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ABSTRACT

PRIDE (PRediction In Dynamic Environments) is a hierarchical multi-resolutional framework for moving object
prediction. PRIDE incorporates multiple prediction algorithms into a single, unifying framework. To date, we
have applied this framework to predict the future location of autonomous vehicles during on-road driving. In
this paper, we describe two different approaches to compute long-term predictions (on the order of seconds into
the future) within PRIDE. The first is a cost-based approach that uses a discretized set of vehicle motions and
costs associated with states and actions to compute probabilities of vehicle motion. The cost-based approach
is the first prediction approach we have been using within PRIDE. The second is a fuzzy-logic-based approach
that deals with the pervasive presence of uncertainty in the environment to negotiate complex traffic situations.

Using the high-fidelity physics-based framework for the Unified System for Automation and Robot Simula-
tion (USARSim), we compare the performance of the two approaches in different driving situations at traffic
intersections. Consequently, we show how the two approaches complement each other and how their combination
performs better than the cost-based approach only.

Keywords: Autonomous vehicles, cost-based approach, fuzzy-logic-based approach, fuzzy control, moving object
prediction, PRIDE

1. INTRODUCTION

Fully autonomous vehicles have been the subject of international intensive research for many years. To better
understand the challenges and problems of autonomous mobility from a number of different perspectives, re-
searchers have launched many worldwide projects. Self-driving vehicles are not on the market yet, and many
difficulties still need to be solved before the implementation of systems that fully control the behavior of a truly
autonomous vehicle. Even so, many of today’s cars feature technologies that are building blocks to a world
populated by autonomous vehicles. Researchers have performed many experiments with autonomous vehicles to
enhance the development of road safety, vehicle control during on-road driving situations, and driving-aids for
handicapped people. Moreover, manufacturers have saved many lives by integrating automatic cruise controls,
transmissions, parking systems, and collision detection in commercial cars.

In the past decade, the first prototypes of vehicles outfitted with automatic driving aids have been presented
to the public. In 1995, a German team reached a milestone when their robot van (VaMP)1 performed a trip over
1600 km from Munich (Germany) to Odense (Denmark) and back at a maximum speed of 180 km/h in traffic.
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In July 1995, the No Hands Across America project by the Carnegie Mellon University’s Robotics Institute
drove the Navlab 5 autonomously over 2797 miles out of the 2849 miles (98.2 %) from Pittsburgh, Pennsylvania,
to San Diego, California. In November 2007, the third competition of the Defense Advanced Research Projects
Agency (DARPA) Grand Challenge, known as the “Urban Challenge”,2 took place in Victorville, California. The
competition features autonomous ground vehicles maneuvering in a mock city environment, interacting with each
other and making intelligent decisions in real time based on the actions of other vehicles.

In an attempt to explain drivers’ behaviors and to identify the reason for certain dysfunctions, psychologists
have performed many experiments on drivers’ actions and predicted behavior.3 Our research interest bears upon
a level of situation awareness of how other vehicles in the environment are expected to behave considering their
situation. When humans drive, they need to understand how each object in the environment moves according to
the situation it finds itself in. To address this need, we have developed a multi-resolution hierarchical framework,
called PRIDE (PRediction in Dynamic Environments). This framework provides an autonomous vehicle planning
system with information that it needs to perform path planning in the presence of moving objects.4 This
framework supports the prediction of the future location of moving objects at various levels of resolution, thus
providing prediction information at the frequency and level of abstraction necessary for planners at different
levels within the hierarchy.

Despite tremendous advances made in the field of autonomous vehicles in the last decade, a number of
problems remain. Most of the difficulties originate in the interactions between vehicles and the real world,
unstructured environment, and in the large uncertainties that are inherent in these environments.5 While
performing a driving task, autonomous vehicles face different levels of uncertainty in their vicinity due to noises
and dynamic changes of the environment. When drivers approach an uncontrolled traffic junction for example,
they negotiate their path based on the information they collect from the environment and from the other agents
in the environment. That is, drivers rarely use crisp data, but they rather approximate this information to make
the right decision. Such information could be the speed, the distance and the aggressivity of other drivers.

This paper proposes a new approach that couples the PRIDE cost-based algorithm with a fuzzy logic con-
troller. The implemented system copes with vagueness and computes uncertainty tolerating predictions. We
detail the integration of the fuzzy controller in PRIDE and describe the specific role of each approach and how
they interact with each other. Through different tasks involving up to four vehicles using the Unified System for
Automation and Robot Simulation (USARSim), we discuss the performance of the new framework in different
traffic scenarios at traffic intersections.

This paper is organized as follows: Section 2 gives an overview of the PRIDE framework. Section 3 briefly
describes the basics of fuzzy sets and details the integration of a fuzzy controller within PRIDE. Section 4
discusses the results of the simulation of different scenarios at a traffic intersection. Section 5 concludes the
paper and gives an overview of future work.

2. OVERVIEW OF THE PRIDE FRAMEWORK

PRIDE is a multi-resolution hierarchical framework that provides an autonomous vehicle planning system with
information required to perform path planning in the presence of moving objects. This framework supports the
prediction of the future location of moving objects at various levels of resolution. The PRIDE framework is based
on the 4D/RCS architecture,6 which provides a reference model for unmanned vehicles on how their software
components should be identified and organized.

We developed the PRIDE framework to provide moving object predictions to planners running at any level
of the 4D/RCS hierarchy at an appropriate scale and resolution. The underlying concept of PRIDE lies in the
incorporation of multiple prediction algorithms into a single, unifying framework. At the higher levels of the
framework, the prediction of moving objects needs to occur at a much lower frequency and a greater level of
inaccuracy is tolerable. At these levels, moving objects are identified as far as the sensors can detect and we use
the long-term prediction approach to predict where those objects will be at various time steps into the future.
Higher-level reasoning processes need a global representation of the environment to compute the future location
of an autonomous vehicle. In PRIDE, we use a road network that we have fully developed, called the Road
Network Database.7 At the lower levels, we use Extended Kalman Filter (EKF) estimation theoretic short-term



predictions to predict the future location of moving objects with an associated confidence measure. Complete
details on the aforementioned prediction algorithms can be found in previous work.8

In recent efforts, the PRIDE framework has used the Mobility Open Architecture Simulation and Tools
(MOAST) framework along with the USARSim system.9 The integration of PRIDE with the MOAST and US-
ARSim frameworks provides predictions incorporating the physics, kinematics and dynamics of vehicles involved
in traffic scenarios. MOAST is a framework that provides a baseline infrastructure for the development, testing,
and analysis of autonomous systems. MOAST implements a hierarchical control technique which decomposes the
control problem into a hierarchy of controllers with each echelon (or level) of control adding additional capabili-
ties to the system. USARSim is a high-fidelity physics-based simulation system that provides the embodiment
and environment for the development and testing of autonomous systems. USARSim utilizes the Karma Physics
engine and high-quality 3D rendering facilities of the Unreal game engine to create a realistic simulation envi-
ronment that provides the embodiment of a robotic system. The integration and the system architecture on the
integration of PRIDE with the MOAST and USARSim frameworks is described in previous work.10

Handling drivers’ aggressivity is the latest enhancement of the PRIDE framework. In this context, the
aggressivity represents the style and driving preferences of a driver. For example, we would likely assume that
a conservative driver will remain in his lane whenever possible and stay at a safe distance behind the vehicle in
front of him. Conversely, an aggressive driver would have a higher probability of changing lanes and would be
more apt to tailgate the driver in front of him. We may also find that the aggressivity of the driver may change
over time, e.g., the driver can be very aggressive when trying to get to a certain lane, but become more passive
when he gets there.

The PRIDE framework addresses these driver types and all situations mentioned above. Experiments and
corresponding results performed on aggressivity can be found in previous work.11

3. INTEGRATION OF THE FUZZY CONTROLLER

Research in autonomous vehicles has widely adopted fuzzy controllers to design reactive robot behaviors.12,13 We
have used a fuzzy controller in PRIDE due to the uncertainty in both sensory information and motor execution.
We also employ fuzzy logic to facilitate the driving task for an autonomous vehicle. Fuzzy systems have been
used to design controllers that handle the behavior of autonomous vehicles and robotic systems for navigation
and obstacle avoidance.14,15 Such systems offer the advantage of an easy incorporation of the knowledge for a
human expert in the prototype of the controller, and in terms of the robustness of the results. Driankov and
Saffiotti16 present a large variety of fuzzy techniques which address the challenges posed by autonomous robot
navigation.

A fuzzy-logic-based system has the advantage that it allows the intuitive nature of intersection negotiation to
be easily modeled using linguistic terminology. In addition, with the proposed methodology we can relax some
of the constraints associated with the cost-based approach. The complex phase of designing and defining costs
can turn tedious for complex traffic situations. Moreover, fuzzy logic is flexible, conceptually easy to understand,
and has the particularity to be blended with conventional control techniques.

3.1. Fuzzy Set Theory

We shall start with some basic principles of the fuzzy set theory to better understand the mechanics of a fuzzy
controller. Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept
of partial truth. Fuzzy sets and fuzzy logic are used to heuristically quantify the meaning of linguistic variables,
linguistic values, and linguistic rules that are specified by the expert. In 1965, Zadeh introduced fuzzy sets as
an extension of the classical notion of a set to represent concepts that do not have sharp boundaries. A fuzzy
set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership
function (MF) which assigns to each object a grade of membership in the interval [0, 1]. Mathematically, a fuzzy
set A over a universal set X is defined by its membership function

µA : X → [0, 1]



such that, for any x ∈ X, the value of µA(x) represents the degree of membership by which x belongs to the set
A.

There is a variety of shapes for membership functions. According to fuzzy set theory, the choice of the shape
and width is subjective, but may follow a few rules: (1) A MF should be sufficiently wide to allow for noise in the
measurement, (2) A certain amount of overlap is desirable; otherwise the controller may run into poorly defined
states, where it does not return a well defined output. Commonly used function shapes for MF are shown in
Figure 1.
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Figure 1. Examples of membership functions: (a) S-shape, (b) Z-shape, (c) Pi-shape, (d) Generalized bell-shape, (e)
Trapezoidal-shape, (f) Triangular-shape.

Once we have defined fuzzy sets, we need to define some basic relations and operations on them. The original
set-theoretic operators of complement, intersection, and union given by Zadeh17 are:

µA′(x) = 1− µA(x)
µA∩B(x) = min(µA(x), µB(x))
µA∪B(x) = max(µA(x), µB(x))

for any x in the universal set X. More generally, many alternative fuzzy operators have been defined and studied.
One can find more details on fuzzy operators and their use in Zadeh’s work.17

3.2. Mechanism of a Fuzzy Controller

It is a difficult task to model and simulate complex real-world systems for control systems development, specially
when implementation issues are considered. Fuzzy control provides a formal methodology for representing,
manipulating, and implementing a human’s heuristic knowledge about how to control a system that reasons in
the presence of uncertain or vague data.

Fuzzy controllers are rule based controllers where the inference mechanism is grounded on fuzzy logic. The
general architecture of a fuzzy controller is depicted in Figure 2. The fuzzy controller uses input data gathered
from sensors and outputs information to control the vehicle. We can distinguish four main components in a fuzzy
controller:

Figure 2. Architecture of a fuzzy controller.



1. The fuzzification module converts real input values to degrees of membership using the membership func-
tions. The fuzzification block thus matches the input data with the conditions of the rules to determine
how well the condition of each rule matches that particular input instance. There is a degree of membership
for each linguistic term that applies to that input variable.

2. The rule base holds the knowledge, in the form of a set of rules, of how best to control the system. In
general, fuzzy controllers are based on control rules of the type “IF condition THEN control”. condition
is always a fuzzy proposition (formula of fuzzy logic) of the type “x is A”, where x is a linguistic variable
and A is a linguistic term. condition tells when the rules should be applied; and control is a formula
that describes the action to apply. In most practical cases, rules have a purely conjunctive form, that
is, condition is a conjunction of atomic predicates of the input variables, and control is a single atomic
predicate of the output variable. For example the following rules can be part of a control system that
outputs the deceleration of a vehicle approaching a stop sign:

IF “Distance” is Small AND “Speed” is Small THEN “Deceleration” is Small
IF “Distance” is Small AND “Speed” is Medium THEN “Deceleration” is Big

3. The inference mechanism is the kernel of the fuzzy controller. It evaluates which control rules are relevant
at the current time and then decides the fuzzy commands to apply to the process. The inference mechanism
is performed in three steps: (1) If the condition of a given rule has more than one part, the fuzzy operator
is applied to obtain one number that represents the result of the antecedent for that rule. The input to the
fuzzy operator is two or more membership values from fuzzified input variables. (2) We use the implication
process that returns a fuzzy set. The input for the implication process is a single number given by the
antecedent using (1), and the output is a fuzzy set. The fuzzy set is obtained by fuzzifying the membership
function of the output, using the value obtained from the fuzzy operator from (1). (3) Aggregation is the
process by which fuzzy sets that represent the outputs of each rule from (2) are combined into a single
fuzzy set. Aggregation only occurs once for each output variable, just prior to the defuzzification process.

4. The defuzzification module converts the conclusions (fuzzy sets) reached by the inference mechanism into
actual inputs for the actuators of the process. The basic idea of the defuzzification method is to compute
a point in the resulting fuzzy set and to take its value as the output. Several defuzzification methods can
be found in the literature.18 Existing defuzzification methods differ mostly in the way they pick the point
in the final fuzzy set. PRIDE applies the most popular and widely used method, the “Center of Gravity”
(CoG), which is defined below:

Let bi denote the center of the membership function of the consequent rule (i). Let
∫

µi denote the area
under the membership function µi. The CoG method computes the crisp output u to be

u =
∑

i bi

∫
µi∑

i

∫
µi

3.3. Design of a Fuzzy Controller in PRIDE

We have developed a system that incorporates both the fuzzy-logic-based and the cost-based approaches. The
new system implements an intelligent control strategy where it senses the information in the environment and
reacts according to the nature of this information. In PRIDE, the combined-approach system is used for traffic
intersection management. The system first computes the acceleration and deceleration of vehicles driving toward
intersections, and then calculates the predicted estimates to control these vehicles. Although this paper focuses
on the application of fuzzy controller at traffic intersections, we have used the fuzzy-logic-based approach in
different situations, and for different purposes that we will present in future work.

3.3.1. Application of the Fuzzy Controller

PRIDE uses the fuzzy controller for vehicles at uncontrolled and controlled intersections. An uncontrolled
intersection is a road intersection where no traffic lights or signs are used to indicate the right-of-way. In Figure 3,



vehicles A and B are at uncontrolled intersections, whereas vehicles C and D are at controlled intersections defined
by stop signs. The Road Network Database holds information for navigation at intersections. Such information
is the type of intersection a vehicle is driving toward (controlled or uncontrolled), the type of traffic sign at the
intersection, the number of paths at the intersection, . . .

Figure 3. A scenario at an intersection.

The fuzzy controller takes into account two pieces of information to compute the acceleration and deceleration
of a vehicle. The first one pertains to the rules developed for driver education courses.19 These rules affect the
strategies of intersection management such as the waiting time at stop signs, the rights-of-way, etc. The second
point considers the aggressivity of the drivers. The aggressivity plays an important role in the system, where it
greatly impacts the decision-making process, and thus the behaviors of the drivers.

Figure 3 sketches a scenario where the decision made by each vehicle depends on the objects of interest in
the environment. In this context, an object of interest is a moving or stationary object in the environment that
has a reasonable probability of intersecting the path of the controlled vehicle within a predetermined time frame.
The reasonable probability is a function of the aggressivity of the controlled vehicle and the risk tolerance it is
willing to assume. Note that it is impossible to know the exact path that a stationary or moving object in the
environment will take at points in the future, so all possible paths must be considered. In the following, the
crossing area represents the part of the intersection where the paths of the vehicles intersect and where collisions
are possible.

In Figure 3, vehicle A is planning to turn left and vehicle B is planning to go straight. According to the
driver education manual, vehicle A does not have the right-of-way and has to yield to vehicle B. However, if the
driver of vehicle A is aggressive, he may be able to turn before vehicle B reaches the crossing area. Vehicle C has
to consider vehicles A and B and thus makes a decision based on the paths that these vehicles plan to take. In
the same way, the path of vehicle A can interfere with the path of vehicle D if vehicle A decides to go straight.

In these different cases, we clearly see that the decisions the drivers make depend on different parameters
that impact the action of the vehicles. The drivers have the choice to decelerate or accelerate to perform one
action over the other. The fuzzy controller used in PRIDE is in charge of combining different parameters and
outputs the acceleration and deceleration of the vehicles to perform the appropriate action. The elaboration
of the parameters constitutes the first part of the design process of a fuzzy controller and corresponds to the
design of the fuzzy sets. The second part consists of developing a set of rules able to model the intuitive way we
negotiate intersections using linguistic terminology, this is the build-up of the rule base. The two parts of the
design process are described below.

Membership Functions We first need to develop the membership functions for the fuzzification and defuzzi-
fication modules. Figures 4(a) and 4(b) respectively represent the input and output fuzzy variables along with



their corresponding fuzzy sets. As we can see, the fuzzy controller uses three different input parameters (distance,
speed, aggressivity) in order to compute the acceleration/deceleration to control the vehicle. The membership
functions depicted in Figure 5 are used to translate real conditions into fuzzy logic values.

The values used for the boundaries of the fuzzy variables are relevant to the information we have on the vehicles
and the road network in PRIDE. “Distance” represents the distance between a vehicle and the beginning of the
crossing area. The maximum distance of a road to an intersection is 10 m. “Speed” represents the speed of a
vehicle and does not exceed 20 m/s. We have defined different levels for the “Aggressivity” of a vehicle by values
ranging from 0 to 10. “Acceleration/Deceleration” represents the acceleration and deceleration of a vehicle and
is used both as an input variable and an output variable. The values for the acceleration and the deceleration
are in the interval [−4.5, 3.5] m/s2.

(a) (b)

Figure 4. Input and output fuzzy variables.
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Figure 5. Membership functions for input and output variables.

Rule Base Once the membership functions are defined for the fuzzy sets, we need to build a rule base for
the system. The rule base consists of a set of IF-THEN rules that map fuzzy range variables into fuzzy speed,
distance, aggressivity and acceleration/deceleration commands. The rule base defined in PRIDE contains more
than two hundred fifty rules.

The rules need to reflect the behaviors we take when approaching an intersection. One rule from the rule
base in PRIDE is given below. “Speed A” and “Speed B” represent the fuzzy variable “Speed” for the main
vehicle and for the object of interest, respectively. Likewise, “Dist A” and “Dist B” represent the fuzzy variable
“Distance” for the main vehicle and for the object of interest, respectively. “Aggressivity A” is the aggressivity
of the main vehicle.



IF “Speed A” is M AND “Dist A” is M and “Speed B” is S AND “Dist B” is M AND “Aggressivity A” is
Aggressive AND “Deceleration B” is NM THEN “Acceleration A” is PM

This rule can be applied to vehicle A in the scenario described in Figure 3 with vehicle B as object of interest.
In this rule, vehicle A accelerates to turn before vehicle B reaches the crossing area.

3.3.2. Combinations of the Two Approaches

The cost-based approach uses the long-term prediction algorithm to compute the future location of moving
objects. The overall process flow depicted in Figure 6(a) shows the mechanics of the cost-based-approach.
Figure 6(b) shows the combination of the fuzzy-logic-based approach with the cost-based approach. To better
illustrate the interaction between the two approaches, we show here a simplification of the long-term prediction
algorithm. For a more complete description of the algorithm, one may want to refer to previous work performed
on the PRIDE framework.8

(a) (b)

Figure 6. Process flows for the cost-based and fuzzy-logic-based approaches.

The cost-based approach first retrieves the current position and the velocity of the corresponding vehicle (α)
and generates different action sequences associated with a cost (β). The process of predicting several time steps
into the future consists of a series of continuous actions (action sequences) which constitute a driving procedure.
Each action is accomplished in one time step, thus, for a time of prediction n, n actions will be completed. The
long-term prediction algorithms use two types of actions: A set of speed profiles and changing of lanes. From
the action sequences, the algorithm then computes the final velocity vf (γ). vf is calculated by summing the
velocity of each action within a set of actions. The next step is to get the distance d (δ) the vehicle will drive
considering the final velocity vf using d = vf × time of prediction. The computation of the predicted position
(ε) is the last step of the cost-based approach. Using the road network database and the distance d, the algorithm
computes the predicted position the vehicle will be at n seconds in the future. The cost of each set of actions is
inversely proportionally converted to probability. The set of actions with the highest probability is then selected
and performed by the vehicle.

The fuzzy-logic-based approach is triggered in specific situations. The long-term prediction algorithm checks
the structure of the road where the autonomous vehicle is driving (ζ) and then hands it over to the fuzzy controller
when needed. In this paper, the fuzzy-logic-based approach is applied for vehicles approaching intersections. We
previously saw that the cost-based approach computes different sets of actions and then drives the vehicle by
performing the set with the lowest cost (highest probability). The fuzzy-logic-based approach acts differently



by computing the acceleration/deceleration of the vehicle to negotiate the traffic intersection (η). Since the
prediction algorithm requires the velocity to control the vehicle, the fuzzy-logic-based approach computes this
new velocity from the acceleration/deceleration (θ). The remaining processes used to compute the predictions
are the same as the cost-based approach as described previously.

4. SIMULATION AND EXPERIMENTAL RESULTS

We have simulated two scenarios with four vehicles (A, B, C, and D) at a four-way traffic intersection. The
vehicles follow the paths sketched in Figure 3. For each scenario we have performed one simulation using the
cost-based approach and one simulation using the fuzzy-logic-based approach. The driver of vehicle A is fully
passive in scenario 1 where the aggressivity is set to 2 and fully aggressive in scenario 2 where the aggressivity
is set to 9. The minimum time at a stop sign is set to 5 s.

4.1. Behaviors of Four Vehicles at a Traffic Intersection

In the first simulation of scenario 1, we use the fuzzy-logic-based approach to control each vehicle. Figure 7(a)
depicts the distance covered by the vehicles and the corresponding period of time (distance-time diagram) for
this simulation. The gradient of the curves represents the actual velocity.

(a) (b)

Figure 7. Distance-time diagrams for scenario 1 using a passive driver for vehicle A.

At the beginning of the simulation (time t = 0 s), vehicle A speeds up first before reducing the velocity at
t = 11 s and stopping before reaching the crossing area. At this point, the fuzzy-logic-based approach decelerates
the speed of vehicle A to avoid any collision with vehicle B, which has the right-of-way. Once vehicle B has cleared
the intersection at t = 31 s, vehicle A starts moving at t = 32 s and turns left at the intersection. Vehicle D
reaches the stop sign at t = 5 s. In this simulation, vehicle A appears as an object of interest for vehicle D since
vehicle A drives in the lane into which vehicle D is planning to go. At t = 10 s, vehicle D starts to move since
it detects no collision with vehicle A, which is at a stop position. Vehicle C reaches the stop sign at t = 7 s.
Since vehicle C plans to go straight at the intersection, it has to wait until the intersection is cleared. Vehicle
A crosses the intersection and exits the crossing area at t = 41 s, followed by vehicle C which starts to move at
t = 42 s.

In the second simulation of scenario 1 we use the cost-based approach to control each vehicle. The distance-
time diagram of the simulation is depicted in Figure 7(b). We can clearly see that the vehicles behave the same
way as in the first simulation for scenario 1. The fuzzy-logic-based and cost-based approaches come to the same
behavior for vehicle A which corresponds to the behavior of a passive driver. A passive driver, very conservative
yields to vehicle B and thus avoid any collision. We can say that both approaches can mimic the decision that
a passive driver would make in such situation.



(a) (b)

Figure 8. Distance-time diagrams for scenario 2 using an aggressive driver for vehicle A.

The first simulation of scenario 2 uses the fuzzy-logic-based approach. The distance-time diagram for this
simulation is presented in Figure 8(a). At the beginning of the simulation, vehicle A accelerates to enter the
crossing area at t = 12 s and exits the crossing area at t = 18 s. The fuzzy controller considers the rules that
involve a vehicle with high aggressivity (“Aggressivity” is Aggressive) and then computes the final acceleration
or deceleration. In this simulation, the fuzzy-logic-based approach speeds up vehicle A to cross the intersection
before vehicle B reaches the crossing area. The acceleration of vehicle A is modified to perform a driving task
while avoiding any collision with vehicle B. We note in Figure 8(a) that vehicle C leaves the stop position earlier
(t = 32 s) than in scenario 1 (t = 42 s). Vehicle C waits for vehicle B to clear the intersection, which happens
faster than the time waited for vehicle A to clear the intersection in scenario 1.

In the second simulation of scenario 2, we use the cost-based approach. The distance-time diagram for this
simulation is shown in Figure 8(b). Although the driver of vehicle A is fully aggressive, the behavior for this
vehicle is different from the one observed in the first simulation of scenario 2. In the cost-based approach, vehicle
A detects vehicle B as an object of interest and considers a possible collision. Instead of accelerating as compared
to the previous simulation, vehicle A decelerates and yields to vehicle B during the time period [12 − 28] s. In
this simulation, the cost-based approach does not speed up vehicle A to make it clear the intersection before
vehicle B reaches the crossing area. We note that vehicle A enters the crossing area at t = 29 s where we can see
the speed increasing. This step happens sooner than the ones we observed during scenario 1 (t = 32 s), due to
the high aggressivity of the vehicle. The action of vehicle A to move earlier results in vehicle C moving earlier
as well at t = 38 s compared to scenario 1 where C starts to move at t = 42 s.

The behavior of vehicle A is different in the two simulations of scenario 2. Vehicle A slows down and yields to
vehicle B for the cost-based approach. Vehicle A speeds up to enter the crossing area and crosses the intersection
before vehicle B reaches the crossing area for the fuzzy-logic-based approach. The way the cost-based approach
uses the gathered information is different from the fuzzy-logic-based approach. In this scenario, vehicle A detects
vehicle B as being close rather than being in a “degree of close” as conceived by the fuzzy-logic-based approach.
The fuzzy-logic-based approach triggers different rules that involve an aggressive driver and then controls the
velocity of vehicle A. The cost-based approach tests if the paths of vehicles A and B intersect and then computes
when and where the collision is likely to happen. Since the driving procedure of the cost-based approach is
defined by the action sequences, the actions performed in a driving task are limited. Consequently, each action
sequence performed by vehicle A will lead to a future collision with vehicle B if vehicle A keeps on driving
through the intersection. The fuzzy-logic-based approach catches the aggressivity of the vehicle and controls the
acceleration to mimic a real collision-free behavior for an aggressive driver.

4.2. Time of Execution of the Long-term Prediction Algorithm
To test the performance of the cost-based and the fuzzy-logic-based approaches, we have computed the time
of execution of the long-term prediction algorithm at an intersection. Figures 9(a) and 9(b) show the time of



execution for the cost-based and the fuzzy-logic-based approaches, respectively. We have recorded the time of
execution on two hundred iterations. One iteration represents one loop of the long-term prediction algorithm
that computes one prediction for each vehicle. The time of execution has been computed for both approaches
with two, three and four vehicles at the intersection. Figure 10 gives detailed information on the time maximum
and the time average of execution.
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Figure 9. Time of execution of the long-term prediction algorithm for the cost-based and the fuzzy-logic-based approaches.

Figure 10. Time of execution for the cost-based and the fuzzy-logic-based approaches.

Figure 9 shows that the time of execution increases with the number of vehicles at the intersection. We can
also distinguish higher peaks of time (time maximum) for the cost-based approach compared to the fuzzy-logic-
based approach. Accurate values of the time maximum can be found in Figure 10. A closer look at the time
average demonstrates that the cost-based approach is more computationally intensive than the fuzzy-logic-based
approach during a driving task at an intersection.

5. CONCLUSION AND FUTURE WORK
In this paper we have described the evolution of the PRIDE architecture. To deal with problems characterized
by the pervasive presence of uncertainty and vagueness in autonomous vehicles, we have combined a cost-based
approach with a fuzzy-logic-based approach. We have pointed out in which situations the two approaches are
triggered and we have showed how the approaches complement each other. We have tested the new system
at traffic intersections with four vehicles. For passive drivers, the behaviors of the vehicles are the same, both
approaches can simulate conservative driving. When we involved aggressive driver at the intersection, the cost-
based approach did not catch the reality and mimics the behavior of passive drivers instead. The fuzzy-logic-based
approach was able to use all the information to simulate the aggressive aspects of the drivers. The fuzzy-logic-
based approach is able to approximate the input information and outputs the new acceleration or deceleration
based on the aggressivity of the controlled vehicle. We also have computed the time of execution of the long-term
prediction algorithm for each approach. We have showed that the cost-based approach is more computationally
intensive than the fuzzy-logic-based approach for various number of vehicles at an intersection.

Although we have demonstrated the good performance of PRIDE with appropriate results, we still need to
enhance this framework. Thus, we plan to introduce more vehicles into traffic situations, more complex road



networks, and a better way to select objects of interest in highly populated environments. We also need to test
our framework for situations of car following at intersections by avoiding traffic congestions. Before we release a
version of PRIDE for public domain accessibility, we need to validate the results of the framework as compared
to real world driving scenarios.
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