
 

 
Figure 1.  Block Diagram of an AFM. 

 
 

Figure 2. Micro-oscillator composed of a sensing 
side (left), an actuation side (right), and microwires. 
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Abstract 
Atomic force microscopy (AFM) is used to image, measure, and 
manipulate surface atoms.  In general, an atomic force 
microscope (see Fig. 1) consists of a microscale cantilever with a 
sharp tip at its end that is used to probe the sample surface.  
Forces between the tip and the sample lead to a cantilever 
deflection according to Hooke’s law. Usually, manufacturers 
provide nominal cantilever stiffnesses (k) to AFM users, who then 
measure an approximate tip deflection (x) to estimate the tip-
sample force (F = kx).  Accordingly, AFM has been used to 
estimate small forces including van der Waals, chemical bonding, 
and Casimir forces1. 

 
However, commercial AFM suffers from a lack of 
accurate force measurements because there is 
presently no universal method to disseminate 
nanonewton-level forces that are traceable to the 
International System of Units (SI).  In an attempt to 
solve this problem, a new micro-oscillator is being 
developed as a secondary standard for dissemination 
of SI-traceable nanonewton-level forces to AFM 
users.  A novel analog control system will keep the 
actuation side of the device oscillating with a 
sinusoidal motion that is fairly insensitive to the 
quality factor, Q.  Subsequently,  point P in Fig. 2 will 
be calibrated as a velocity standard ex situ.  Then, the 
device can be used in situ with applied electrostatic 

forces2 to measure SI-traceable nanonewton-level forces by standards of the National Institute of 
Standards and Technology (NIST). 
 
The theoretical foundations, microfabrication steps, and 
preliminary experimental data for the device will be discussed in 
this presentation.  First, we model the system as a two-degree-of-
freedom system by treating the sensing and actuation masses as 
rigid bodies that rotate about one fixed axis, as seen in Figure 3.  
The rotational inertias of the sensing and actuation sides about the 
central axis are Is and Ia, respectively.  The torsional stiffness of 
the actuation side is κa, while the torsional stiffness of the sensing side is κs relative to the actuation side.  
Thus, the frequencies used for the model are ωs and ωa and are defined by ωs

2 = κs /Is and ωa
2 = κa /Ia, 

respectively. 
 
Second, the device can be set up as a self-excited system for control purposes.  Whenever the sensing side 
moves, a current is induced in the sensing microwire according to Faraday’s law of magnetic induction.  

 
 

Figure 3.  Approximate oscillator model. 



This current is proportional to the angular velocity of the sensing side and can be amplified and fed 
through the actuation microwire.  Accordingly, the magnetic field around the actuation microwire would 
induce a torque M on the magnetic thin film on the actuation side.  This torque influences the motion of 
the actuation side and hence the sensing side through the flexural coupling. 
 
Next, the gain on the sensing current is chosen so that the actuation side (e.g., point P in Fig. 2) settles to 
a sinusoidal limit cycle with a Q-insensitive amplitude.  To achieve this goal, we created a nonlinear 
control system that transforms the self-excited system into a Rayleigh-like oscillator3.  Hence, the control 
circuit that maintains the amplitude of the limit cycle for the actuation side will power the device.  Also, 
the stability of the desired limit cycle is shown through use of Floquet theory4. 
 
The control system works as expected, because the device could be calibrated in air (e.g., Q = 102) and 
then used in ultra-high vacuum (e.g., Q = 104) with a velocity shift within 0.4 percent.  For example, as 
seen in   Fig. 4(b), the actuation amplitude (the amplitude of θ ) remains fairly constant as the quality 
factor changes by orders of magnitude.  This happens because the control gain adapts itself to maintain 
the actuation amplitude.  On the other hand, the sensing amplitude (the amplitude of ψ ) in Fig. 4(a) 
increases significantly as the quality factor increases.  We also note that the phase change of the actuation 
signal with Q is irrelevant, because the phase will not affect the velocity calibration. 
 

 
 

Figure 4.  Typical limit cycles (angle vs. nondimensional time) for (a) ψ and (b) θ with Q = 102, 103, or 104. 
 
Finally, we examine the preliminary experimental data and also explain the possible future use of the new 
micro-oscillator as a stiffness sensor for high-speed AFM.  As desired, the theoretical settling time of the 
control system is comparable to existing proportional-integral (PI) and proportional-integral-derivative 
(PID) methods for high-speed applications.  However, because a stiffness change at point P in Fig. 2 does 
not cause a significant change in the system frequency, which is needed to sense the tip-surface distance 
for frequency-modulation AFM, another variable must be tracked for control purposes.  Hence, we will 
discuss how a control signal for the device might be used instead of the system frequency to track 
stiffness changes. 
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