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ABSTRACT 
We define native intelligence as the specified complexity 
inherent in the information content of an artificial system. The 
artificial system is defined as a system that can be encoded in 
some general purpose language, expressed minimally as some 
finite length bit string, and decoded by a finite set of rules 
defined a priori. Using this definition of native intelligence, we 
employ a chance elimination argument in the literature to form a 
simple, but promising native intelligence metric. Several 
anticipated objections to this native intelligence metric are 
discussed. 

1 INTRODUCTION 
We define two perspectives on artificial system 
intelligence: (1) native intelligence, expressed in the 
specified complexity inherent in the information content of 
the system, and (2) performance intelligence, expressed in 
the successful (i.e., goal-achieving) performance of the 
system in a complicated environment. In this context, 
complexity is simply Shannon information [5].  Specified 
complexity is Shannon information matched with 
meaningful patterns (e.g., orthography, syntax, and 
semantics).  Native intelligence aggregates things like 
potential intelligence, learning ability, system integration, 
richness and potential effectiveness of individual 
behaviors, and intellectual reasoning capabilities. These 
are fundamental, theoretical, and innate aspects of 
intelligence. The performance perspective on intelligence 
aggregates things like the efficiency of design and 
maintenance, real-time performance, and the ability to 
effect desired physical changes on the environment. These 
are external behavior characteristics that can be measured 
without knowing where the intelligence came from, how it 
is represented, or what algorithms are used internally to 
process the data and produce effective output.  

These two perspectives have a parallel with the 
distinction between theoretical and experimental sciences. 
In this regard, the native and performance perspectives are 

complimentary and not competitive.  They also ought to 
give the same results when applied to the same quantities 
in identical systems. Each one ought to inform and 
contribute insight to the other.  

The essence of intelligence is completely non-
material. This must be true, of course, if a native 
intelligence perspective is to have any validity.  
Intelligence can be embodied, but it is completely 
independent of embodiment.  For example, a finite state 
machine (FSM) for a particular behavior can be stored on a 
compact disk, located in the mind of the designer, or 
spoken out loud to an audience. The FSM is completely 
independent of the medium of storage, type of 
representation, or mode of transmission. It exists as 
information. The quantitative measurement of intelligent 
systems is becoming and will become an increasingly 
important thing to be able to do. The discovery of DNA in 
living things as the living blueprint of life forms an 
existence proof that the essence of living things is non-
material information. DNA is merely the medium; the 
information is the real intelligence1.  

1.1 The value of a native intelligence metric 
A metric for quantifying the intelligence of a system 
independent of its performance, i.e., a native intelligence 
metric (NIM), is needed.  A NIM would bring substantial 
gains beyond that possible from performance intelligence 
metrics alone. A measurement of native intelligence can be 
made prior to the simulation or execution of the actual 
system, since all that is necessary to apply the metric is the 
representation of the system (as a string of bits), the rules 
for interpreting the string, and the meaning matching the 
system (the semantics). To measure success earlier in the 

                                                           
1 Actually, the concept that all hereditary characteristics come 
from the DNA and only the DNA (called Crick's Central Dogma) 
has been shown to be false [1].   

drussell
Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD, August 13-15, 2002.



design phase is known to be critical to successful 
engineering design, particularly for large scale, complex 
systems. This is true even if the NIM is suboptimal, 
namely, even if some intelligence actually in the system is 
missed by the NIM. The ability to define and measure 
intelligence merely from its native intelligence offers 
promise to improve important quantities such as system 
time-to-market and quality. A NIM will also allow a more 
straightforward debug of the system, since the problem and 
solution will be more localized. For example, if we know 
that a few bits in the string cause the problem, we may be 
able to easily fix the problem by correcting just those few 
bits. 

1.2 The relationship to living systems 
Our definition of native intelligence of artificial systems is 
substantially unlike what is known as "IQ intelligence." IQ 
intelligence is a type of performance intelligence 
(intellectual mostly) in which the result is used to measure 
the potential of the human subject. Furthermore, a 
fundamental difference between living organisms and 
artificial systems is that the latter are completely malleable. 
This is not just a difference but a distinct advantage. 
Therefore, IQ intelligence cannot and should not constitute 
a model for the native intelligence of artificial systems. 

In human children we often want to distinguish 
between the potential of a child to learn and how much 
they have actually learned. Being unable to do this is a 
source of incredible frustration. The problem is that we do 
not yet understand how to measure native intelligence of 
humans.  I suspect that some day, perhaps soon, we will be 
able to make some level of a determination simply be 
interpreting the genetic information in the genome of each 
individual.  This subject is the topic of a film entitled, 
Gattaca [2]2, in which the protagonist overcame his genetic 
"destiny" in spite of an oppressive determinism in the 
surrounding culture. With humans this is a loaded topic, 
but with machines the situation is much more amenable, 
since we can design the system for analysis! In fact, we 
want to design the system for analysis. We want the 
"intelligence meter" to detect the maximum amount of 
intelligence, and since we have full control on how we 
encode the description of the design of the system (just like 
we can always encode a computer program into a finite 
sequence of bits), we will choose to encode it in a standard 
format so that the intelligence is measurable. 

                                                           
2 Certain commercial companies and their equipment, 
instruments, or materials are identified in this paper in order to 
specify the experimental procedure adequately. Such 
identification is not intended to imply any judgement by the 
National Institute of Standards and Technology concerning the 
companies or their products, nor is it intended to imply that the 
materials or equipment identified are necessarily the best 
available for the purpose 

With the NIM are we claiming that a system's 
performance is fully constrained by its initial determining 
information?  Isn't this crass determinism?  No, it is not. A 
system's performance is not fully constrained by the 
disembodied information describing the system, since 
performance depends on the nature of the environment, 
which will affect future performance.  For example, if an 
adaptive filter adjusts parameters for a certain 
environment, subsequent exposure to another environment 
may cause instabilities in the filter. High native intelligence 
does not mean that the intelligence is realized. The NIM is 
not meant to exclude the system’s potential response to 
some future contact with its environment. There is a 
multitude of ways that the same intelligent system can by 
realized. Finally, living systems are still a great mystery 
and are arguably not fully defined by algorithms (in the 
way that we are defining artificial systems) [3]. 

1.3 Specified complexity and computational 
theory 

Measuring native intelligence is much like the problem 
scientists and mathematicians asked around the turn of the 
century. What are the natural classes of computing 
machines and can we measure the power of a machine? 
Are there limits of computation and if so what are they? 
Similarly our question becomes the following. How can we 
measure the intelligence of a system without ever seeing it 
perform or even simulating its operation? 

In a manner consistent with definitions of information 
in standard computational theory texts, we propose that the 
minimal information describing a system entails its 
intelligence, i.e., the intelligence is fully contained within 
the information describing the system [4]. Of course, by 
information we do not mean Shannon information, namely, 
that the information is merely complex [5]. Random noise 
is complex, but is not specified (i.e., it has no "meaning") 
and therefore conveys no real (useful) information. Rather, 
what we mean by specified complexity is that the 
information is both complex and has discernible meaning, 
which is to say that it has recognizable patterns that 
indicate the power of the system to perform complex and 
useful tasks.  This specified complexity can be represented 
and analyzed without actually realizing the system and 
seeing it perform. We argue that intelligence can be 
distilled down into pure information, even a finite amount 
of information. The description of a computational 
machine can always be reduced to a finite string of 0's and 
1's. To represent a truly intelligent system, the system's 
information must be both complex (in the Shannon sense) 
and specified. In computation theory, information content 
of a machine is defined as the minimum representation of 
that machine. On the other hand, certain machines may 
look complex, but they may not do anything useful. 
Therefore, the system's description needs to be specified. It 



needs to have meaning that, in some way, is grounded in 
reality or truth.  And furthermore, we have some way of 
measuring the amount of this connection, i.e., the greater 
the system connects with real meaning, the greater the 
intelligence. Here then is a method for measuring the 
native intelligence of systems: Measure the information 
content, using information theory and computation theory 
and measure the magnitude with which it can be matched 
to patterns representing truth-grounded semantics 
(something like a dictionary would be employed).  For 
example, the DNA string is certainly complex, i.e., there is 
no known simple representation for the entire string (no 
simple equation generates the string of nucleotides) and 
DNA is also certainly associated with known truth-
grounded semantics, i.e., it can be used to form proteins 
that are the machinery and computing engines of the most 
complex factory yet discovered, the living cell. Clearly, 
detecting and measuring the connection of a system's 
information with truth-grounded semantics is a substantial 
challenge. 

1.4 The analogy to linear systems and the 
mixed success of intelligent systems 

To generate an effective NIM, some mathematically sound 
concept of what fundamentally constitutes intelligence is 
needed. Why not use some of the existing IS models, such 
as neural nets, evolutionary programming, hierarchical 
models, behavior-based control, and fuzzy control? 
Because all these models share in common that they are 
primarily models for facilitating IS design and execution 
and do not in themselves constitute formal models of 
intelligence that will readily yield a NIM. 

Why not use linear systems theory as a model for a 
NIM? The successes of traditional linear system theory can 
in many ways be considered the target we would aim for in 
the development of a useful NIM. In traditional linear 
system theory we have a most agreeable situation. The 
dynamic behavior of many systems can be described as 
differential equations of motion and dynamics and, 
coupled with state space structures and linear control 
theory, we can determine absolutely whether the system is 
controllable, stable, or observable without doing any 
simulation or building and testing of an actual system. 
However, it is well known that when we add non-linearity 
and time variance, for example, we can measure the 
stability of only a small subset of the total space of all non-
linear systems. The mathematics also gets substantially 
more complicated and sophisticated.  A large class of real-
world systems (including discrete event systems) do not 
seem to submit easily to concise and simple mathematical 
descriptions. So this path (employing differential equation 
models) for determining the intelligence of systems has hit 
a fundamental barrier, it seems. 

What about using formal methods as a basis for a 
NIM?  The NIM offered in this paper may have much in 
common with formal methods and further study of this 
connection should be pursued. Formal methods have had a 
very limited impact, but this may not be due to any 
limitations in the theory. The limited impact seems to be 
due to the fact that many systems do not submit easily to 
the formal syntax of predicate calculus and that the 
learning curve is too high for most system designers to 
comprehend formal methods in order to successfully use 
them. Tools for formal methods also seem to be lacking or 
need substantial improvements [6]. 

The field of intelligent systems research has rightly 
been criticized by the traditional control systems 
community as being open to the proliferation of ad hoc 
design techniques, such as neural control, fuzzy control, 
hierarchical control, etc. These techniques are not 
grounded in physical and mathematical theories in the way 
that traditional control systems are grounded in the theory 
of dynamics and differential equations. There is certainly 
no commonly accepted equivalent to differential (or 
difference) equations for large-scale discrete-event systems 
(large-scale discrete-event systems may be considered to 
be the domain of IS). Traditional control systems can be 
measured in terms of their stability, controllability, and 
observability without realizing (or embodying) the system. 
These are metrics that allow us to measure the native 
intelligence of traditional control systems. For example, a 
system that goes unstable in a certain critical region would 
intuitively be less intelligent than one that has no such 
instability but in every other way performs equivalently. 
We have no such general metrics for measuring the native 
intelligence of large-scale discrete-event systems nor do we 
have the capability to compare the native intelligence of 
systems designed according to different methods. It is 
important to have quantitative measures for the relative 
performance of systems designed using neural control 
versus those designed by fuzzy control, etc. 

Certainly ad hoc systems are helpful and even 
necessary at a time when there is no accepted theory with 
which to build non-ad hoc systems. However, without a 
theory, we often witness a proliferation of inflated claims 
of system performance that can not be met.  This has 
several time produced a backlash from funding 
organizations who made financial commitments based on 
these groundless claims. This is all the more reason why a 
well grounded NIM would be helpful. 

Furthermore, intelligent systems will have to be 
designed for analysis. But this is exactly what we do when 
we design linear, time-invariant control systems in a state 
space form.  It's easier to analyze that way. Furthermore, 
vendors of systems will not want to hide the intelligence of 
their systems, but will want others to know for sure that 
their system is truly intelligent. The advantage of having a 



NIM should be obvious. That way we can measure 
intelligence prior to any commitment to simulation in 
software or testing in hardware. Computation theory can 
also help with measuring the degree to which the 
information (describing the system) matches with truth-
grounded semantics. For example, a system that can 
recognize or distinguish between a broader set of input 
"languages" is more powerful than one that cannot. For 
example, a finite state automata (FSA) can be designed to 
recognize strings of the form 0*1*, but no FSA can be built 

that recognizes strings of the form nn10 , whereas a push-
down automata (PDA) can be built to recognize strings of 
either type. Therefore, the PDA is more powerful 
(intelligent). 

Measuring intelligence is similar to what a 
cryptanalyst does normally except that when measuring 
intelligence we don't anticipate the element of planned 
deceit. The cryptanalyst is looking for signs that the bits 
have identifiable patterns underlying the randomness. If 
there is no randomness, there are no patterns, and no 
intelligent message underneath. With randomness, the bits 
could actually be truly random and therefore be nonsense. 
However, it may just appear to be random and the patterns 
are not obvious to the cryptanalyst. Ostensibly, an IS 
would be designed not to fool the IS metrics analyst to 
think the system is nonsense, but rather the IS would be 
designed so that its intelligence would be easily perceived 
by all. 

1.5 The nature of a NIM 
Perhaps the solution is not in an analogy to linear systems 
theory, as has been the hope, but rather in information 
theory, probability, and complexity theory.  This is the 
research question we have asked ourselves and hope to 
provide some direction towards an answer. We argue that 
the essence of intelligence in living things is information 
(versus physics or chemistry).  If this is so, we need to 
discover appropriate tools to correctly analyze that 
information to glean from it the level of intelligence in the 
system. 

We claim that chance, regularity, and intelligence are 
mutually exclusive.  Regularity is indicated by signals of 
low complexity. Therefore simple Shannon information 
filters can eliminate regular systems from consideration as 
intelligent systems (recall our definition of native 
intelligence as complex and specified information, in 
which the level of complexity and specification is 
proportional to the level of intelligence). After first 
eliminating regularity, if we can measure the probability 
that a system arose from chance processes alone, then the 
intelligence in that system must in some simple way be 
related to that probability. In a manner similar to Shannon 
information theory, we propose that, if there is a measure 
of the probability that doesn't just measure the mere 

complexity of the information (Shannon), but measures the 
specified complexity of the information, then the 
expression p2log− , where p is the probability that the 

supposed specified complexity (of the system) arose purely 
through a logical chance hypothesis, is a theoretical 
measure of the system's native intelligence. Such a measure 
exists [7]. We will describe and examine this measure and 
suggest how it applies as a NIM. 

2 THE CHANCE ELIMINATION ARGUMENT 
Our goal is to find a quantitative intelligence metric for an 
artificial system that can be applied to the minimal 
informational description of the system.  Another way of 
looking at this problem is to ask ourselves, what is the 
probability that this system either arose merely by chance 
(or merely by regular processes)? Regularity is relatively 
easy to eliminate from consideration since the information 
can in this case be generated from a relatively small 
expression (or a small number of "lines of code").  It may 
contain many bits, but not have much information. An 
example of regularity is an infinitely alternating string of 
four 0's and four 1's. The lines of code are simple: write 
down four 0's, write down four 1's, repeat steps one and 
two. Clearly there is little intelligence in this system. So, 
having eliminated regularity, if the probability that chance 
did the work is high, the intelligence in the system will be 
low; if the chance probability is low, the intelligence will 
be high. Why is this so? There are only three options for 
the source of artificial system information: chance, 
regularity, or intelligence. It has to be one of the three.  So 
if chance and regularity have sufficiently low probability, 
then the source must be intelligence. Say that the system 
needing analysis is encoded in what appears to be a 
random sequence. If we happen to know that it is the 
description of a complex space shuttle control system, we 
can readily eliminate chance and declare it to be 
originating from intelligence. Note that false negatives are 
possible (thinking it is a chance process when it is an 
intelligent process), but false positives are avoidable. 

A theory for chance elimination has been developed 
by Dembski in [7] and is called the Generic Chance 
Elimination Argument (GCEA). This theory forms the 
basis for the NIM development in this paper. Therefore, 
we will begin with a summary of the aspects of GCEA 
relevant to IS metrics. In the next section, we will 
investigate how the theory might be (simply) applied to IS 
metrics. 

We start with a subject, S, that observes an event, E. 
By analyzing the circumstances surrounding E, S defines 
the chance hypothesis, H, gotten from a reasonable chance 
process that might have been responsible for E. S discovers 
(doesn't matter how) a pattern, D, that matches the event, 



E3. With D* as the event associated with the pattern, D, S 
calculates the conditional probability, P(D*|H), of the 
event, D*, assuming the chance hypothesis, H, is true. S 
tests whether P(D*|H) is less than a universal probability 

bound, δ . Dembski determined that δ  = 15010−  from 
fundamental physical limits (space, particles, and time) 
within the known universe4. Through knowledge of some 
side information, I, S computes the conditioned complexity 

( )I|Dϕ  of formulating the pattern, D, given the side 

information, I. “Complexity” in this context is defined 
within the domain of “complexity theory,” the most 
common example of which is computational complexity. 
Complexity theory is a dual with probability theory in the 
sense that with probabilities we are dealing with "events" 
conditioned by "background information" and with 
complexity theory we are dealing with "problems" 
conditioned by "resources."  So formulating D is the 
"problem" and I are the "resources" for solving the 
problem. A problem conditioned by resources places 

( )I|Dϕ  in the domain of complexity theory. S computes a 

tractability bound, λ , which is used to calibrate the 
complexity values, since complexity, unlike probability, is 
essentially uncalibrated. λ  is the upper bound of 
complexity, below which the side information, I, is 
sufficient to form the pattern, D. Finally, if P(D*|H) < δ  
and ( )I|Dϕ  < λ , S can infer that E did not occur 

according to H. This is a substantially abbreviated form of 
Dembski's argument, but is sufficient for our needs.  We 
will now give an example to help clarify the GCEA. 

Say we are S and we stumble upon Stonehenge.  We 
don't wonder whether humans carried the stones (some 
weighing over 5 ×  104 kg) to the site. However, we do 
wonder whether the particular arrangement of the stones is 
meant to align with certain seasonal, celestial events such 
as the positions of sun and moon at summer solstice and 
during eclipses. S declares that E is the particular 
arrangement of stones S encounters that may be exhibiting 
alignment with celestial bodies at certain seasonal times. S 
determines that the designer of Stonehenge had full view of 
the sky enough days in the year to be able to note seasonal 
occurrences. S further determines that at summer solstice, 
for example, the rising sun precisely aligns over the Heel 

                                                           
3 Actually if D* is the event associated with the pattern, 

D, and the occurrence of E implies that D* also occurred, we say 
that D delimits E rather than D matches E. 

4 There are less than 1080 elementary particles in the 
known physical universe, no more than 1045 physical state 
transitions per second, and (assuming "big bang" cosmology) no 
more than 1025 seconds of time will ever be available in the 
known physical universe.  So 1080 ×  1045 ×  1045 = 10150 is a 
liberal measure for the maximum number of possible state 
transitions of all the particles in the known universe throughout 
the total lifetime of the universe.  

Stone shining rays directly into the center of the monument 
in the inner horseshoe arrangement of stones.  S notes that 
there are several of these curious alignments of lunar and 
solar events (including eclipses) with various stones. This 
alignment of events with stones constitutes D, our pattern. 
D* then constitutes the particular pattern of stones 
consistent with the alignments. E would then, at the least, 
be delimited by D, but for simplicity’s sake, say D* = E. 
Now we calculate the probability, P(D*|H), that D* could 
happen by chance alone, even though D* was gotten by 
assuming the matching of the stones with particular 
celestial events. The various celestial events and our 
prehistoric Stonehenge designer's awareness of these 
events constitute the side information, I. We calculate the 
tractability bound, λ , below which the particularly 
alignment of stones is possible given I.  We then calculate 

( )I|Dϕ , the actual complexity of forming the pattern 

given I.  If P(D*|H) < δ  and ( )I|Dϕ  < λ , S can infer 

that the particular arrangement of aligned stones, E, did not 
occur according to the chance hypothesis, H. 

All these definitions and formulations are completely 
consistent with probability theory, complexity theory, and 
statistics. Note that the measurement is heavily dependent 
on the correctness of I (i.e., that I is statistically 
"sufficient").  For example, we must have sufficient 
knowledge whether the prehistoric Englishman could 
perceive those celestial objects and that the alignments 
have changed but slightly over these thousands of years. 
On the other hand, say we now know that the atmosphere 
of England was even more persistently overcast thousands 
of years ago than it is today. We might then conclude that 

( )I|Dϕ  > λ , i.e., our prehistoric Englishman caught sight 

of the celestial bodies so infrequently that the complexity 
of forming the match with the alignment pattern would be 
virtually impossible.  Now a possible criticism here is that 
our knowledge of the prehistoric Englishman's weather 
conditions may be imprecise.  In this case we may only be 
able to determine a range for ( )I|Dϕ .  All that would be 

necessary then is to ensure that the upper end of the range 
is less than λ , the complexity tractability upper bound. 

Furthermore, even if the complexity happens to be 
tractable, i.e., ( )I|Dϕ  < λ , let us say that only one stone 

is involved in the alignment pattern. This would mean that 
P(D*|H) would be quite high, since the random spatial 
arrangements of only one stone are relatively few 
compared to the random spatial arrangements of N stones 
with N >>  1. Therefore, it is conceivable that P(D*|H) > 
δ , particularly since δ  is such a conservatively small 
number, even though ( )I|Dϕ  < λ . 

3 CHANCE ELIMINATION ARGUMENT 

TRANSFORMED INTO A NIM 



Our goal is to apply the GCEA to the problem of 
developing a NIM. The GCEA is intended simply to 
eliminate the chance hypothesis from consideration, 
whereas we wish to discover a metric.  However, in the 
process of eliminating chance, the GCEA has to compute a 
measurable quantity, namely, the probability of the pattern 
(transformed into event space) conditioned by the chance 
hypothesis, P(D*|H).  The GCEA is also intended merely 
to compare P(D*|H) against a threshold δ , in order to 
(possibly) eliminate the chance hypothesis and infer 
intelligent agency. However, the artificial systems we 
normally wish to measure are those that we know 
intelligent agents have designed a priori, so no threshold 
comparison is needed. Probabilities are already calibrated, 
having a target range in the interval, [0,1]. The GCEA 
computes a complexity measure, ( )I|Dϕ , comparing it 

with λ , in order to ensure that the pattern is tractably 
constructible from the side information. Even though we 
know that our system is designed, it is certainly possible 
that it cannot be executed. Therefore, the role of the 
complexity measure should remain the same for the IS 
measure. Finally, the GCEA computes a probability and 
we are interested in a complexity measure. Since regularity 
can be easily eliminated from consideration, the only other 
options are chance or intelligent agency.  Therefore, to the 
degree our candidate IS is not attributable to chance, the IS 
displays intelligence. Furthermore, the information 
theoretic method for converting a probability into an 
information measure is to take the negative of the 
logarithm base 2 of the probability. Since we've defined 
information as the specified complexity of the minimal 
representation of the IS, H)|P(D*log2−  is the NIM we 

seek. So a larger NIM means higher system intelligence 
and vice versa. 

Therefore, the NIM consists the following steps: 1) 
identify E as the design of the IS of interest, 2) gather all 
the relevant side information, I, in order to identify the 
pattern, D, 3) identify the event D* that delimits E, 4) 
define the chance hypothesis, H, for the event D*, 5) 
compute the probability, P(D*|H), that D* might occur 
according to H, 6) compute the tractability bound, λ , by 
quantifying the complexity of forming the pattern with the 
minimal amount of resources, 7) compute the complexity 
of generating the pattern, D, from I, 8) test if ( )I|Dϕ  < λ , 

if true, then continue to next step, or if false, stop (it has no 
intelligence if it is impossible to construct and/or execute), 
9) compute H)|P(D*log2− . 

How do we identify E? This is simply the particular 
system representation we wish to analyze. However, the 
system design needs to be in an analyzable format. This 
begins with a need for some unambiguous syntax that can 
be represented in something like the extended Backus-
Naur form (EBNF) [8]. How do we identify I and D? The 

relevant semantics will be captured in the side information, 
I, and the gathering and identification of side information 
is expected to be a challenging task. The challenge should 
lie mostly in the difficulty in assembling all the applicable 
semantic information. In fact, we can easily underestimate 
the intelligence in the system if we miss or overlook key 
information. Going back to the Stonehenge example, if we 
mistakenly conclude that the prehistoric man is inobservant 
and therefore is completely ignorant of eclipse events, but 
the eclipse alignments actually match with several 
alignment of stones, we will conclude that the stones 
display less intelligence in their particular arrangement 
than they actually do.  This is a false negative, which will 
be very common.  However, because complex specified 
information is typically highly differentiated to other 
complex specified information (e.g., Schubert's music is 
very different from J.S. Bach's), false positives will be 
highly unlikely. The use of formal and standard system 
specifications [9] should also be used in order to define 
what is meant by the syntax. Therefore, intelligence in the 
system will sometimes go unnoticed.  Different than the 
Stonehenge example, system designers will want to ensure 
that the systems they design achieve the maximum 
(intelligence) value under the NIM. This is called design 
for analysis and is done all the time now, though more for 
performance metrics, since they are most common. 
However, the current practice of formal testing can be 
generally considered in the same category as the NIM [10]. 

4 OBJECTIONS TO THE NIM 
A possible objection to the NIM is that a system such as a 
neural net or an evolutionary algorithm starts out without a 
lot of intelligence, but as it learns, it grows in intelligence.  
Recall that we specifically do not define intelligence as the 
ability to realize certain tasks, but rather as the specified 
complexity inherent in the system at design time, prior to 
execution.  The mere ability to learn should be considered 
intelligent, independent of, or prior to, having learned 
anything. The simple acquisition of knowledge, even 
behavioristic knowledge, should not be counted as an 
increase in intelligence. For example, a person with 
advanced Multiple Sclerosis may be intelligent even 
though he or she may neither see, speak, nor move. 

Another objection to the NIM is that certain intelligent 
systems, particularly learning and optimization approaches 
such as neural nets or evolutionary algorithms actually 
effect an increase in specified complexity as the system 
executes, because it solves complex optimization problems 
without front-loaded intelligence. However, it can be 
shown that through the designer's choice of the particular 
fitness functions, system structure, and initial populations, 
specified complexity is entered surreptitiously [11]. The 
No Free Lunch theorems are proof of this, since, for any 
particular optimization algorithm, if the fitness functions 



are not constrained within a certain domain, but are 
allowed to freely range throughout the entire domain of 
possible fitness functions, the optimization algorithm will 
not perform on the average any better than blind search 
[12].  So specified complexity can only be added by 
intelligent agents [13]. 

Another response to this objection is largely 
experiential.  The author has now some fifteen years 
experience in the practical design of large-scale control 
systems for mining vehicles, inspection machines, and on-
road autonomous vehicles. The consistently strong 
impression is how much sophisticated, up-front design 
intelligence (from the intelligent agent) is needed to 
generate a successful system. Furthermore, the 
maintenance and improvement of the system also requires 
enormous input of human intelligence, very far from the 
easily and powerfully evolving systems that are promised. 
Perhaps though, we have been using the wrong design 
paradigm (we have been using a hierarchical paradigm 
[14]). Because of the No Free Lunch Theorems, we 
suspect that switching to another design paradigm will 
make little difference in this. Furthermore, as a working 
intelligent system designer, we have, of course, had 
substantial interaction with other designers using other 
paradigms. Based on this informal testimony, we have no 
reason to believe that the other paradigms require 
substantially less input of external intelligent agency, both 
at design time and after. 

Yet another objection is that performance intelligence 
metrics are easier to obtain and furthermore are all that is 
needed. Besides the NIM is too hard to compute and 
obtain, i.e., too much work is required to make it 
worthwhile.  This could be argued against linear system 
theory, which certainly requires a substantial mathematical 
and physical sophistication, and very few would argue that 
it has not been of substantial value to control system 
design. How is linear system theory like the NIM we 
propose? Linear system theory supplies an analytical 
theory and allows for metrics for measuring native 
capability, such as stability, controllability, and 
observability. Similarly, NIM is based on probability, 
complexity, and statistical theory and provides its own 
system capability (or intelligence) metric. As to the 
objection that the NIM is too hard to compute and obtain, 
just in the same way that the effort of converting 
homogeneous differential equations into state space form 
allows us to apply metrics, converting our IS into an 
appropriate format, should also allow ease of analysis.   

One might argue that elegant and simple designs 
performing some function should be considered more 
intelligent than more complex designs that perform exactly 
the same function. In this case we can consider as side 
information some metric like "design efficiency" that will 
increase H)|P(D*log2−  for the more elegant design. 

Will the NIM perform well given a complex but useful 
system as well as an equally complex system but one that 
simply thrashes, performing no useful task? The key here 
is that P(D*|H) will be higher in the latter system, since the 
thrashing system is not specified even though it is 
complex. The transformed pattern, D*, will not be 
supported by side information, I, and so the chance 
hypothesis, H, will have increased support. Additionally, 
how will the NIM perform given two other systems, one 
buggy and one bug-free? Again the system with the bugs 
will fail to support the side information (that is, the side 
information affected by the bugs) that indicates increased 
intelligent agency, giving the chance hypothesis increased 
support. 

Finally, it will be argued that chance, regularity, and 
intelligence do not cover the entire space of possibilities 
and particularly that intelligence is not the only conclusion 
when there is specified complexity. Both Kaufmann [15] 
and Davies [16] argue that there must be an (as yet) 
undiscovered regularity that can generate specified 
complexity. Since this is not yet discovered and since there 
is little concrete evidence for its existence, it certainly is 
not unreasonable to maintain our claim. 

5 CONCLUSIONS AND FUTURE DIRECTION 
We make no claim that the determination of the actual 
value of the NIM will be easily gotten, particularly as the 
systems under analysis become more complex. The precise 
determination of side information, the matching pattern, 
and the event probability under the chance hypothesis will 
be challenging to quantify with reasonable hope of 
accuracy. Clearly, many examples, starting with known 
and relatively simple systems (such as linear systems), 
should be attempted in order to exercise this metric. 

We may also discover that such a metric (or any 
intelligence metric, for that matter) cannot measure certain 
broad classes of systems. This would be disappointing, but 
should not stop us from pursuing a metric or even surprise 
us. The twentieth century has been known for the 
discovery of a wide variety of limitations. Special relativity 
posited a limiting speed for matter. Heisenberg discovered 
a fundamental uncertainty in measurement capability 
(infinite measurement accuracy in position and momentum 
simultaneously of a particle is impossible).  Chaos theory 
realized that the trajectories of certain deterministic 
systems cannot be accurately predicted without infinite 
precision in the initial conditions. A broad class of 
problems is either not computable (like the general tiling 
problem) or unsolvable given our computing resources 
(like NP-hard problems). All these are extremely helpful 
discoveries, even if somewhat disappointing. At a 
minimum, they lessen inflated claims of performance by 
quantifying performance limitations. Perhaps some similar 
fundamental limitation for any intelligence metric is also 



inherent in some broad class of artificial systems.  To find 
such a limitation and to parameterize it would be a 
worthwhile discovery. 
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