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Abstract 
 

One of the most critical steps to integrating heteroge-
neous e-Business applications using different XML sche-
mas is schema mapping, which is known to be costly and 
error-prone. Past schema-mapping researches have not 
fully utilized semantic information.  In this paper, we pro-
pose a semantic similarity analysis approach to facilitate 
XML schema mapping, merging and reuse. Several key 
innovations are introduced, including 1) a layered se-
mantic structure for XML schemas; 2) layered similarity 
measures based on actual information content; and, 3) an 
approach for integrating similarities at all layers. Ex-
perimental results, using two different schemas from the 
Automotive Industry Action Group (AIAG), demonstrate 
the value of these innovations.   
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1. Introduction 
 

Schema mapping, merging, and reuse are critical when 
integrating independently developed, heterogeneous e-
Business applications. Typically, these capabilities are 
performed manually; this is very labor-intensive, costly, 
and error-prone [1]. Many computerized mapping tools 
have been proposed [2], but they often fail to analyze 
thoroughly and utilize fully the semantic information in 
the XML schema.  

In this paper, we introduce a semantic similarity analy-
sis approach, which we believe will facilitate both map-
ping and reuse. We have also developed some computer-
ized tools that implement this approach with real-world 
application data. Our approach includes three major inno-
vations: a layered semantic structure for XML schemas; 
layered similarity measures that use information content 

in those schemas; and, an approach for integrating simi-
larities measures across all layers. 

Our approach uses a recommended a set of data ele-
ments in the target schema as likely mapping/merging 
candidates for each element in the source schema.  That 
recommendation is based on the values of their semantic 
similarity measures. Those measures attempt to quantify 
the semantic distance between pairs of data elements [3].   

To show the potential benefit of our approach, we con-
ducted a series of experiments using schemas from two 
different workgroups at the Automotive Industry Action 
Group (AIAG) [4].  These experiments produced encour-
aging results and suggested several directions for further 
performance improvement. 

The rest of the paper is organized as follows. Section 2 
provides the background of this research.  It includes a 
brief review of selected existing similarity metrics and an 
introduction to the real-world integration experiments. 
Sections 3 and 4 give detailed descriptions of the pro-
posed approach. Section 5 reports the experimental re-
sults. Finally, Section 6 concludes with directions for 
future research.  
 
2. Background 
 

The common approach in integrating the heterogene-
ous e-Business applications is to provide adapters that 
translate data from native specifications to an interlingua.  
That interlingua is frequently a standard whose structure 
and semantics are supposed to be agreed-upon and under-
stood by all parties involved. The difficulty is that these 
agreements and understandings are never complete. Fur-
thermore, the differences often depend on the actual con-
text of the integration. Relevant techniques for finding 
and resolving these differences - such as semantic mark-
ups using domain ontologies – are not mature enough for 
industrial use. Instead, industrial practitioners increas-
ingly rely on an XML schema representation for the stan-
dards. In the automotive industry for example, practitio-
ners use XML schemas called BODs (Business Object 



Documents), which were developed by the OAG (Open 
Application Group) [5].  

It is widely known that the semantics of the informa-
tion contained within such standard schemas are not de-
fined formally.  Rather, they are defined implicitly by the 
meanings of English words or phrases that appear in the 
names of the components and fields, as well as in associ-
ated descriptions. Descriptions are especially problematic 
because there are no clearly documented, common used 
approaches to associate and specify them.  

For these reasons, it is still difficult and costly to use 
such standard XML schemas as the basis for application 
integration. It is even hard to identify the reusable com-
ponents within these standards and to understand how and 
when to use them.  Consequently, for any particular inte-
gration effort, mapping to and from the proprietary repre-
sentation of the application to the standard representation 
is still mostly a manual operation.  

To deal with these deficiencies, users often tailor or 
customize existing standards by adding new, typically 
duplicating or overlapping components, rather than at-
tempting to reuse existing ones [6, 7]. The result is the 
proliferation of de facto standards that have duplicate or 
overlapping semantics structured in different ways.  This, 
of course, further increases the cost of integration and, 
more importantly, creates the need for mergers.  

In this paper, we use three key terms for XML schema 
integration: mapping, merging, and reuse. They refer to 
three closely related but different integration tasks. Map-
ping is a task in which one identifies how information in 
one format is populated into another format. Reuse is a 
task where one looks for existing integration specifica-
tions to use in a new integration project. Merging, per-
haps the most time-consuming of the three tasks, seeks to 
combine two or more specifications into a one. All of 
these tasks rely a single underlying capability, identifying 
semantically similar data elements in two different sche-
mas. 
 
2.1. Similarity measures and related works 
 

Various approaches, based on a notion of similarity, 
have been developed recently to implement the aforemen-
tioned tasks.  The simplest approach to semantic similar-
ity is linguistics based.  It uses a metric that computes the 
similarity between element names or descriptions using a 
string matching algorithm [8]. Many such algorithms ex-
ist including the widely used Jaccard [9] and cosine simi-
larity [10, 11] measures. Other straight forward ap-
proaches have been developed based on a linguistic tax-
onomy [12], such as the popular WordNet [13].  One can 
use such taxonomy to obtain more accurate and less am-
biguous semantics for words in the element names. 

A more complicated approach is based on structural 
similarity measures.  On such approach in common use is 

based on the path length between two entities in a taxon-
omy.  These approaches typically fail to take into account 
the different roles played by the entities and the relative 
and importance of their relationships to one another. A 
new approach, based on information content (IC), was 
proposed to address this problem [14, 15].  

IC approaches measure the similarity between two en-
tities x and y, based on another metric called common(x, 
y).  This second metric is based on how much information 
is needed to describe the commonality between x and y. 
Here, x and y can be two words, two objects, or two struc-
tures.  Commonality can be based on the features or hy-
pernyms two words share.  Using to information theory, 
then, and the degree of specificity can be measured by the 
information content of common(x, y) – namely, 
log(P(common(x, y)).  

The IC based similarity metric was first proposed in 
[15] and applied to semantic similarity between words in 
the WordNet. The common(x, y) is defined as the most 
specific hypernym C, and the similarity is given as  

( , ) ( ) log ( )Sim x y I C P C= = −                   (1) 
where I(C) is the information content of C, and the prob-
abilities were calculated as word frequencies in a corpus. 
Research in [16] compares the differences between the IC 
and structural approaches in measuring similarity between 
elements in a single XML schema.  It shows better results 
can be achieved by combing the two approaches. 

Each of the existing similarity metrics has its strengths 
and weaknesses; and, each typically only makes use of 
part of the available semantic information. In this paper, 
we propose an innovative approach that employs a variety 
of similarity metrics, including lexical-, taxonomical-, and 
IC- based. 
 
2.2. Experimental data 
 

To test and evaluate our proposed approach, we ob-
tained schemas and manual mapping data from two work-
groups at the Automotive Industry Action Group (AIAG): 
the Resource (RES) group and the Truck and Heavy 
Equipment (T&HE) group.  We used the RES schema as 
the target and the T&HE schema as source.  Both sche-
mas are based on the OAG schema [5] and have overlap-
ping concepts. However, they define some elements quite 
differently (see Figure 1). In Figure 1, the RES top-level 
concept “Vehicle” and T&HE top-level concept “Vehi-
cleInformation” are intended to describe the same object. 
Nevertheless, the two concepts have different labels 
(names) and quite different data structures.  

At the component level, there are a 139 global ele-
ments defined in the T&HE schema.  These elements 
must be mapped to the set of 145 global elements of RES 
schema. Human experts spent roughly 140 hours develop-
ing this mapping, which required an examination of  139 



x 145 (~ 20,000) pairs of elements.  Additional time was 
then required to merge these two schemas at the message 

level. This is an indication that manual mapping ad merg-
ing can be very time consuming. 

Top layer VehicleInformation Vehicle 

 
Figure 1. Three layers of XML schema 

3. Layers of XML schema structure 
 
An XML Schema defines a set of global elements, 

each of which can be represented as a tree of linked 
nodes. Each node in a tree has zero or more child nodes 
and zero or one parent node. We can classify the nodes 
into three types: root node, intermediate nodes, and, leaf 
nodes. The root node has no parents. Intermediate nodes 
have both parents and children. Leaf nodes, commonly 
called atoms, have no children. This means that atoms 
cannot be divided any further. 

 Each tree can thus be divided into three layers: the top 
layer, containing the single root of the tree; the inner layer, 
containing the intermediate nodes; and, the atom layer, 
containing the leaf nodes. Each layer typically captures 
the semantics from its own perspective. A top layer node, 
through the linguistic information contained in its label 
and namespace, specifies the data object that the global 
element is intended to describe. Nodes in the atom layer 
indicate the atomic elements (XML schema attributes, 
simpleType, and simpleContent) needed to describe the 
global element. The inner layer provides structural infor-
mation by specifying how atomic elements are grouped 
and related. The linguistic information in the labels of 
both atomic and inner nodes may also help to qualify the 
semantics of the global element. 

Consider the two global elements defined in T&HE 
and RES schemas in Figure 1. The labels in their top layer 
nodes indicate both of them intend to represent the same 
vehicle object. However, their designers think quite dif-
ferently about what atomic elements are needed (see their 
different atom layers) and how they should be organized 
(see their different inner layers). In fact, the VehicleIn-
formation in the T&HE schema has 12 intermediate nodes 
and 198 atoms while the numbers for the Vehicle in the 
AIAG schema are 81 and 972, respectively. On the other 
hand, the same set of ingredients (atoms) can produce 
elements of different semantics depending on how they 

are cooked (structured) or packaged (what the top layer 
node is). For example, several party elements, such as 
CustomerParty, DealerParty, and SellingParty, may all 
contain the same atoms and intermediates, but they are 
intended for semantically different data objects. 

 
4. Similarity measures 
 

The complex relationships between nodes at different 
layers require (1) layer-specific semantic analysis tools 
and (2) a mechanism to combine the outputs from those 
tools. For this reason, we have developed two similarity 
measures. The first one, called atom-layer similarity, 
measures the similarity between two atom layers of the 
two elements. The second one, called label similarity, 
measures the similarity between the labels (names). This 
measure can compare two labels when applied to a pair of 
top layer nodes. It can also compare two sets of labels 
when applied to two inner layers (if they are not empty).   
 
4.1. Atom level similarity 
 

Not every atom has equal weight in determining the 
semantic similarity. Two elements that share a widely-
used atom will not be as similar as two elements that 
share a rarely-used atom [14, 15]. To account for the de-
gree of importance of individual atoms, we developed an 
IC based measure for atom-layer similarity. Specifically, 
let A(x) and A(y) denote the sets of atoms of elements x 
and y, respectively. Then, the atom-layer similarity be-
tween x and y is defined as 
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The probability of each atom is taken as its frequency 
using the corpus formed by all labels in both T&HE and 
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RES schemas. The statistics of atoms is given in the table 
below. 
 
Table 1. Statistics of atoms in the two schemas 
 RES Schema T&HE Schema 
Total # of 
Atoms 67688 53812 

793 825 
non-OAG  OAG  non-OAG  OAG  # of Unique 

Atoms 
90 703 119 706 

 
Eq. (2) is based on the assumption that the source and 

target schemas share a significant number of atoms. This 
is the case for RES and T&HE schemas (as can be seen in 
Table 1, 7 out of 8 atoms in the two schemas are defined 
in the OAG schema). In this case, we simply treat two 
atoms as completely similar (with similarity score 1) if 
they have the same label, and completely dissimilar (score 
0) if they do not. This won’t work if A(x) and A(y) do not 
share common atoms but rather have atoms that are se-
mantically similar. In that case, one can multiply each 
I(ci) in the numerator of Eq. (2) by a similarity score be-
tween the source atom ci and its most similar target atom. 
Details of one such measure can be found in [3].  
 
4.2. Label similarity 
 

The label or name x of a node is a word or concatena-
tion of words (or their abbreviations). Before similarity 
can be compared, a pre-process called “label normaliza-
tion” is conducted to obtain full words from the concate-
nations and abbreviations, denoted as L(x). For example, 
L(VehicleInformation) = {vehicle, information}. To bet-
ter ascertain the semantics of these words and to deal with 
the problem of synonyms, we expand each word by its 
description from the WordNet, denoted .  ( (id x L x∈ ))

The descriptions of all the words in L(x) are then put 
together under two constraints to form a vector of words, 
W(x). First, for a fair comparison, W(x) should be inde-
pendent of the lengths of descriptions from the WordNet. 
For this we require that all W(x) be normalized to the 
same lengths, say G words. Secondly, words in L(x) are 
not equally important in defining x’s semantics (For ex-
ample, “vehicle” is certainly semantically more important 
than “information” in the label “VehicleInformation”). 
Semantic analysis using advanced techniques such as 
noun-phrase analysis from natural language processing is 
complex and time consuming. Instead, we measure the 
importance of each word xi by its information content I(xi) 
and require that the vector W(x) be formed in such a way 
that the number of words from description d(xi) is propor-
tional to I(xi).  

For example, suppose the vector length G = 10; 
I(vehicle)/I(information) = 4; and descriptions d(vehicle) 
= (a b c d) and d(information) = (r s t). To satisfy both 
constraints, we would have  

     W(VehicleInformation) = (a b c d a b c d r s)  
where d(vehicle) is duplicated and d(information) trun-
cated.  

Finally, the similarity of labels x and y will be meas-
ured by the cosine of the two vectors W(x) and W(y) [10].  

The procedure of label similarity is outlined below: 
For labels x and y: 
1) Normalize x and y to obtain full words L(x) and L(y); 
2) Calculate the semantic weight of each word L(x) and 

L(y) by 
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where )(log)( ii xPxI −= , and the probabilities of xi 
and yj are taken as their frequencies in their respec-
tive schema; 

3) Obtain from the WordNet the description of each 
word in L(x) and L(y), remove most of the stop words 
from the descriptions [17], make each description a 
set of words of size )( iIC xwG∗ by duplicating or 
truncating the description, and take a union (keeping 
all duplicates) of all these sets to form W(x) and 
W(y); 

4) Measure the similarity of x and y by calculating co-
sine(W(x), W(y)) by 
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where is the frequency of the term ‘i’ in W(x) )(if x

Label similarity for intermediate nodes is measured in 

the same way and denoted as . In this case, the 
union of labels of all intermediate nodes of a tree is used 
for x and for y.   

),( yxSimI

 
4.3. Combined similarity score 

 
Several approaches for combining individual similarity 

measures ( , , ) have been experimented 
with. They include average(a, b, c), max(a, b, c), additive 
(1 – (1 – a)(1 – b)(1 – c)), and weighted sum. The 
weighted sum seemed to work the best in the experi-
ments:  

ASim ISim TSim

( , ) A A T T ISim x y w Sim w Sim w Sim= + +          (5) 
where 1A T Iw w w+ + = .  

Among other things, this method allows us to adjust 
the weights to best reflect the importance of measures at 
individual layers.  



 
5. Experimental results 
 

We implemented a prototype system that not only pro-
duces A , ISim , and TSim  as given in Eqs. (2) and (4), 
but also provides several combination rules, including Eq. 
(5). It normalizes all labels in both top and inner layers, 
and calculates the IC value of all words from these labels 
by obtaining their frequencies from the two schemas.  

Sim

We conducted a series of experiments using the sche-
mas shown in Figure 1. The 49 manual mappings pro-
duced by human integrators are used as the basis to evalu-
ate the performance of the system. For each of the 49 
T&HE global elements, the system recommends the 5 
most similar RES elements according to a similarity 
measure. Note, we evaluate performance using a set 
rather than a single recommendation, because our objec-
tive is not to fully-automate the process but rather to as-
sist human experts. A recommendation is considered a 
match if it contains the manual mapping. Results from 
using various similarity measures, individual and com-
bined, were obtained and reported in the table below. 
 

Table 2. Experiment results 
Similarity measure # matches 

TSim  35 

ISim  8 

ASim  22 

T ISim SimU  
35 

Weighted sum 31 
 
Evidently, atom-level and intermediate-level measures 

alone give poor results because, as discussed earlier, the 
same set of atoms and intermediates can be used to pro-
duce several semantically different elements (just like the 
same ingredients can be cooked into several kinds of 
dishes).  

The overall performance is mixed. The weighted sum 
leads to about 63% matches, 31 out of the 49 manual 
mappings. (The combination weights are currently pre-
determined according to the ratio of the number of 
matches in each individual measure.) This result is cer-
tainly very encouraging considering how difficult the 
problem is even for experienced integrators. However, 
detailed examination of the results reveals that 13 manual 
mappings did not appear in any of the recommendations 
using either individual or combined similarity measures. 
This calls for further investigation.  

We further that more weight needs to be given to the 
label similarities. First, only one of the 22 matches found 
using atom-level similarity is not found by either of the 
two label-similarity measures. Second, the highest num-
ber of matches found by individual measure is using the 

top-layer measure. Lastly, the cosine method using the 
combined top and intermediate labels found 35 matches 
(4 of them are different from those obtained using the 
weighted sum combination).  
 
6. Conclusions and plan for future research 
 

In this paper, we have proposed an innovative ap-
proach for comparing XML schemas that exploits their 
imbedded semantic information. This approach divides 
data elements into layers and measures semantic similar-
ity based on those layers.  The output from this approach 
will be a set of mapping candidates in a target schema for 
each element in the source schema.  These candidates will 
be selected based on the semantic similarity measures 
between the elements in the two schemas. We have also 
implemented a prototype system to evaluate the proposed 
approach. The proposed approach and prototype system 
have the potential to provide valuable help for the humans 
attempting to integrate applications based on different 
schemas. 

We conducted a series of experiments and have re-
ported their results.  Those results were mixed. The sys-
tem found correct matches about 60% of the time. The 
scores associated with those matches, however, varied 
greatly.  This calls for further examination of the similar-
ity measures, the way they are combined, and for more 
elaborated mapping procedures. The following immediate 
steps are planned for future research. 
1) Determine the combination weights automatically. 

Some machine learning techniques are under consid-
eration, including regression and neural networks. 

2) Increase the use of structural information. Our ex-
periments show that higher-layer labels are more im-
portant than the lower ones. There is also evidence 
that the atom layer becomes more important when 
structure of the element is shallow. Methods to better 
incorporate the structural information in the semantic 
analysis will be investigated. 

3) Explore an iterative mapping procedure. The hy-
pothesis is that the similarity measures for complex, 
difficult, or ambiguous elements will become more 
accurate after mappings for other easier elements are 
established.  For example, atoms defined in the 
T&HE schema (not in the OAG schema) are cur-
rently considered with zero similarity with any atoms 
in the RES schema. This will be rectified if we map 
them first; and, atom-layer similarity for other ele-
ments in the subsequent iterations will be improved. 
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