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Abstract

In this paper, we describe our recent efforts in group-
ing sensory data into meaningful entities. Our grouping phi-
losophy is based on perceptual organization principles us-
ing gestalt hypotheses where we impose structural regular-
ity on sensory primitives stemming from a common under-
lying cause. We present results using field data from UGVs
and outline the utility of our research in object recognition
and tracking for autonomous vehicle navigation. In addi-
tion, we show how the grouping efforts can be useful for
constructing symbolic topological maps when data from dif-
ferent sensing modalities are fused in a bottom-up and top-
down fashion.

1. Introduction

The 4D/RCS (Real Time Control System) reference
model architecture [1] developed at the National Insti-
tute of Standards and Technology (NIST) has been used
for the development of a wide array of intelligent sys-
tems in both government and commercial applications, in-
cluding control of Unmanned Ground Vehicles (UGVs)
in unstructured and unknown environments. It con-
sists of a multi-layered multi-resolutional hierarchy of
computational nodes each containing elements of Sen-
sory Processing (SP), World Modeling (WM), Value
Judgment (VJ), Behavior Generation (BG), and a Knowl-
edge Database (KD). An important competence required
within the SP and WM modules is the ability to group var-
ious features (observed in the sensor data) into patterns,
objects, events, and situations.

∗ Commercial equipment and materials are identified in this paper in or-
der to adequately specify certain procedures. Such identification does
not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

Grouping sensory data may seem quite straightforward
and simplistic but it is a difficult problem for several rea-
sons. The environment in which the sensor is intended to
operate, the noise (either due to the physics of the sensors or
due to vehicle travel) in the resulting measurement, occlu-
sions and shadows that are introduced in the range data are
few of the factors in an unknown and uncontrolled domain
that make the realization of perfect grouping quite challeng-
ing. The output of the grouping algorithms can be used to
find desired objects in a scene towards the segmentation
and classification needs imposed by autonomous driving.
By establishing relationships between hypothesized group-
ings, both at temporal and spatial levels, we can classify,
recognize, and evaluate these objects, events, and situations
by linking them to named symbolic data structures.

In general terms, perceptual grouping can be defined as
the visual ability to extract image relations from lower-
level image primitives (features) independent of the image
content and group them to obtain meaningful higher-level
structure. In computer vision, it is a mechanism for data-
directed image processing. In the 1920s, research in percep-
tual grouping was initiated by Gestaltic psychologists who
subscribe to the view that the whole is greater than the sum
of its parts. Gestalt theory is concerned with the grouping
of elements into wholes subject to four main types of fac-
tors: similarity, proximity, continuity and closure [10, 11].
An excellent collection of papers and discussion on percep-
tual organization can be found in [2].

In this paper, we describe our recent efforts in grouping
sensory data into meaningful entities at the signal (raw data)
level [13]. Our grouping philosophy is based on percep-
tual organization principles using gestalt hypotheses where
we impose structural regularity on sensory primitives stem-
ming from a common underlying cause. We present results
using range data from UGVs and outline the utility of our
research in object recognition and tracking for autonomous
vehicle navigation. We also discuss how the grouping ef-
forts can be useful for constructing symbolic topological
maps when data from different sensing modalities are fused



in a bottom-up and top-down fashion.
This paper is organized as follows: Section 2 details the

low-level grouping process. Section 2.1 describes a modi-
fied curb detection algorithm that was originally developed
for generic obstacle detection on range images followed by
the geometric grouping algorithm in Section 2.2. The as-
sociated results on 2D range data collected on a UGV are
then presented in Section 2.3. Section 3 outlines a high-
level symbolic grouping approach that complements the
low-level grouping algorithm. Section 4 discusses potential
application areas for the grouping algorithms developed in
this paper. Section 5 provides conclusions and areas of con-
tinuing work.

2. Low-level Geometric Grouping

2.1. Curb Detection

In order to detect curbs, we treat curbs as obstacles and
use a slightly modified generic obstacle detection algorithm
designed for range data. The original obstacle detection al-
gorithm is described in this section followed by a modified
algorithm for curb detection.

2.1.1. Generic Obstacle Detection Within a path plan-
ning context for mobile robot navigation, obstacles can be
classified into two kinds: those that stand out of the ground
(positive obstacles), and those that lie below the ground
(negative obstacles). The robot needs to know where the ob-
stacles are located and how big they are so that it can plan
a path around them. Finding obstacles in 3D point clouds
resulting from LADAR or stereo involves determining the
ground plane first. In man-made environments or where the
ground is reasonably flat, a surface can be fitted to points
believed to be on the ground (e.g., points close to the ve-
hicle that are assumed to be on the ground). This surface
can then be used as a reference against which points can
be measured. Obstacles are defined as objects that project
more than some distance d above or below the ground.

The positive obstacle detection algorithm works column
by column in the LADAR range image [3]. The algorithm
starts with a point, g, known to be on the ground. An ini-
tial ground value is assigned at the location where the front
wheels of the vehicle touch the ground, known from Inertial
Navigation System (INS) and Global Positioning System
(GPS) sensors. Given point g, the algorithm processes up-
wards from the bottom pixel in the column to the top pixel,
as follows:

• Let pi be the ithpixel in the column, where pixel 0 is at
the bottom of the column. Let xi, yi, zi be the Carte-
sian coordinates of pi. Let g be the last known ground
pixel in the column, initially obtained from the vehi-
cle’s position sensors.

• Compute the slope between the ground point, g, and
the next pixel pk. Pixel pk is labeled a positive obsta-
cle if

(zk−zg)2

(xk−xg)2+(yk−yg)2+(zk−zg)2
≥ sin2(α)

where α is a predefined constant representing the maximum
allowed slope. The value of sin2(α) is constant, and is pre-
computed for efficiency.

Pixel pk may fail the above test but still be a positive ob-
stacle. This is because the slope test is a function of dis-
tance. The obstacle can be far from the current ground point
due either to occlusion or to the resolution of the sensor
which degrades as a function of distance. To resolve this
ambiguity, the height of the obstacle is required to be greater
than a constant, H . i.e., |zk − zg| > H . If pk is not an ob-
stacle, it is assumed to be ground and replaces g as the cur-
rent ground pixel. The process iterates up the column with
each pixel being compared to the closest ground pixel. If pk

is an obstacle, g is unchanged, and is compared with pixels
as above, until another ground pixel is found. When this oc-
curs, point g is set to the new ground pixel value and the
process repeats. For example, in Figure 1, pixel 0 corre-
sponds to the bottom of the vehicle wheel. Pixels 1, 2, 3,
8 and 9 are ground pixels. Pixel 4, 5, 6 and 7 are positive
obstacles and the direction vectors shown on the bottom of
Figure 1 indicates the vectors in which the slopes are de-
termined. In a way, the algorithm is analogous to flooding;
pixels 1, 2, 3, 8 and 9 are flooded because they have shal-
low slopes.

Figure 1. Positive obstacle detection.

2.1.2. Modification for Curb Detection In order to use
the obstacle detection algorithm for detecting curbs in 2D
laser rangefinder (SICK) data, we need to modify the algo-
rithm slightly. First, the original algorithm assumes a range
image data, corresponding to the road in which the vehi-
cle travels. A column of pixels in this range image captures
distances to the road surface and in the vehicle’s traveling
direction. In the case of curb detection, the 2D SICK data



also capture distances to the road surface, but in the direc-
tion perpendicular to the vehicle’s traveling direction. The
original algorithm assumes the bottom pixel in the image
column is ground (where the front vehicle wheels touch the
road). This assumption is no longer valid in the curb detec-
tion application. Specifically, the bottom pixel in the SICK
data corresponds to the left side of the road.

Thus it is necessary to split the SICK data into two at
the middle. The middle of the SICK data corresponds to the
center of the road (assuming the road is straight and SICK
is sensing the cross-section of the road near the vehicle).
The original algorithm without modification can now pro-
cess each segment from the split SICK data from the mid-
dle. Finally, the curb is simply defined as the first obstacle
detected in each of the two SICK data segments. The data
points in between the two curb points are taken to be the
road.

2.2. Geometric Grouping Algorithm

Once the curb is detected in the range sensor data, we
proceed to identify other potential groups in non-curb data.
The geometric grouping algorithm consists of the follow-
ing three main steps:

G1. We determine clusters in the range data based on i)
a distance threshold, dmin, and ii) number of points, nmin

that satisfy dmin. The range scan is clustered based on dis-
continuities of the scanned range profiles. A new cluster
is started whenever there is a significant discontinuity (in-
dicative of object transition) as determined using the pre-
defined thresholding distance, dmin. A small thresholding
distance results in a large number of clusters. On the other
hand, if a larger thresholding distance is chosen, some sig-
nificant parts of the scan might be lost. So a trade-off be-
tween what to keep and what to throw away is to be made.
After considerable trial and error analysis of the laser scans
for the particular environment under consideration, dmin

was arrived at. The clusters are identified by their centroids,
pc : (xc, yc).

G2. We determine groups by splitting or merging the
clusters. For every cluster centroid in one scan, we com-
pare its Euclidean distance with its counterpart in the next
scan. If the distance between the centroids of the two clus-
ters are within a predefined threshold, dg , then these clusters
are merged to form a group whose centroid pg : (xg, yg)
is the mean of the centroids of the group. This process is
termed straightforward association.

G3. If the clusters are not within dg , this might be a re-
sult of 1) a new group that is to be initiated or 2) the group
(cluster) under question has been split due to occlusions or
noise that may be introduced due to the pitching and rolling
of the vehicle from which the scan was obtained and has
to be so verified (meaning if the current cluster has to be

merged to an existing group).
To verify which of the above two scenarios hold, we define
an Association Matrix. This matrix computes an association
of the clusters in the current scan with those in the (a) last
and (b) second last scans by examining the distance dg be-
tween them. If the association matrix for both cases (a) and
(b) are the same, then the current cluster is part of an exist-
ing group; else a new group is initiated.
The association matrix enables spatio-temporal grouping
thereby disambiguating association uncertainty that arises
during the merging of clusters. The geometric grouping al-
gorithm uses the perceptual grouping principles of proxim-
ity, similarity and continuity in a gestaltic sense.

An illustrative example is presented in the next section to
enable the reader to better appreciate the geometric group-
ing algorithm.

2.3. Results and Discussion

We present results using range data obtained from a
UGV during on-road driving. The environment is com-
prised of curbs, lane markings and intersections as the UGV
shown in Figure 2 traversed relatively flat terrain. The SICK
is a scanning laser rangefinder based on the time-of-flight
principle. It has one scanning degree of freedom and is clas-
sified as a line ranging sensor. In our trials, the laser beam
scanned through a 180◦ arc to give the distance to a target
in cm at angular intervals of 0.5◦ with a maximum range of
50 m thus providing 361 range scan points.

Figure 2. The roof-mounted laser rangefinder.
The bumper-mounted rangefinder was not
used in the results reported in this paper.

Figures 3 shows a sequence of laser scans based on
which we will now illustrate the grouping algorithm. In all
the scans, the laser is at (0,0) and the road (detected us-
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(a) Scan #1: 4 Clusters
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(b) Scan #2: 4 Clusters & Straightforward Association
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Figure 3. An Illustrative example for the geometric grouping algorithm.

ing the curb detection algorithm in Section 2.1) in front of
the vehicle (sensor) is shown in cyan.

Figure 3(a) shows the clusters that have been extracted
from a laser scan subject to the two conditions in Step G1
(dmin and nmin). Four clusters have been identified in this
scan #1 and are shown by black dots with their respective
centroids denoted by black pentagrams. The next scan #2
and the extracted clusters are shown in Figure 3(b) by ma-
genta dots and their centroids by magenta pentagrams (scan
#1 is also shown in black for comparison). This scenario
is a case of the aforementioned straightforward association

where the previous four clusters are associated with the cur-
rent four clusters and these are merged to form a new group
as described in Step G2.

In Figures 3(c)-(d), the previous scans (clusters) are
shown by green dots and their centroids by black squares for
illustrative purposes. Figure 3(c) shows the three new clus-
ters of scan #3 by magenta dots with their centroids shown
by magenta pentagrams. For this scenario, we need to de-
cide if two clusters of the current scan are part of the previ-
ous group (merging) or a new group has to be initiated (see
area marked by arrows in Figure 3(c)). When the associa-



tion matrix (described in Step G3) for this scan compared
with the last scan and the second last scan are computed, it
returns the same association which enables us to decide that
the two clusters of scan #3 are to be associated with the al-
ready existing group that was formed in scan #2.

In scan #4 shown in Figure 3(d), five clusters are found
(shown again by magenta dots and their centroids by pen-
tagrams). Two new groups are initiated (marked by arrows)
according to their association matrices that provide different
associations with the immediate last and second last scans.
It is evident that these clusters are to be initiated as new
groups as there are no scan points in the their immediate
neighborhood. This is a result of the UGV traversing the
environment and new features coming into the view of the
range sensor. The other clusters were associated with the al-
ready existing groups as they were found to be within the
predefined inter-group distance, dg .

3. High-level Symbolic Grouping

While current ladar/laser sensors provide a highly accu-
rate but limited view of a part of the world, common video
cameras allow a more holistic view of the scenery. Our pre-
vious work on road detection on color images (see [6, 7])
suggested the use of background knowledge (in terms of
models) in order to improve the recognition results. In the
following, we will describe our approach of a model-guided
road recognition process. We will discuss the type of ex-
tracted features, the representation of models, and recogni-
tion process itself.

3.1. Feature Extraction

Assuming normal orientation of the vehicle on the road
(see Figure 4), a simple set of features, which are easily ex-
tracted and well-understood, can be derived [5]. The fea-
tures are based on “slices” of the road perpendicular to the
direction of the vehicle. They can be extracted by applying
one of several approaches for detecting the road area in im-
ages or road edge detecting algorithms (e.g. [4, 5, 6, 7, 12]).

Figure 4. Normal orientation of the vehicle on
the road. Legal (left) and illegal (center, right)
orientations.

Figure 5 gives an example of the features. Starting at the
bottom image row, the left and right road edge points in

each row are determined. A pair of road edge points de-
scribed in both image and world coordinates (through cam-
era calibration) describes one feature item. The process con-
tinues bottom-up row-by-row until the world coordinates of
the road edges reach a given maximum distance in front of
the vehicle (e.g. more than 55 m). Furthermore, additional
data will be associated with a feature item, e.g. information
about lane markings.

Figure 5. Feature Extraction - original image
and road areas (left), road edge points (cen-
ter), and projection into world coordinates
(right).

3.2. Model Representation

Figure 6 depicts our approach for representing road
model primitives. A “slice” of road is described by its width
(geometrical component) and lane structure in terms of
number of lanes and their legal direction (topological com-
ponent). This representation of road primitives is compati-
ble with the type of feature data described in Section 3.1.

Figure 6. Geometrical and topological repre-
sentation of a “slice” of road.

A road type consists of an ordered group of primitive
road model items. For such groups additional constraints
apply. A road type might require a minimal and/or maximal



lateral length or, in the case of road widening and narrow-
ing, a certain monotonic behavior. Other constraints limit
the connectivity between (primitive) road types, e.g. a two-
lane road segment can connect to a three-lane road segment
only through a transitional segment. Primitive road items
and road types are organized hierarchically. Additionally,
primitive model items are grouped by the type of driving
environment, e.g. highway driving, rural road or urban road
driving. Appropriate connectors describe transitions from
one environment to another one (e.g. a highway exit trans-
fers the vehicle from highway driving to rural road driving).

3.3. Recognition Process

The goal of the recognition process is to find associa-
tions between feature items and (primitive) road models and
eventually an interpretation of the scene. The application
of a tree search algorithm spans potentially all possible as-
sociations of feature items and road models [8]. However,
this process is computationally expensive and must there-
fore be constrained. We define constraints on three differ-
ent levels, the primitive associations level, the group level,
and the symbolic-level interpretation.

On the primitive level, potential associations must com-
ply to unary constraints. For example, in order to associate
a feature item to specific road model, the width of the road
has to be similar for both entities.

Figure 7. Recognition process levels: prim-
itive associations level, group level, and
symbolic-level interpretation.

Whenever a feature item is associated with the same
model as the previous feature item, group-related con-
straints apply. Assuming that feature items 1, 2, and 3 in
Figure 7 are already associated with a model A, the as-
sociation of feature item 4 also to model A requires
compliance of the extended Group A to group-related con-
straints. For example, in the case of a road widening (as
part of an intersection) the group should comply to a cer-
tain monotonic behavior and the group’s length should

be within the maximal length of the model. Assum-
ing another situation where feature items 1-4 are al-
ready associated to model A, associating feature item 5
to model B would trigger additional constraints. Start-
ing a new group B causes the previous group A to be
closed. This, for example, requires compliance to the mini-
mum length constraint.

Finally, the set of (locally) consistent groups may allow a
high-level interpretation of the scene. For example, the oc-
currence of a regular road segment, a widening segment, a
narrowing segment, and another regular road segment (in
this order) can be a strong indicator for the existence of an
intersection.

4. Potential Application Areas

4.1. Integration of Geometric and Symbolic
Grouping

While low-level grouping is data-directed (bottom-up),
high-level grouping is model-directed (top-down) [9]. Com-
bining such perceptual grouping provides advantages that
are not achievable by either of them alone.

High-level processes gain confidence from accurate low-
level grouping, e.g. a road recognition algorithm on video
data can use accurate measures of the road (taken close to
the vehicle) to extract distant road data. However, the inter-
pretation of low-level data often depends on the context and
its accuracy can be lost by mere local data processing. The
integration of high-level symbolic data provides an opportu-
nity to guide low-level processes, e.g. symbolic knowledge
about an upcoming intersection can prevent a curb detec-
tion algorithm from erroneously extracting linear segments
in curved areas.

4.2. Object Recognition and Tracking

Moving object recognition and tracking is critical, espe-
cially for on-road driving as the autonomous vehicle needs
to make intelligent decisions on avoiding the obstacles and
to plan appropriate routes. Detecting, recognizing (classi-
fying) and tracking moving obstacles from a moving plat-
form is a challenging task particularly in urban environ-
ments. The grouping algorithms presented in the previous
sections of this paper provide a good starting point and are
essential for tracking and recognition at the structural and
primitive levels.

For example, we can group objects in the environment
and classify them as either stationary or moving by track-
ing groups in continuous scans. Such information is valu-
able for avoiding collision with obstacles in the environ-
ment [14]. At the time this paper was written, we have



demonstrated tracking moving objects in a stationary en-
vironment (i.e. the vehicle did not move between scans).

4.3. Efficient Path Planning

Using the grouping approaches presented in this paper,
we can generate efficient routes for UGVs in unknown en-
vironments using noisy sensor data. The geometric group-
ing algorithm can provide a polygonal world model. Once
we have such a world model, we are able to formulate op-
timal plans based on the incremental construction and anal-
ysis of a visibility graph. This is an area we are currently
investigating using range data from a high-fidelity simula-
tion environment.

5. Conclusions and Further Research

In this paper, we have described our recent efforts in us-
ing gestaltic principles of proximity, similarity and continu-
ity for perceptual grouping of sensory data into meaningful
entities. The low-level geometric algorithm was shown to
be efficient in extracting the road in front of the vehicle us-
ing a curb detection algorithm and for grouping range data
both temporally and spatially. The development of an as-
sociation matrix within the geometric grouping process en-
abled spatio-temporal grouping by disambiguating associ-
ation uncertainty for splitting and merging of groups. The
high-level symbolic grouping described a model-guided
road recognition process using background knowledge. The
geometric and symbolic grouping processes were illustrated
using experimental data collected from a UGV traversing
urban environments. We discussed the advantages of in-
tegrating the geometric and symbolic grouping processes
and how they can be complementary to one another. We
also outlined the utility of the grouping algorithms in object
recognition and tracking and for planning efficient routes
for UGVs in unknown environments.

Further research work includes casting the geometric
grouping algorithm in an extended Kalman filter (EKF)
framework. From a given scan, the future scan can be pre-
dicted using vehicle speed and orientation and the differ-
ence between the predicted and the actual scan can be used
to generate an error that could weight the grouping assign-
ments via covariance matrices provided by the EKF.

For the high-level grouping, the results of the first experi-
mental implementation have been encouraging. The current
set of simple constraints have already vastly improved the
efficiency of the tree search algorithm. Current research is
investigating the enabling of real-time processing by taking
advantage of the results of previous frames. For instance,
pre-sorting of primitive models could guide the search al-
gorithm and make it more efficient.

The integration of the geometric and symbolic grouping
algorithms needs to be experimentally verified for an on-
road driving scenario. We would also like to assess the per-
formance of our grouping algorithms against ground truth.

References

[1] J. Albus et al. 4D/RCS Version 2.0: A Reference Model Ar-
chitecture for Unmanned Vehicle Systems. Technical Report
NISTIR 6910, National Institute of Standards and Technol-
ogy, Gaitherburg, MD 20899, U.S.A., 2002.

[2] K. Boyer and S. Sarkar, editors. Perceptual Organization
for Artificial Vision Systems. Kluwer Academic Publishers,
2000.

[3] T. Chang, T. Hong, S. Legowik, and M. Abrams. Conceal-
ment and Obstacle Detection for Autonomous Driving. In
Proceedings of the IASTED Robotics & Applications Con-
ference, Oct. 1999.

[4] R. Chapuis, R. Aufrere, and F. Chausse. Accurate Road
Following and Reconstruction by Computer Vision. IEEE
Transactions on Intelligent Transportation Systems, 3, Dec.
2002.

[5] D. DeMenthon and L. Davis. Reconstruction of a Road by
Local Image Matches and Global 3D Optimization. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, 1990.

[6] M. Foedisch and A. Takeuchi. Adaptive Real-Time Road De-
tection Using Neural Networks. In Proceedings of the Inter-
national Conference on Intelligent Transportation Systems,
Oct. 2004.

[7] M. Foedisch and A. Takeuchi. Adaptive Road Detection
through Continuous Environment Learning. In Proceedings
of the 33rd Applied Imagery Pattern Recognition Workshop,
Oct. 2004.

[8] W. Grimson. Object Recognition by Computer: The Role of
Geometric Constraints. The MIT Press, 1990.

[9] H.-B. Kang and E. Walker. Multilevel Grouping: Combin-
ing Bottom-Up and Top-down Reasoning for Object Recog-
nition. In Proceedings of the 12th IAPR International Con-
ference on Pattern Recognition, pages 559–562, Oct. 1994.

[10] G. Kanizsa. Organization in Vision: Essays on Gestalt Per-
ception. Praeger Publishers, 1979.

[11] K. Koffka. Principles of Gestalt Psychology. Routledge and
Kegan Paul Ltd., first published 1935, reprinted July 1999.

[12] M. Luetzeler and E. Dickmanns. Road Recognition with
MarVEye. In Proceedings of the IEEE International Con-
ference on Intelligent Vehicles, Oct. 1998.

[13] S. Sarkar and K. Boyer. Perceptual Organization in Com-
puter Vision: A Review and a Proposal for a Classificatory
Structure. IEEE Trans. on Systems, Man, and Cybernetics,
23(2):382–399, Apr. 1993.

[14] C.-C. Wang, C. Thorpe, and S. Thrun. Online Simultane-
ous Localization and Mapping with Detection and Tracking
of Moving Objects: Theory and Results from a Ground Vehi-
cle in Crowded Urban Areas. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, pages
842–849, Sept. 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


