the 
object model and an evaluation engine for the expression language enables the generation of 
conformance tools. They can be created by reading the metamodel of the target ontologies and 
generating  from this  (1)  class  definitions  conforming  to  the  implemented  object  model  (the 
classes are instances of the object model) and, (2) a translation of constraints provided in the 
metamodel to executable code that runs against the evaluation engine.  We did exactly this to 
generate  conformance  tools  for  UML and  SysML,  using  the  UML metamodel  and  SysML 
Profile,  (Denno,  2007)  and  for  AP233,  using  MEXICO  and  the  AP233  schema.  Figure  3, 
illustrates the relationships among concepts involved.

3An object model for SysML is, roughly speaking, provided  by MOF. The expression language 
of SysML is the  Object Constraint Language (OCL). MEXICO provides a metamodel of 
EXPRESS (the logical formalism of AP233) as a UML model. The MEXICO metamodel covers 
both the object model and expression language of EXPRESS.



Figure 3. KRLs, proof theory and consistency checking

Further discussion of the implementation of conformance-checking tools is provided in our 
earlier work (Denno, 1996). 

Conformance and interoperability  validation tools: Conformance-checking  tools  serve the 
important role of identifying where software that exchanges information by means of a shared 
interface  specification  (an  exchange  file  specification)  does  not  conform  to  the  normative 
stipulations  of  that  specification.  Conformance  to  a  shared  exchange  specification  is  a  key 
enabler of interoperability, the ability of parties to work jointly toward a shared goal. In the case 
of SysML and AP233, at least, the great majority of these stipulations are the constraints of the 
ontology, and a small minority concern the serialization of the content in the exchange file (e.g. 
XMI (XMI, 2005) for SysML, and ISO 10303-28 (10303-28, 2006) for AP233).

We  have  developed  a  testbed  that  can  be  used  to  assess  the  interoperability  of  systems 
engineering tools. (Denno, 2007) The near-term goal of the testbed is to help SE tool developers 
make this assessment using its conformance-checking tools. The testbed provides conformance-
checking tools for information provided in AP233, UML, and SysML exchange files. 

Because exchange files for UML, SysML and AP233 can encompass the complete ontology of 
their  respective  viewpoints,  the  conformance-checking  tools  can  also  serve  the  purpose  of 
identifying errors and shortcomings in the specifications themselves. In this regard, the testbed 
tools have identified many errors in the OCL of UML, and a few situations where SysML would 
benefit by the specification of additional constraints.   

The  mid-term  goal  of  the  interoperability  testbed  is  to  provide  an  environment  for  tool 
developers  to assess the ability  of tools  to share information  in situations  where those tools 
implement  a  common  exchange  file  specification  (e.g. they  all  implement  XMI for  SysML 
exchange). At the time of this writing, that work, called “The SE Tool Interoperability Plugfest,” 
is just starting.  

The long-term goal of the testbed is to provide a facility to improve the ability of SE tools to 
share information across closely related viewpoints. For example, requirements encoded in the 
SysML viewpoint could be shared with those encoded in AP233.

To  summarize  the  discussion  of  the  role  of  formality  in  specification,  formality  enables 
automated means to assess the logical consistency of expression. When the ontology is stated in 
a logical formalism for which there is a proof theory, it may be possible to check the consistency 
of the ontology itself. As the viewpoints that SE standards developers seek to express become 
increasingly complex, and as these viewpoints become grounded on a mathematical foundation, 
the value of consistency checking will become increasingly obvious.4 Yet we cannot rule out the 
possibility that for the foreseeable future, technologies such as UML and OCL will adequately 
serve the requirements of MBSE. In cases where a proof theory of the logical formalism is not 

4This  trend  in  the  development  of  consensus  specifications  might  be  called  ``model-based  standards 
development.''



known, formality might still enable the development of conformance-checking tools. 

Relation to decision-making constituents: Formality in specification strongly relates  to  the 
constituent logical consistency. Type awareness, interpretation constraints, and well-formedness 
conditions are precisely what formality provides. The value of formality in associativity across 
views is discussed in section  associativity,  below. Whereas the above two constituents have a 
general information-technology flavor, the remaining seven constituents are more specifically SE 
domain concerns. The benefit of formal specifications is not limited to engineering processes. 
The  enterprise  benefits  in  areas  of  program/project  management,  training,  service, 
manufacturing, and certification as its processes and viewpoints become more widely understood 
and integrated. 

Challenge 2: Associativity across viewpoints
 Engineering  enterprises  are  comprised  of  collaborating  units,  typically  departments,  each 
working  under  the  assumptions  and viewpoints  appropriate  to  their  discipline-specific  tasks. 
Knowledge of how information from these various viewpoints interrelates is essential to many 
system engineering tasks. This is apparent when one considers how much of systems engineering 
concerns  the  decomposition  of  information  from  requirements  and  the  reintegration  of 
components to a complete system. 

In consideration of the technical environments in which the work of the discipline and of systems 
engineering  is  performed,  there  are  three  principal  means  by  which  associativity  across 
viewpoints is acquired  

1. through interrelations inherent in a schema 5 that encompasses multiple viewpoints
2. through explicit mappings that reference objects in disparate ontologies
3. through skilled, domain knowledge-intensive, consideration of the data in the context of 

information that affects its interpretation

Sources of associativity (1) and (2) are discussed in this section, and (3) in section  Extent of  
validity 

A distinguishing  characteristic  of  MBSE when  compared  to  traditional  processes  is  that,  in 
MBSE,  viewpoints  are  aggregated  and  interrelated  under  a  schema.  In  a  multi-viewpoint 
framework, tools that manipulate the viewpoints bear much of the responsibility for reusing and 
interrelating  objects.  A differentiating  factor  among these  schemas  is  the  degree of  inherent 
cohesion among the viewpoints that they aggregate. Rather “generic” integration schema such as 
GEIA-927 (GEIA,  2006) and the EPISTLE core model (EPISTLE, 2003) can correlate data 
through  basic  ontological  primitives  such  as  class  relationships  and  process  decomposition. 
Schemas  that  integrate  a  more  closely related  collection  of  viewpoints,  such as  SysML and 
AP233, additionally track the identity of objects across views. For example, a hydraulic pump in 
a structural view has a port that has properties attached that are referenced in a parametrics view. 

5 The word schema (and not ontology) is used here to distinguish the technical aggregation of the 
content from its conceptual scope. A schema in this context is a collection of viewpoints under a 
common system of expression. AP233 and SysML are representative   – they contain viewpoints for 
requirements, system breakdown, etc.



Extended provisions for cohesion are provided in schemas such as AP210 (AP210, 2001) and 
AADL that, because their scope is more focused, may include more domain-specific facilities for 
integration.  The  AADL  notion  of  sub-program  exemplifies  this  distinction:  AADL  has 
provisions  to  describe  precisely  the  relationships  among  sub-programs,  processes,  and 
processors. In SysML, this relationship might be abstracted to associations among blocks. In 
SysML, no language provisions anticipate the notion of sub-program. 

It is conceivable in a tightly integrated collection of viewpoints that the “roll up” of allocated 
properties (e.g. weight, power use) could be expressed as a concept in the overarching ontology. 
Likewise, behavioral properties that in some way “subsume” other system properties could be 
expressed.  An  example  of  subsumption  in  this  sense  is  a  throughput  property  of  a  system 
consisting of components in serial connection – the throughput of the system is the throughput of 
the slowest component.

By explicit mappings in (2) above, we mean that associativity across disparate views is identified 
in  mapping  declarations defined  in  a  structural  mapping  language  such  as  ATL,  QVT  or 
Express-X.  Mapping  languages  such  as  these  are  a  distinguishing  characteristic  of  MBSE, 
enabled  by  the  use  of  a  shared  metamodel  architecture.  Traditional  methods  of  translator 
development require implementation of serialization functions (potentially reading and writing 
very  different  serializations)  as  well  as  structure  mapping  functions.   The  use  of  mapping 
languages has isolated the mapping function into the implementation of the mapping engine. The 
separate serialization function is dependent only on a meta-meta-model, such as MOF, which the 
source and target models share. Though the efficiency gained through this is obvious, perhaps 
more important is the value declarative mappings provide to the enterprise – with these, it is 
possible to study the conceptual mapping without viewing irrelevant implementation details. 

Our  experience  suggests,  however,  that  mapping  engine  implementations  are  relatively 
immature.  Performance  on  very  large  datasets  is  not  good  and  provisions  for  incremental 
mapping (i.e. mapping a increment of source data into an existing body of target data) are not 
well established.

Challenge 3: Extent of validity across viewpoints
 Requirement (3) from the introduction is a long-term goal of MBSE. It enables the expression of 
the  nature  of,  and  confidence  in,  the  relationship  between  properties  expressed  in  disparate 
viewpoints.

Where  well-understood  relationships  across  viewpoints  exists  these  relationships  can  be 
aggregated into a multi-viewpoint integration schema,6 removing conceptualization gaps. This 
was noted above. When, instead, an enterprise uses multiple disparate ontologies, similar results 
can be achieved using mapping schema. This was also discussed above. In both of these cases, 
conceptualization  gaps  are  bridged  as  analytic  judgments  (i.e. a  deductive  process).  What 
remains is the recognition of relationships that cannot be resolved  a priori because either (1) 
some  properties  involved  in  the  (synthetic)  judgment  are  in  a  “gray  area”  where  their 
interpretation  is  unclear,  or  (2) the ontologies  which  they span are  pair-wise inconsistent  or 
6UML, SysML, AP210, AP233, AADL and MARTE could all be described as “multi-viewpoint 
integration schema” in that they assert relations across the viewpoints they aggregate.



incomplete.7  

Having applied mapping and multi-viewpoint integration to all concerns that can be addressed a 
priori, what remains is an area requiring human engineering interpretation. There will be, for the 
foreseeable future, situations where the conceptualization of  one engineering discipline cannot 
be restated easily in the conceptualizations of another. In these situations, an interpretation of one 
discipline's data might only serve as evidence of some property defined from the viewpoint of the 
receiving discipline. 

We have said that the development  of MBSE is an evolutionary process and that the partial 
achievement  of  the  requirements  for  formal  specification  of  viewpoint,  and  correspondence 
across viewpoints (requirements (1) and (2) from the Introduction) enable characterization of the 
validity of instances of the correspondence (requirement (3)).  In this regard, decision support 
technology  is both enabling MBSE and its goal. It is enabling because the rules provided to 
decision support systems. For example, Bayesian knowledge bases, (Laskey,  2007) provide a 
characterization  of  validity  across  viewpoints.  Indeed,  if  the  validity  could  be  established 
deductively there would be no point in using this technology. The relationship to the goal only 
appears convoluted when the role of characterizing validity across viewpoints is conflated with 
the larger role of providing decision support to the systems engineer.8

Probabilistic  techniques  such  as  (Laskey,  2007)  can  be  used  to  express  confidence  in  a 
relationship that spans viewpoints. More explicit expression of the relation may be possible, but 
supporting technology in this area is less mature. A KRL that appear to possess the expressive 
power  to  relate  propositions  across  multiple  viewpoints  is  the  IKRIS  Knowledge  Language 
(IKL) (Hayes, 2006, Hayes, 2007). However, as of this writing, there are no reasoners for IKL.

Challenge 4: Traceability is a mechanistic outcome
 The fourth challenge enumerated in the Introduction is to ensure that the design system has, 
built-in, the ability to describe the motivation of the design commitments or “refinements” that 
lead to the current design. This should be viewed as a long-term goal. The near-term benefits of 
MBSE can be realized without this ability. The work toward this goal is generally immature and 
exploratory.

A  refinement is,  roughly speaking,  a commitment  made along the path from a requirements 
specification to a system specification satisfying those requirements. In a sense, a refinement is 
like a step in a proof. However, it is unlikely that automated reasoners of the sort described in 
section Formal Specification could be employed effectively to perform design (i.e. “advance” a 
design by making sound inferences  that  are  refinements).  Among the difficulties  to  such an 
approach  are  the  lack  of  goal-directness  of  the  reasoner  and  the  weakness  of  the  rules  of 
inference as a means of design ideation. As an improvement over these general-purpose tools, 
term rewriting has been applied as a means to automate design. (Zave, 1997) Term rewriting is 
analogous to theorem proving where, in this analogy, the inference rules (e.g. resolution) are 

7It  is  common  that  the  steps  of  the  engineering  process  are  gated  by  these  quintessential 
engineering judgments. 
8 Though it could be argued that characterizing the validity of information across viewpoints is the principal role 

of a systems engineer!



replaced by another set  of syntactic transformation rules, the rewrite rules.  The rewrite rules 
reflect engineering commitments, in the sense that they rewrite something that has the form of a 
requirement (or derived requirement) into something that is closer to a design specification. 

The notion of refinement employed in term-rewriting-based design methods is quite specific. 
The method has the advantage of obviating some design validation work (provided the rewrite 
rules  are  sound).  However,  it  has  severe  limitations.  First,  it  requires  a  formal  and  correct 
specification of  the requirements. Second, it is problematic in domains where the relationships 
between the intended function of elementary components  and their  behavior is not clear and 
deliberate. This limitation has excluded nearly all domains of application but software and some 
aspects of integrated circuit design. More promising for these domains may be hybrid methods 
that transform and compose “building blocks” rather than the simpler syntactic structures of term 
rewriting. Examples of this are found in the developing research area called proof-based
systems engineering (Biely,  2005) and the ASSERT project  (Morisse,  2005).  It  may also be 
possible to augment automatic reasoners with human assistance. (Kirchner, 2000)

A more promising near-term goal of MBSE is to leverage knowledge of the relationships among 
properties in order to document design commitment rationale. This can be viewed as a modest 
increment  in  the  practice  of  product  data  management  (PDM).  PDM  systems  can  keep 
annotations on whole designs and simulation results. In MBSE, reference can be made to the 
ontologies  and  mapping  specifications  where  some  of  the  information  supporting  the 
commitment is stated, and an engineering decision-support system (Ullman, 2007) can be used to 
record the support. Support could include reference to the various notions of traceability (e.g.  
reference to requirements, change process, and V&V process) as noted in the discussion of the 
constituents.

This same approach can be extended to leverage knowledge of mathematical relationships of 
design parameters to behavior. The engineering decision-support system could be used to record 
the sensitivity of behaviors to perturbation of design parameters.  This information is perhaps 
already known through engineering simulations and parametric design studies, but repeating it in 
an engineering decision-support system in a MBSE environment may expose it for more general 
use across the enterprise.

Conclusion
Model-based  Systems  Engineering  is  possible  in  an  infrastructure  that  supports  formal 
specification of viewpoints, rigorous specification of the correspondence of information across 
viewpoints, knowledge of the extent of validity of this correspondence, and built-in traceability. 
On an infrastructure possessing these properties, it will be possible to implement agile parametric 
design technology and evidence-based decision support systems. These are the principal benefits 
realized by MBSE. 

Formal  specification of viewpoint  enables automated consistency checking of ontologies and 
tools  for  conformance  checking  of  standards-based  exchange  forms.  The  importance  of  the 
former increases as the SE discipline strives to codify its practices. The latter is essential to tool 
interoperability.  The  development  of  the  SE tool  interoperability  testbed  is  a  means  toward 



achieving these goals.  

Formality of specification also leads to better means to express relations among information in 
related viewpoints. Expression of this information has “cultural” benefits to the enterprise, as 
details of the relationships among disciplines are revealed. By enabling structural information 
mapping, the metamodel architecture also enables more agile application of parametric design 
technology:  knowledge of the mapping can be used to  transform data  into forms needed by 
analytical tools, and to transform results from these tools back to statements about requirements 
and design feasibility constraints. 

Assessing  the  extent  of  validity  of  the  correspondence  of  properties  across  viewpoints  is  a 
quintessential  systems  engineering  task.  This  is  an  area  where  the  investment  in  formal 
ontologies  and  careful  modeling  returns  the  most  value.  The  near-term  goal,  to  codify  this 
knowledge for manual analysis, is in itself a significant challenge. The long-term goal is to make 
the knowledge available to evidence-based decision-support tools.

Finally, by means of an analysis of the basis for SE decision making, the paper illustrates some 
of the notions of traceability at  work in SE, and sources of them. Recording,  with decision-
support tools, the traces and refinements made in engineering design commitments provides a 
repository of institutional knowledge and a platform for agile family-of-products development.9

Index of Acronyms and Abbreviations
AADL – Avionics Architecture Description Language, an SAE 
standard. 
ATL – Atlas Transformation Language, a mapping language similar to QVT. 
AP210 – ISO 10303-210, electromechanical design application protocol.
AP233 – ISO 10303-233, system engineering application protocol.
ebXML – Electronic Business using eXtensible Markup Language, an OASIS and UN/CEFACT 
standard.
Express – ISO 10303-11, information modeling language used in ISO 10303 (STEP) suite of 
standards. 
Express-X – ISO 10303 Structural Mapping Language.
EPISTLE –  ISO 15926, an integration schema
INCOSE – International Council on Systems Engineering
ISO 10303-28 – XML-based serialization for STEP-based information. 
QVT – Queries, Views, Transformations, an OMG specification. 
MARTE – Modeling and Analysis of Real-Time Embedded Systems
MOF – Metaobject Framework, an OMG specification. 
OWL – Ontology Language for the Web, a W3C specification.
SysML – Systems Modeling Language, an OMG specification.
UML – Unified Modeling Language, an OMG specification.
V&V – validation & verification.
9References  to proprietary products are included in this paper solely to identify the tools actually 
used in the industrial applications. This identification does not imply any recommendation or 
endorsement by NIST as to the suitability of the product for the purpose.



XMI – XML-based serialization for MOF-based information, an OMG specification. 

References

AADL:  SAE  International:  Architecture  Analysis  &  Design  Language  (AADL),  AS5506, 
November 2004, (2004)

AP210:  International  Organization  for  Standards  (ISO):  Application  Protocol:  Electronic 
Assembly, Interconnect and Packaging Design, ISO 10303-210:2001 (2001)
AP233, International Organization for Standards (ISO): ISO/CD 10303-233, Part 233: Systems 
engineering data representation, Interim Release, 2004-01-26, http://ap233.eurostep.com/ (2004)

Barkmeyer,  E.  J.:  The  EXPRESS  metamodel  and  mapping  project  (aka  MEXICO),  Object 
Management Group presentation, http://www.omg.org/cgi-bin/doc?mantis/2008-02-05, (2008)

Biely,  M, Le Lann, G., Ulrich S.: Proof-Based Systems Engineering Using a Virtual System 
Model,  In:  LNCS  3694,  Proceedings  2nd  International  Service  Availability  Symposium 
(ISAS'05), Springer, Berlin, Germany, pp 164-179 (2005)

Buss, S. R.: “An Introduction to Proof Theory” in  Handbook of Proof Theory, Samual R. Buss 
(ed), Elsevier, Amsterdam, (1998)

Cantrell, J. B.: SADASAE, http://www.sadasae.com/Pages/meaning.htm. (2007)

Denno,  P.,  Thurman,  T:  Requirements  on  information  technology  for  product  lifecycle 
management. In: International Journal of Product Development, Vol 2, Nos. 1/2, (2005)

Denno,  P.,  Iviezic,  N.:  Message Validation  with a  Semantic  Reasoning  Tool,  NIST Internal 
Report, NISTIR 7347, (2006)

Denno, P: MOF2 / EXPRESS Integration and Coexistence (MEXICO), http://syseng.nist.gov/se-
interop/mexico (2007)

Denno,  P.:  Dynamic  Objects  and  Meta-level  Programming  of  an  EXPRESS  Language 
Environment, Dynamic Objects Workshop; Object World, Boston, MA, (1996)

Denno, P.: Systems Engineering Tool Interoperability Plugfest,
http://syseng.nist.gov/se-interop/sysml-tools-overview (2007)

EPISTLE, International Organization for Standards (ISO): EPISTLE Core Model, ISO 15926-2 
(2003)

EXPRESS: International Organization for Standards (ISO): The EXPRESS language reference 
manual, ISO 10303-11:2004 Ed. 2, (2004)



Express-X: International Organization for Standards (ISO): The Express-X Language Reference 
Manual, ISO 10303-14, International Standard (2003)

Fikes, R.: lecture slides on knowledge representation. "Multi-use Ontologies" for CS222 Winter 
2004, Stanford University (2004)

GEIA-927: Government Electronics & Information Technology Association (GEIA): Handbook 
and Guide for GEIA-927 Common Data Schema for Complex Systems, GEIA-HB-927 (2006)

Guarino,  N.  and  Welty  C.:  Identity  and  Subsumption,  LADSEB-CNR  Internal  Report,  01/ 
(2001). 

Hayes,  P:  “A  logic  for  ontology  interoperation”  Ontolog  Forum  invited  presentation, 
http://ontolog.cim3.net/forum/ontolog-forum/2006-10/msg00082.html, October 26, 2006. 

Hayes, P. et al.: “IKL Specification Document” 
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html

ISO  10303-28:  International  Organization  for  Standards  (ISO):  XML  representation  of 
EXPRESS schemas,  using  XML schemas,  Draft  International  Standard,  ISO/DIS  10303-28, 
2006-01-19, (2006) 

Jouault, F.,  Kurtev, I.: On the Architectural Alignment of ATL and QVT In: Proceedings of the 
2006 ACM Symposium on Applied Computing (SAC 06). ACM Press, Dijon, France, chapter 
Model transformation, pages 1188–1195 (2006)

Kirchner,  H.:  Combining  assisted  and  automated  deduction,  In  Annals  of  Mathematics  and 
Artificial Intelligence, Springer Netherlands, Volume 28, Numbers 1-4/October, 2000

Krause, F. L., Kuafmann, U.: Metamodeling for Interoperability in Product Design, CIRP 
Annals, Manufacturing Technolgy, Volume 56, Issue 1, 159-162, 2007.

Laskey,  B.:  MEBN: A Language for First-Order Bayesian Knowledge Bases, George Mason 
University, Department of Systems Engineering and Operations Research, 2007.

MARTE, OMG: Joint UML Profile for MARTE Initial Submission, realtime/2005-11-01 (2005)

Morisse,  J.,  Martelli,  A.,  David,  P.:  The  highly  reliable  infrastructure  system  family  for 
ASSERT, Proceedings of the DASIA 2005 - DAta Systems In Aerospace - Conference, 30 May - 
2 June 2005, Edinburgh, UK (ESA SP-602, August 2005)

Niles,  I.,  and  Pease,  A.:  Towards  a  Standard  Upper  Ontology.   In:  Proceedings  of  the  2nd 
International Conference on Formal Ontology in Information Systems (FOIS-2001), Chris Welty 
and Barry Smith, eds, Ogunquit, Maine, October 17-19, 2001

OASIS: OASIS ebXML Messaging Service, http://www.oasis-open.org/committees/ (2007). 



OWL: OWL Web Ontology Language Reference,  W3C Recommendation 10 February 2004, 
http://www.w3.org/TR/owl-ref/ (2004)

Peak, R. S.: Characterizing fine-grained associativity gaps: a preliminary study of CAD-CAE 
model interoperability.  In:  Proceedings of DETC'03, ASME Design Engineering Technical 
Conferences, Chicago, Illinois, USA (September 2–6, 2003)

Peak, R. S.: X-Analysis Integration (XAI) Technology, Georgia Tech Engineering Information 
Systems Lab Technical Report EL002-2000A (2000)

PSL: International Organization for Standards (ISO): Process Specification Language – Part 11: 
PSL Core, ISO 18629-11 (2005)

QVT: MOF QVT Final Adopted Specification, ptc/05-11-01. 

Raizanov,  A.:  Implementing  an  Efficient  Theorem  Prover,  PhD  Dissertation,  University  of 
Manchester, Manchester, United Kingdom, (2003)

Robinson, J., A., and Voronkov, A., (editors): Handbook of Automated Reasoning, MIT Press, 
(2001)

Sage, A.: INCOSE 2020 Vision for SE education & research, Academic Forum, INCOSE 2006 
Symposium, Orlando, Florida, July 9-13, 2006

Sudarsan, R., Foufou, S., Kemmerer,  S.: Analysis  of Standards for Lifecycle Management of 
Systems for US Army – a preliminary investigation; NIST Internal Report, NISTIR 7339, (2006)

SysML: OMG SysML Specification, ad/06-05-04

Ullman,  D.:  “The  Ideal  Engineering  Decision  Support  System” 
http://www.robustdecisions.com/theidealenginsyste1.pdf (2007)

UML: UML 2.1.1 Superstructure Specification, formal/07-02-03 (2007)

XMI: MOF 2.0/XMI Mapping Specification, v2.1, formal/05-09-01, (2005)

Zave, P., Jackson, M.: Four Dark Corners Of Requirements Engineering In: ACM Transactions 
on Software Engineering and Methodology (1997)  

Biography

Peter Denno is a Computer Scientist at the National Institute of Standards and 
Technology. He has 24 years experience in software solutions to engineering design and systems 
engineering problems. He has contributed to AP233 and SysML and was the technical editor of 



the ISO STEP information mapping language, EXPRESS-X. His current work focuses on the 
Systems Engineering Interoperability Testbed, http://syseng.nist.gov/se-interop, a project 
associated with INCOSE's MBSE initiatives. Peter received a BS in mathematics from the 
University of Connecticut in 1983.

Thomas Thurman is a Principal Engineer at Rockwell Collins in Cedar Rapids, Iowa, 
USA. He received a BS in Electrical Engineering from St. Louis University, USA. He has 39 
years of experience in the Avionics sector. For 18 years he developed instruments and 
instrumentation systems for engineering, manufacturing, and field support applications in the 
analog, digital, video, rf and microwave domains. For 5 years he served as technical lead in the 
development and implementation of an integrated CAD/CAE system for printed wiring board 
and assembly design. This included development and application of the first commercial 
integrated analog/digital system simulation environment. For the past 13 years he has been a 
technical expert assigned to the PDES Inc. consortium in the area of electronics. He serves as the 
project leader for the ISO Application Protocol for electronics design. His research interests 
include multi-disciplinary model mapping, systems integration, and novel applications of AP 
210.

 John Mettenburg is a Principle Systems Engineer in Commercial Systems at Rockwell 
Collins. He currently works on the application of Model Based approaches to reduce the cost and 
schedule of complex system integration. Previously, he worked in the Advanced Technology 
Center at Rockwell Collins on projects aimed at establishing the practice (and value) of  rigorous 
architecture specifications for the purpose of advanced analysis, including formal methods. 
John's primary interest is embedded systems software development with an emphasis on 
increasing productivity. He started at Rockwell in 1993 working in the Government System GPS 
business, left in 1997 and returned to Cedar Rapids in 2001 to re-join the GPS business working 
on the MUE program. John transferred to ATC in 2005 and to Commercial Systems in 2008 and 
has been promoting the AADL as a foundation for software systems architecture modeling and 
analysis.  John received a BSEC from George Mason University in 1986.


	Introduction
	The SE Problem Space – technology perspective
	The Roles of Models 
	Challenge 1: Formal Specification of Viewpoint
	Challenge 2: Associativity across viewpoints
	Challenge 3: Extent of validity across viewpoints
	Challenge 4: Traceability is a mechanistic outcome
	Conclusion
	Index of Acronyms and Abbreviations
	References
	Biography

