
Proceedings of IMECE
2007 ASME International Mechanical Engineering Congress and Exposition

Seattle, Washington, USA, November 11–15, 2007

IMECE2007-43009

CASE STUDY IN THE CHALLENGES OF INTEGRATING CNC PRODUCTION AND
ENTERPRISE SYSTEMS

S. Venkatesh
Boeing Company

Seattle, WA

B. Sides
Okuma America
Charlotte, NC

J. Michaloski and F. Proctor
National Institute of Standards and Technology

Gaithersburg, MD

ABSTRACT

Integration of factory floor Computer Numerical Con-
trol (CNC) information into Enterprise Resource Planning
(ERP) subsystems has been difficult, if not impossible, as
traditionally, factory floor machines have been “islands
of automation.” Boeing/NIST/Okuma jointly collaborated
on a pilot project for using a CNC open architecture con-
troller to collect real-time Boeing-specific part accounting
data during the production of Boeing 737 Leading Edge
(LE) Panels. The goal was to develop a practical and
standardized approach in which to capture the real-time
part data and then provide this information to an ERP
subsystem. This paper presents the results from our Boe-
ing/Okuma/NIST pilot project that evaluated OLE (Object
Linking and Embedding) for Process Control (OPC) as an
integration strategy for the LE Production Line part ac-
counting at Boeing. Using OPC, automatic logging of the
relevant part production statistics was done for each pro-
duction line, which in turn was used to more accurately de-
termine the total cost of making each LE production line.

Keywords

open-architecture, Computer Numerical Control
(CNC), control, standard, manufacturing, Enterprise
Resource Planning (ERP), OLE for Process Control (OPC)

1 INTRODUCTION
The manufacturing mantra “Design Anywhere, Build

Anywhere, Support Anywhere” is predicated upon world-
wide connectivity across all facets of design, manufactur-
ing, distribution, and maintenance. To achieve this, infor-
mation must flow seamlessly through the enterprise and re-
quires extensive integration of the manufacturing elements.
The increasing pressures on manufacturers to improve time
to market and integrate the shop floor directly into enter-
prise business systems places a premium on better tech-
niques to design, integrate, test, evaluate, and maintain con-
trol systems.

There have been many efforts to improve factory floor
integration. An early attempt at control system integra-
tion was the MAP (Manufacturing Automation Protocol)
standard, which is a communication standard for intel-
ligent factory floors devices [1]. Because MAP is an
all-encompassing standard, with requirements for physi-
cal/electrical interfaces, network protocols, data format and
syntax, it could be prohibitive to implement and suffered
from lack of support from vendors.

Another legacy factory floor integration standard is the
Manufacturing Message Specification (MMS), which is a
messaging system for exchanging data between control ap-
plications and networked devices [2, 3]. MMS is based on
a client/server model and employs the concept of a Virtual
Manufacturing Device (VMD) as its basis. A VMD is an

1



Figure 1. OMAC HMI Integration Architecture

object-oriented model of the externally visible behavior of
a factory floor entity. A major drawback of MMS is the
need for control vendors to provide presentation, session
and transport communication functionality as well as the
complementary message en/decoding.

Today, OLE for Process Control (OPC) has emerged as
a leading worldwide specification in enabling connectivity
and interoperability of factory floor equipment. OLE for
Process Control (OPC) is an integration technology devel-
oped by the OPC Foundation that defines a standard inter-
face to process control devices [4]. Based on commercial-
off-the-shelf technology, OPC is a series of lightweight
integration standards defined as interface specifications to
support connectivity in industrial automation and the enter-
prise systems.

OPC promotes interoperability both horizontally and
vertically in the enterprise so that it can cut integration
costs, speed deployment and promote increased operating
efficiency. OPC handles integration by creating a “software
bus” so that applications need only know the data required
from OPC data sources, not how to get it. This has bene-
fits for both the application developers and the control ven-
dors. On the application side, control device are easier to
use since they provide a consistent interface so that applica-
tions are smaller and simpler to develop and maintain. On
the control vendor side, device drivers are only required to
provide data in a single format, according to the OPC spec-

ifications.
This paper will look at results of a Boeing 737 Leading

Edge (LE) production pilot project to use OPC for CNC
to enterprise connectivity. First, we will review issues re-
lated to the connectivity of the ERP and the factory floor.
Following will be an examination of OPC and its role in
the integration of real-time CNC part accounting data. The
next section will discuss LE production line and will give a
review of the system components used within in pilot pro-
duction project. We will conclude with a discussion on the
challenges encountered on the way to a integrating part ac-
counting for Leading Edge production and our plans for the
future.

2 ENTERPRISE CONNECTIVITY
Enterprise Resource Planning (ERP) is the broad term

for the set of activities that help a manufacturer, including
product planning, parts purchasing, maintaining invento-
ries, interacting with suppliers, providing customer service,
and tracking orders. ERP systems for managing the prod-
uct life cycle have components for integrating factory floor
information: parts produced, cycle times, machine and ma-
chinists performance. This factory floor ERP information
can then be used to determine actual costs on a job-to-job
basis, useful in bidding, accounting, and equipment utiliza-
tion.

2



Integration of the factory floor consists of connecting
the Enterprise to distributed intelligent devices operating
concurrently and interacting in real time. The vision is to
make real-time cost information available on-demand to an
ERP and then accessible through Web portals. But the fac-
tory floor is inherently complex, involving machining, stor-
age, and transport of material, tool and part program man-
agement, and recovery from faults and deadlocks. Further,
the integration of factory floor information into ERP sub-
systems has been difficult, if not impossible, as tradition-
ally, CNCs have been “islands of automation.”

To overcome this isolation barrier, computer numer-
ical controllers (CNC) need to provide open-architecture
capabilities to allow access to machining information. For-
tunately, the CNC marketplace has changed radically in
the last decade from closed proprietary solutions to open
products utilizing general-purpose off-the-shelf PC hard-
ware and software technology wherever possible. CNCs
based on open, desktop technology for the shop floor have
been dubbed “open-architecture controllers”. An open-
architecture controller is one whose specifications are pub-
lic by either officially approved standards or as privately
designed architectures whose specifications are made pub-
lic by the developers [5]. With an open-architecture, fac-
tory automation no longer simply controls machines; it now
provides access to real-time data and information that can
be used to optimize manufacturing processes.

The authors are members of the Open Modular Ar-
chitecture Controllers (OMAC) Human Machine Interface
(HMI) User Group, which is an industry working group
under the auspices of the OMAC Users Group [6]. OMAC
is an affiliate organization of the Instrumentation, Systems
and Automation Society (ISA) working to derive com-
mon solutions for technical and non-technical issues in
the development, implementation and commercialization
of open, modular architecture control. A long standing ob-
jective of the OMAC HMI Working Group has been to de-
fine a series of CNC data specifications.

Figure 2 shows the scope of the OMAC HMI effort.
The relationship of the HMI subsystems is best viewed as
a generalization of the traditional Model-View-Controller
(MVC) architecture, a well-known object-oriented design
pattern for Graphical User Interfaces (GUI) [7]. The pri-
mary emphasis of the OMAC HMI work has been to define
a MVC Model data model to allow the exchange of data
and events between the HMI subsystem and the machine

controller. Recently, the OMAC HMI workgroup realized
that the HMI subsystem could also serve as a gateway to
the Plant/Enterprise and broadened the scope accordingly.

A new objective of the OMAC HMI Working Group
has been to promote best practices to exploit open-
architecture through OPC data mining. The OMAC HMI
group is endorsing the use of OPC as a CNC “best prac-
tices” integration standard. Although OPC is the largest in-
tegration standard used within the process control industry,
acceptance has been slow within the CNC discrete parts in-
dustry. In order to increase the adoption of OPC within the
CNC industry, we consider part accounting to be an impor-
tant data mining application with impressive benefits. We
define part accounting as ERP software that accumulates
CNC process knowledge for calculating the actual machin-
ing cost of a part for bidding, determining profits, and other
accounting functions. Part accounting should be consid-
ered an ERP function, even if it is run solely on the CNC,
as it applies business analytics to enterprise operations.

3 OPC TECHNOLOGY
OPC leverages the Microsoft Component Object

Model (COM) [8] to specify OPC COM objects and their
interfaces. The control device object and interface are
called OPC Servers. Applications, called OPC Clients, can
connect to OPC Servers provided by one or more vendors.
Before OPC, data access applications were required to de-
velop completely different integration software for each
control device. With the OPC standard, only one driver
is needed to access data from any OPC-compliant process
control device.

The OPC Foundation has defined several OPC spec-
ifications, including Data Access (DA), Event and Alarm
Management, and Historical Data Access. The Data Ac-
cess specification provides a standard mechanism for com-
municating to data sources on a factory floor. The Event
and Alarm Management specification defines a means for
transmitting alarm and event information between OPC
servers and clients. The Historical Data Access specifi-
cation allows OPC clients to access historical archives to
retrieve and store data in a uniform manner.

Figure 2 shows the functionality of the OPC DA spec-
ification within the OMAC HMI System Architecture,
which provides a standard model in which to exchange
data between the real-time CNC and the non-real-time HMI

3



Figure 2. Sample OPC System Architecture

subsystem. The OPC specification describes a client/server
object model to allow communication between client appli-
cations (OPC DA Clients) and control device servers (CNC
OPC Server). All OPC client applications access data from
any OPC control device in the same way.

The primary OPC specification is Data Access, which
includes the following concepts:

OPC Server is a COM object to which the OPC client
first connects. The OPC Server handles connectivity
to automation hardware. Its responsibility is to manage
OPC groups, translate errors, provide server status, and
allow browsing of OPC items.

OPC Group is a COM object for logically organizing
data items. OPC clients can pick and choose among
the known OPC items on the OPC server in order to
create groups. OPC Groups are managed by the OPC
client who can activate or deactivate the group, change
the group name or update rate among and subscribe for
data change event notification. Reading and writing of
OPC data is done through the OPC Group.

OPC Item is a single tag (or automation device data point)
managed by the OPC server. OPC does not define any
application item tag names, e.g., AxisLocation. In-
stead, OPC clients rely on the vendor to allow clients
to browse for OPC data items, or provide a list of OPC
data items.

Figure 2 shows OPC data management for a simple
CNC OPC Server example. The OPC Client creates 2

OPC Groups, Group 1 containing the MachineMode,
CycleOn, Ready and Program OPC Items, while Group
2 contains the BlockLine and BlockNumber OPC
Items. Group 1 and 2 could run at different update rates
if the data timeliness is an issue. To improve perfor-
mance, if the CNC is in Manual mode, the Group 2 items
BlockLine and BlockNumber could be deactivated.
The COM “Custom Interface” uses early vtable binding to
the interface methods, so is faster and used by C++ clients.
Visual Basic or other scripting languages use the “Automa-
tion” interface, which does late binding and method lookup
through a type library.

OPC offers additional technologies in which OPC
clients and servers can communicate. In order to broaden
the appeal of OPC, next generation OPC specifications are
being based on Web Services specifications to ensure in-
teroperability with non-Microsoft systems. However, we
concentrated on the OPC specification based on Microsoft
COM, because these newer OPC services will continue to
support the existing technology.

4 CASE STUDY
A compelling use for OPC is for collecting real-time

cost accounting data during manufacturing, which led
a joint project between OMAC HMI members Boeing,
Okuma and NIST. We wanted to evaluate the integration
of CNC to ERP and determine if part accounting can be
done with minimal integration effort using OPC/OMAC

4



Figure 3. 737 Leading Edge Process Figure 4. System Architecture

technologies. The project goal was to collect cycle times,
setup and job times, part quantities and other vital informa-
tion on machine and job performance to provide real-time
part cost accounting to an ERP accounting subsystem.

This joint Boeing/NIST/Okuma work looked at inte-
grating the production of Boeing 737 Leading Edge (LE)
Panels with the enterprise to provide real-time cost data.
Figure 3 shows the LE process within a production line,
over 40 Leading Edge panels per plane are machined and
then joined together in making the left and right aircraft
wings. The Leading Edge panels are milled, inspected and
assembled on the wing, but often after inspection out-of-
tolerance panels are scrapped and new panels are remilled.
Panels that need to be scrapped and then redone within a
line add to the cost of the plane and are difficult to track.
The real-time determination of scrap per production in a
seamless integration model was our goal. Given real-time
data, the ERP systems would then be able to establish cost
of making LE panels more precisely.

Currently at Boeing, data is collected during the execu-
tion of assembly and installation jobs on the factory floor
using machine readable bar codes to label various entities
on the shop floor and to input data from the shop floor. At
various stages within the manufacturing process, data from
the device level is forwarded to the ERP System via a set
of manual Web transactions. Browser-based data collec-

tion using HTML forms for data input is a common user
interface configuration. The process is highly manual with
large latencies between the ERP product costs view and the
actual product costs view.

Figure 4 shows the pilot project System Architecture.
The LE panels’ production took place on an Okuma THiNC
OSP-P100 CNC, an open-architecture controller. Okuma
provided an OPC server that allows the collection of ma-
chine event data in a tagged format. Since we only had two
months in order to be ready for production, we limited the
scope of the data requirements. We had hoped to connect
directly to the ERP but given the pilot time frame, this was
not feasible. Instead, we conducted a series of tests with
local and remote OPC clients that would eventually lead to
data collection by the upstream ERP systems.

To gather the part accounting data, we developed
an OPC client application that automatically logged the
relevant part production statistics. The part accounting
requirements consisted of part name, cycle time, setup
time for each Leading Edge panel line. This led to
the following OPC data item collection. First, to deter-
mine when a new part is being milled, the OPC Item
Program.ProgramNamewas collected. Next would ac-
cess the Okuma Run/Not Run variable to determine if ac-
tual machining was taking place, represented by the OPC
Item Machine.CycleStart. Next we needed to deter-

5



Figure 5. Part Accounting Data Collection

mine how long it took to mill the entire part including setup
and machining. We determined this by monitoring when a
new part program was loaded and when it was unloaded. In
addition, by using the OPC data cycle start on/off as indica-
tion of milling/not milling, we were able to determine when
we were in setup and when we were milling. Finally, to de-
termine how many pieces have been scrapped, we counted
the number of repeated parts being machined within a sin-
gle production line. For example, within production line
1857, if two L01.MIN parts were machined, we knew that
one part had been scrapped.

Figure 5 displays an Excel spreadsheet showing the
results from the CNC data collection omitting actual cost
data. The following data was calculated either directly
or indirectly from the data collected, or was given as
fixed cost: (1) Production Line Number, (2) Start Time,
(3) End Time, (4) Setup Time (min), (5) Machining
Time(min), (6) Install Time, (7) Total Time (min), (8)
Part Count, (9) Burn Rate, (10) Shop Cost, (11) Panel
Cost, (12) Total Cost. The scrapped parts were highlighted
in yellow to quickly identify the waste per production line.

5 DISCUSSION
In the end we successfully produced real-time part ac-

counting data rather quickly, but along the way numerous
data collection and integration challenges were encoun-
tered, which will be discussed.

The first implementation concern dealt with keeping
track of finished parts, that is, when had the CNC com-

pleted a part program. To determine finished parts, we had
initially hoped to poll the OPC Item current block to see if it
contained the RS274 end of program codes M02 or M30. If
we found an end of program code, the part had completed.
This approach was flawed as there is a racing issue to de-
tect the end-of-program codes and a program rewind so the
end-of-program codes were often missed. Instead, an OPC
PartCount item was added by Okuma, which was not
originally part of the Okuma OPC server.

Given the racing issues with polling, we relied upon the
OPC asynchronous data change notification exclusively.
However, if using asynchronous notification, OPC clients
must be aware of networking issues. A networking prob-
lem can arise when the remote OPC Server attempts to
connect to a callback interface on the client’s PC. Most
default client-side authentication security settings are in-
tended to protect the client from perceived malicious at-
tacks. OPC users must make sure proper security authenti-
cation is granted so that OPC clients and servers trust each
other’s identities.

We also encountered networking problems when doing
actual connectivity of a remote OPC client and the Okuma
OPC Server on a shop floor at Boeing. New more restrictive
security measures made the ease of PC network connectiv-
ity more difficult, thus, we had problems establishing a con-
nection to a remote OPC server. For our tests we simplified
matters by, 1) making sure the remote user had an account
and password on the Okuma and 2) insuring that the user
and password were identical on remote/Okuma PCs. In the

6



end because of a lack of time and complex security issues
related to networking, the OPC client ran on the same PC
platform as the Okuma OPC server.

Some care must be taken when manipulating OPC Item
data, which is represented as a Microsoft “variant” - a uni-
versal data type that can represent double, integer, string,
arrays, etc. The variant offers great flexibility, but without
care can cause subtle errors. One variant issue was reading
an alarm, with EMPTY versus 0 variant value both mean-
ing no alarm. Another variant issue we encountered was
not synchronizing data types during comparisons, so that
an equality comparison of string “1” and an integer 1 was
incorrectly determined.

Of note, the abundance of free OPC utilities and afford-
able commercial OPC toolkits certainly made the testing
and debugging of the OPC client and server software easier
and less troublesome.

6 SUMMARY
The focus of this paper has been on assessing the ability

to integrate ERP subsystem and an open-architecture CNC
using OPC. OPC has emerged as the leading worldwide
standard in enabling manufacturing connectivity. Because
OPC is based on commercial-off-the-shelf technology, it
provides a cost-effective as well as widely-supported inte-
gration technology.

We presented results from our Boeing/Okuma/NIST
pilot project that tested OPC integration to do part account-
ing for the Leading Edge Production line at Boeing. We
have evaluated that the benefits of OPC integration, and
found them compelling enough to expect that CNC inte-
gration into an ERP is possible with a reasonable amount
of effort.

For the future, the OMAC HMI working group will
seek to tighten the integration of ERP and CNC.

DISCLAIMER
Commercial equipment and software, many of which

are either registered or trademarked, are identified in order
to adequately specify certain procedures. In no case does
such identification imply recommendation or endorsement
by the National Institute of Standards and Technology or
Boeing Aerospace, nor does it imply that the materials or
equipment identified are necessarily the best available for

the purpose.

REFERENCES
[1] Valenzano, C. D., and Ciminiera, L., 1992. MAP and

TOP Communications: Standards and Applications.
Addison Wesley Publishers, New York.

[2] INTERNATIONAL ORGANIZATION FOR STANDARD-
IZATION. ISO/IEC 9506-1, Industrial Automation Sys-
tems - Manufacturing Message Specification - Part 1:
Service Definition.

[3] INTERNATIONAL ORGANIZATION FOR STANDARD-
IZATION. ISO/IEC 9506-1, Industrial Automation Sys-
tems Manufacturing Message Specification - Part 2:
Protocol Specification.

[4] OPC Foundation. http://www.opcfoundation.org.
[5] Proctor, F., and Albus, J., 1997. “Open Architecture

Controllers”. IEEE Spectrum, 34 (6) June , pp. 60–64.
[6] OMAC Users Group. http://www.omac.org.
[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,

1994. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Publishers, Read-
ing, MA.

[8] MICROSOFT CORPORATION. COM Specification.
http://www.microsoft.com/com.

7


