
Abstract 
For an autonomous vehicle to navigate in real-
time within a dynamic environment, it must be 
able to respond to moving objects. In particular, 
it must be able to predict, with appropriate levels 
of confidence, where those objects are expected 
to be at times in the future. It must then capture 
this information internally in its world model in 
a format amenable for planners that intend to use 
it. 

 
In this paper, we provide an overview of a 
framework to address the challenges involved in 
predicting and representing the future location of 
moving objects. This framework uses a multi-
representational approach to model information 
about moving objects, thus allowing for planners 
that require different forms of knowledge 
representation. We then describe a probabilistic, 
logic-based algorithm to predict the future 
location of vehicles in an on-road environment. 
Included in this discussion are the factors that 
affect the probabilities associated with various 
actions that the moving object may take. 

1 Introduction and Related Research 
For an autonomous vehicle to navigate in real-time 
within a dynamic environment, it must be able to respond 
to moving objects. In particular, it must be able to 
predict, with appropriate levels of confidence, where 
those objects are expected to be at times in the future. It 
must therefore capture this information internally in its 
world model in a format amenable for planners that 
intend to use it. 
 
In this paper, we introduce a framework to address the 
challenges involved in predicting and representing the 
future location of moving objects. This framework uses a 
multi-representational approach to model information 

about moving objects, thus allowing for planners that 
require different forms of knowledge representation. In 
addition, this framework accounts for different factors 
that would influence the future location of moving 
objects, including the environment it is in, a priori maps, 
mobility characteristics, the object’s intention and 
indicators, environmental conditions, etc. 
 
This framework is applicable to both on-road and off-
road driving. However, for the remainder of this paper, 
we will be focusing on the more interesting problem of 
on-road navigation where road networks provide a 
constrained environment in which to navigate, and as 
such, introduce a number of additional factors that could 
influence the probability of other moving objects 
behaving in certain ways. These factors and their 
corresponding influences are the focus of this paper. 
 
We are not aware of any efforts in the literature that have 
addressed the development of a framework for combined 
moving objects representation and prediction. However, 
there have been efforts focusing on individual 
components of this framework that could be leveraged, 
specifically in moving object representation. Very limited 
work exists in the representation of moving objects. Firby 
[4] uses NaTs (navigation templates) as a symbolic 
representation of static and dynamic sensed obstacles to 
drive a robot’s motors to respond quickly to moving 
objects.  Gueting [5] extends database structures to allow 
for the representation of dynamic attributes (i.e., ones 
that change over time) and also extends the database’s 
query language to allow for simplified querying of the 
values of dynamic attributes. Singhal [10] introduces the 
concept of dynamic occupancy grids which allow each 
cell to have a state vector which contains information 
such as a probabilistic estimate of the entity’s identity, 
location, and characteristics (such as velocity, 
acceleration) along with global probability distribution 
functions.  
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In the literature, it is common to find methodologies that 
predict where an object will be in the next one or two 
sensor images. This form of predicting the future location 
of moving objects for a relatively small number of time 
steps into the future  (short-term prediction) is useful in 
determining where the object will be in the next sensor 
image so as to perform object tracking. This has been a 
well-researched area in which approaches including 
Kalman filters [3] and Bayesian-based methods [11] have 
shown good results. In this paper, we concentrate on 
long-term prediction of sensor images, i.e., predicting the 
position of objects 10’s or 100’s of sensor images in the 
future. For autonomous navigation, planners plan over 
time horizons anywhere from milliseconds to tens of 
seconds for path planning and obstacle avoidance. As 
such, prediction algorithms need to be able to generate 
both short and long term predictions to accommodate the 
needs of planners. 
 
In this paper, we introduce an approach to predicting the 
future location of moving objects with the following 
characteristics: 
 

o The predictions are received by the planner and 
are used for path planning and obstacle 
avoidance 

o Predictions are made at longer time horizons, on 
the order of 10’s or 100’s of sensor images into 
the future 

o Constraints on the environment are explicitly 
taken into account, such that only legal and 
possible actions are considered during prediction 

o A logic-based approach is used to associate 
probabilities with various actions the moving 
object may take. 

 In Section 2, we provide an overview of the moving 
object framework. In Section 3, we describe the 
prediction algorithms and apply them to on-road driving. 
In Section 4, we discuss the influencing factors and 
constraints on motion that affect the probabilities 
associated with actions used in the prediction algorithms. 
In Section 5, we discuss the implications of applying this 
approach to an existing planner. In Section 6, we 
conclude the paper and discuss future work. 

2 Moving Object Framework 
The moving object framework provides a mechanism to 
apply appropriate prediction algorithms and 
representational approaches in order to fully capture the 
information needed to navigate in the presence of moving 
objects. This framework is shown in Figure 1.  
 
We are assuming that the processed sensor data will be 
provided as input to the framework (as shown in the left-
most box). Specifically, the information that we are 
assuming will be provided at pre-defined time intervals 
includes: 
 

o The perceived dimensions of objects in the 
environment 

o The location of objects in the environment 
o The object’s velocity and direction 
o The color of the object 
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We are also assuming knowledge about the environment 
in which the vehicle is navigating. This could take the 
form of a priori maps containing road networks and 
terrain characteristics, or could be dynamically generated 
based upon sensory input and processing. 
 
In the framework, we attempt to classify the moving 
object based upon the processed sensor data. In the case 
of on-road driving, simply classifying the objects as 
vehicles (cars, motorcycles, trucks, buses, emergency 
vehicles), pedestrians, animals, or debris is enough for 
the purpose of motion prediction. We introduce a fairly 
simplistic object classification algorithm in [8] to provide 
the level of classification necessary to allow for informed 
moving object prediction. 
 
Based upon the environment we are in, we employ 
different types of prediction algorithms. For off-road 
navigation, we have employed a bank of Kalman filters 
to predict the future location of the moving objects in the 
environment [6]. For on-road navigation, we are 
developing logic-based prediction algorithms that are 
intended to function in constrained environments. This 
logic-based approach is discussed in Section 3 of this 
paper. 
  
Information about the moving object and its possible 
future locations are stored in the vehicle’s world model 
in a multi-representational format. Information about the 
instances of object classes encountered in the 
environment (e.g., vehicle, animal, pedestrian, debris) is 
stored in a symbolic knowledge base with links to a 

priori detailed information about the corresponding 
object class. Based on the object class and the 
environment in which it is in, prediction algorithms, as 
discussed in the previous paragraph, are linked to the 
symbolic representations of the object. The results from 
these prediction algorithms are instantiated and 
represented in a time-based grid representation and 
provided to lower-level planners. A detailed discussion 
of these representation formalisms and their interactions 
can be found in [9]. 
 
One of the major advantages the proposed moving object 
framework provides is the ability to represent 
information about the moving object in many different, 
inter-related representations. It is expected that this 
moving object framework will provide information to 
planners that require fundamentally different kinds of 
underlying representations. For example, a planner that is 
planning for short time horizons (on the order of a few 
seconds) may require a grid-based representation 
describing occupancy probabilities of locations in space 
while a planner that plans at a longer time horizon may 
require a symbolic representation that describes 
characteristics of objects and equations governing their 
motion as opposed to locations in space. By using an 
interconnected multi-representational approach, we are 
able to provide information to the planner that is at a 
level of abstraction appropriate to its planning 
requirements. More information on planning in the 
presence of moving objects can be found in Section 5. 
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3 Logic-Based Motion Predictions in 
Constrained Environments 

We are developing logic-based prediction algorithms for 
use in constrained environments. The purpose of these 
algorithms is to predict the probability that an object will 
occupy a given location in space at a given time by 
taking into account: 1) the constraints that are placed on 
the object’s motion and 2) the influencing factors that 
would cause it to take a given action over another at 
specific times. These constraints and influencing factors 
are discussed in Section 4 of this paper. 
 
In the case of on-road driving, vehicles must stay on the 
road and as such, the road network provides the 
constraints dictating the bounds in which a vehicle may 
travel. A database structure has been developed to 
capture detailed information about the road network, 
which includes information about the curvature of lanes, 
road interconnectivity, signage and traffic control, lane 
marking, etc. Equations representing the path of the roads 
can be inferred from the information in the database, and 
these equations serve as the basis for representing the 
possible paths the vehicle may take along the road 
network. Details about the database will be the topic of a 
future paper. 
 

3.1.  Discretizing Actions 
 
The rule-based prediction approach requires that you 
discretize the possible actions that a moving object may 
take. In the case of a vehicle driving on-road, we limit 
the actions of the vehicle to be: 
 
 

o Remain at a constant velocity in the current lane 
o Slowly accelerate in the current lane 
o Rapidly accelerate in the current lane 
o Slowly decelerate in the current lane 
o Rapidly decelerate in the current lane 
o Change to a lane on the left 
o Change to a lane on the right 
o Turn to a lane on the left (at an intersection) 
o Turn to a lane on the right (at an intersection) 
o Make a U-Turn (at an intersection) 

 
 
Figure 2 shows an example of a vehicle on a three-lane, 
one-way road. Each possible discretized action that the 
vehicle can take in this scenario is shown, along with the 
probability that the vehicle will take this action 
(represented by a value between zero and one in 
parenthesis). The point on the road that is referenced by 
each action shows the position the vehicle will be at if 
that action is performed. So, if we assume that the 
vehicle is at (0,0) to start and moving along its lane at 3 
m/s, then the vehicle will be at (1,0) if a rapid 
deceleration action is performed, at (2,0) if a slow 
deceleration action is performed, etc. 
 
Figure 3 shows how we can project these actions into the 
future to predict the position of the vehicle at longer time 
horizons. At time = t, the vehicle is at location (0,0). To 
get to time t+1, the vehicle may perform any of the 
discretized actions. The results of any of these actions 
will result in the vehicle occupying a location in the 
environment at one time step in the future (t+1). This 
location is shown as (x,y) coordinates next to each 
possible action.  The probability that the vehicle will take 
any one of these actions over another is determined by 
the influencing factors described in Section 4.  
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To get to the next time step (t+2), each of the possible 
actions that vehicle may take is again determined, and the 
probabilities are associated based upon the action it took 
at the previous time step. We continue this into the future 
as long as our planning horizon requires. Then to 
determine the probability of the vehicle occupying a 
given point in space at a given time, we determine if any 
of the paths result in the vehicle being in that location, 
and multiply together all of the probabilities along that 
tree branch to determine the overall probability. 
 
In this case, we are assuming that the vehicle is driving 
on a straight, horizontal road and as such, the vehicle’s 
location is simply moving in the x-direction. In reality, 
the location that the vehicle occupies will be derived 
from the information stored in an a priori road network 
database being developed at NIST. 

3.2. Reducing Computation Time 
 
One issue that arises with this approach is the possibility 
of a large amount of information that needs to be 
captured. If we have ten possible actions and we are 
projecting out 20 time steps into the future, we have 1020 
values that need to be computed. This is an unrealistic 
expectation for any system that is expected to run in real-
limiting the actions a vehicle may take at a given 
location, and then by limiting the time horizon of the 
prediction. 
 
First, it is often the case that only a subset of the actions 
that the vehicle may take is possible at a given location 
on the road. For example, if the vehicle is not at an 
intersection, turning right, turning left, and making a U-
turn is not possible. If the vehicle is driving in the right 
lane of a road, it is not possible for it to change to the 
right lane. If the vehicle is stopped, it may not perform 
either of the two deceleration actions. These limitations 
greatly limit the number of actions that need to be 
represented at any given time. In Figure 2, since the 
vehicle is not at an intersection, the turn right, turn left, 
and make a U-turn activities are not listed. It is expected 
that there will be between 5 and 7 possible actions, on 
average, at a typical position on the map. 
 
Second, we will initially be implementing these 
algorithms in the 4D/RCS architecture [1]. 4D/RCS is a 
hierarchical architecture and limits the planning time 
horizon at each level of the architecture. Plans at each 
level typically have 5 to 10 steps between the anticipated 
starting state and a planned goal state at the planning 
horizon [1].  
 
Third, we may wish to prune the tree from the onset to 
eliminate actions that have a very low probability of 
occurring. For example, if we assume that the probability 
that a vehicle will rapidly accelerate at time = t+1 is less 
than a certain percentage (say, 3 percent) then we may 

decide to ignore that action in the tree. By doing this, we 
would also ignore all branches of this tree that would 
follow from this action taking place, thus greatly 
reducing the size of the tree.   
 
Considering these three factors, the number of values that 
need to be computed is greatly reduced (from 1020 to as 
little as 55) and as such, we believe that this approach 
should lend itself to real-time environments. 
 

4 Constraints on Motion and Influencing 
Factors 

This section discusses the factors that affect the 
probabilities associated with the possible actions that a 
vehicle may take while driving on-road. There are two 
classes of factors that we must consider. The first are 
factors that limit the possibilities of where the vehicle is 
able to reach. In other words, by considering these 
factors, we can eliminate certain portions on the maps 
that are not reachable by the vehicle. We call these 
‘constraints on motion’. The second are factors that 
influence which of the possible actions the vehicle is 
likely to perform out of those that are available to it. We 
call these influencing factors. These two categories of 
information are discussed below. 

4.1 Constraints on Motion 
As mentioned above, the constraints on motion limit the 
possibilities of the locations that the vehicle is able to 
reach. Below we discuss two constraints on motion:  
 

o A Priori Road Network Information: 
Assuming that the vehicle is driving on-road and 
will remain on-road, the road network limits the 
possible locations that the vehicle can possibly 
attain. 

 
o Vehicle’s Motion Capabilities: Motion 

capabilities of a vehicle limit the possibilities of 
where it can possibly be in the future. For 
example, the vehicle’s acceleration capabilities 
restricts the range of locations that are accessible 
by the vehicle in a given timeframe. Similarly, 
knowing a vehicle’s minimum turning diameter 
as a function of its current velocity provides a 
limitation on how quickly it can change lanes 
and its ability to perform turns at an intersection. 
One of the ways this information may be used is 
to limit the possibility of a vehicle turning at an 
intersection as a function of its velocity 
approaching the intersection. That is, if a vehicle 
is approaching an intersection at a relatively 
high rate of speed, one may eliminate the 
possibility that the vehicle is turning at the 
intersection. 

 



4.2 Influencing Factors 
Influencing factors affect the probability that a vehicle 
will perform one action over another. Seven influencing 
factors are discussed below: 
 

o Weather and Environmental Conditions: 
Weather and environmental conditions include 
rain, sleet, snow, fog, darkness, etc. and their 
effects on visibility and slickness of the road 
surfaces. As the weather and environmental 
conditions worsen, the probability often 
increases that the vehicle’s velocity will 
decrease. Also in these conditions, vehicles often 
prefer to remain in their lane as opposed to 
switching lanes or performing passing 
maneuvers. 

 
o Vehicle’s Intention and Indicators: One of the 

strongest factors that play a role in human’s 
ability to predict the future location of another 
vehicle is the vehicle’s perceived intentions. 
Intention could be known a priori, such as 
knowing a vehicle is driving to the bank, and 
this knowledge could be used to determine the 
most probable path it will take to achieve that 
goal. More commonly, intentions could be 
derived from perception, such an indication that 
a vehicle is making a left turn based upon the 
vehicle moving into a turn lane or having its 
blinker on. As more information becomes 
available from the vehicle, this information can 
be used to either strengthen or weaken the 
perceived intentions, which in turn would 
increase/decrease the probabilities associated 
with the possible actions the vehicle may take in 
the future. 

 
o Class of the Vehicle: Object classification 

provides information about the class of object 
that is being perceived. If we limit our scope to 
vehicles on the road, the class of vehicle could 
indicate the course the vehicle is expected to 
travel, or how it is expected to behave in certain 
situations. For example, if the vehicle was 
identified as being a city bus, we would most 
likely expect it to stop at a bus stop signs, and 
traverse primarily in the right most lane. 
Similarly, if the vehicle was identified as an 
emergency vehicle, we would expect it to travel 
at high rates of speed and not to necessarily stop 
at stop signs and traffic lights. If the vehicle was 
a motorcycle, we may not eliminate the 
possibility of it navigating in between vehicles 
stopped in a traffic jam. 

 
o Vehicle’s Personality: When humans drive on-

road, they implicitly assign a personality to other 
vehicles. For example, if one sees another 

vehicle swerving in and out of traffic, and 
making unsafe lane maneuvers, one may assign a 
very aggressive personality to the vehicle. 
Conversely, if a vehicle is observed driving at or 
below the speed limit, keeping an extraordinarily 
far following distance, and rarely changing 
lanes, a low level of aggressiveness would be 
assigned. Based on these personality measures, 
one would expect different actions from that 
vehicle in the future. For example, an aggressive 
vehicle would be more prone to make lane 
changes, and as such, the probability assigned to 
the action of changing lanes would be greater for 
that type of vehicle.  

 
o Traffic Control Indicators / Rules of the 

Road: The ‘rules of the road’ play a large role in 
predicting how a vehicle is expected to behave 
under certain situations. For example, if a 
vehicle is approaching a stop sign, one would 
expect that the vehicle would gradually decrease 
its speed until it reaches the stop sign, comes to 
a complete stop, and then proceeds when the 
intersection is safe to traverse. However, based 
on the perceived personality of the vehicle, we 
may expect that the vehicle only slows down but 
does not come to a complete stop, or traverses 
the intersection before most would consider it 
safe.  

 
Efforts at NIST have focused on encoding the 
rules of the road using finite state machines 
leveraging a driver’s manual published by the 
Department of Transportation [7]. The document 
contains a comprehensive inventory of the 
behaviors involved in operating an automobile, 
along with the rated criticalities of these 
behaviors. The task descriptions are organized in 
terms of the situations giving rise to the 
behaviors; behaviors involved in controlling 
movement of the car without regard to specific 
situations; behaviors that must be performed 
continually or periodically while driving, rather 
then in response to a specific situation; and off-
road behaviors that are performed before 
driving, to maintain the car in sound operating 
condition, and in compliance with legal 
regulations. The document organizes the task 
descriptions into the following categories:  

 
o basic control (situation-independent driving 

behaviors to control the movement of the 
vehicle),  

o general driving (continuously-performed 
driving behaviors in response to any 
specific situation),  

o situational behaviors (behaviors that are 
required in response to specific situations),  



o pre-driving behaviors (behaviors taken 
prior to driving to assure safe and efficient 
operation),  

o maintenance (behaviors directed toward the 
vehicle to assure safe and efficient 
operation), and 

o legal responsibilities (legally imposed 
behaviors required to assure that drivers are 
responsible for the consequences of their 
actions).  

 
o Other Traffic: In the same way that our vehicle 

is predicting the future locations of other 
vehicles in its vicinity, other vehicles are doing 
the same with vehicles in their vicinity. Hence, 
our vehicle needs to not only be cognizant of 
vehicles that run a risk of interfering with our 
path, but also of vehicles that could interfere 
with those vehicles’ paths. This is analogous to a 
driver looking two cars ahead to try to predict 
what the car in front is going to do.  

 
Each vehicle on the road has a range of influence 
associated with it. The size of this range is a 
function of the vehicle’s velocity and the 
presence of intersections, among other factors. 
Any vehicle within a defined range could be 
impacted by actions in which that vehicle 
performs. This, in turn, could cause a ripple 
effect. As shown in figure 4, Vehicle B is in 
Vehicle A’s range of influence (denoted by the 
right-most oval). Similarly, Vehicle C is in 
Vehicle B’s range of influence (denoted by the 

left-most oval). Even though Vehicle C is not in 
Vehicle A’s range, Vehicle C still needs to be 
aware of Vehicle A’s motions since these 
motions will affect vehicle B which in turn will 
affect Vehicle C. 

 
Information about the position and motion of 
other traffic will affect the probability of other 
vehicles taking certain actions. Constraints, such 
as maintaining safe following distance, play a 
strong factor in how a vehicle reacts to certain 
situations. 

 
o Formations: Formations aren’t as important for 

on-road driving as they are for off-road driving, 
but they are still worth mentioning here. If it can 
be determined that a vehicle is driving as a part 
of a larger formation, the rules that govern the 
formation play a large role in dictating where 
that vehicle will be in the future. In the case of a 
battlefield environment, the military has devised 
a number of formations that vehicles in a group 
follow (e.g., bounding overwatch, V-formation, 
etc.). Similarly, in  Robocup competition, teams 
often implement different strategies that rely on 
different formations. Knowing the other team’s 
strategy can help to predict the players’ moves. 
Even in on-road environments, vehicles 
sometimes move in formations, such as funeral 
processions. Identifying a presidential 
procession can provide additional information 
about the future moves of the vehicles in the 
procession. For example, the vehicles in the 
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Figure 4: Vehicle’s Range of Influence 



procession will most likely change lanes when 
the vehicle in front of them changes lanes. Also, 
the vehicles will likely run red lights to keep up 
with the vehicle in front of them. 

 
The factors mentioned above provide much of the input 
necessary to determine and refine the probabilities that 
predict the future location of moving objects in the 
environment. This information is then fed to the planners 
in the form of space/time probability distribution (in the 
planner’s formalism of choice) to develop appropriate 
plans in the presence of moving objects. 

5 Planning in a Dynamic Environment 
As described in [2], the NIST planner utilizes 
incrementally created planning graphs to formulate 
potential vehicle trajectories. As part of the graph 
expansion/evaluation phase, a cost/benefit number must 
be assigned to each potential path segment. The dynamic 
obstacle layer of the planner’s world model system 
determines a portion of this cost/benefit number. 
 
If the trajectory of the moving object is known explicitly, 
the moving object prediction subsystem would produce a 
curve through space and time that represents the path of 
the moving object. The dynamic obstacle layer would 
then match this curve against the plan segment being 
evaluated to determine if an intersection exists.  This 
collision information is passed onto a value judgment 
module that examines the predicted nature of the obstacle 
(e.g. is it a soda can or a tank) and the intent of the 
commander (e.g. allowed to run over soda cans, but not 
tanks) in order to formulate the dynamic obstacle portion 
of the overall cost/benefit number for the plan segment.   
 
In the real world, moving obstacles seldom broadcast 
their exact trajectory ahead of time and predictive 
algorithms are necessary to compute a potential 
trajectory. This potential trajectory is made available to 
the dynamic obstacle layer in the form of equations that 
represent a volume in space/time for the expected 
location of the object. The volume is often a very tight 
circle at the current time (where the location of the 
vehicle is known with small uncertainty), and the size of 
the volume per unit time will gradually increase as one 
moves forward in time. This increase in volume 
represents the uncertainty in the location prediction. For 
a ground-based object, this bounding area may be viewed 
as a three-dimensional volume with axes of northing, 
easting, and time. The dynamic obstacle layer must now 
examine if a potential path segment lies inside the 
volume that represents any value over a pre-defined 
probability threshold. This information is sent to the 
value judgment module for use in the formulation of the 
final cost/benefit number. Through the use of this system, 
minimal collision or collision free paths may be planned. 

6 Preliminary Results 
We have implemented this approach in a simulated 
environment. In this environment, we place a vehicle on 
a roadway with various constraints on the environment, 
such as imposing speed limits and placing obstacles in 
the roadway. We then impose a cost on the vehicle based 
upon 1) the actions the vehicle takes (e.g., changing 
lanes, quickly accelerating, etc.), 2) not adhering to the 
driving rules of the road (e.g., not obeying the speed 
limit), and 3) coming within an unsafe stopping distance 
from other stationary or moving objects. We are initially 
basing the costs we associate with these actions on the 
criticality indexes that are documented in the DOT 
manual (ref.). 
 
Based on initial experiments, the following was learned: 

o We are able to predict out to 10 time steps in 
less than one second, without any substantial 
pruning of the graph. Once we implement some 
pruning techniques (most likely based on overall 
probability), we expect the time to be cut in half. 

o The possible future location of a vehicle is based 
upon a reachability graph which is derived from 
the ten discrete actions which are described in 
section ??. The reachability graph accounts for 
the constraints that are imposed by the roadway.  

o In our experiments, there are usually only two or 
three possible actions that a vehicle can legally 
take at any given point in the roadway at a given 
velocity profile. Assuming three velocity 
profiles, we are evaluating the cost and 
probability of 6-9 possible actions. 

o Because the cost of the performing an action 
drive the probabilities of which action a vehicle 
may take, determining the costs becomes very 
important. Initially, we are basing the costs on 
the criticality indexes from the DOT manual 
mentioned above. We will them be refining these 
costs based on learning techniques that are still 
in the early stages of investigation. 

o Although only applied to other vehicles in this 
paper, we firmly believe that a similar approach 
would be beneficial to determining the future 
location of other types of moving objects in the 
environment, such as pedestrians. Future efforts 
will explore this. 

o The validity of the predictions will be 
determined based upon a set of experiments in 
which we model an existing road driving 
situation in the simulation package and then 
compare the results we get from our prediction 
algorithm with what actually occurs in the real 
environment.  

 



7 Conclusion 
In this paper, we have presented an overview of a 
framework for representing and planning the future 
location of moving objects. In our research, we quickly 
found that there was a clear void in the literature in areas 
focusing on long-range prediction of moving objects in a 
constrained environment. As such, we have developed an 
approach to predict the future location of objects in a 
constrained environment. 
 
The approach explores applying probabilistic, logic-
based algorithms to predict the future location of vehicles 
in an on-road environment. To apply this approach, the 
possible motions of the object are discretized and each 
action is assigned a probability based upon a series of 
‘constraints on motion’ and influencing factors that are 
described at a high-level in this paper. Although these 
factors may not be exhaustive, we believe that they 
provide a good representative sample of the types of 
factors that would need to be applied. 
 
The concepts in this approach are very new and a number 
of issues still need to be explored. We need to work out 
the details on how the influencing factors will contribute 
to the probabilities associated with the discretized 
actions. This paper discussed the contributions at a 
coarse level.  
 
We also need to ensure that this approach can be 
performed in a real-time environment. Although we have 
proposed pruning mechanisms to curtail the unbounded 
growth of the probability trees, we still need to ensure 
that the pruned tree can still be developed and processed 
in the time constraints imposed on the planners in 
different types of on-road environments.  
 
Before we use this approach, we need to decide which 
moving objects to apply it to. In the case of on-road 
driving, there are many moving objects in the 
environment, but not all of them need to have a detailed 
level of prediction associated with them. Only the 
vehicles that have the highest probability to affecting our 
path would be of concern. For other vehicles, we may 
employ a less accurate and a less computationally 
expensive approach. 
 
Although this approach was only applied to on-road 
driving in this paper, it would be equally applicable to 
any other type of moving object provided that the actions 
of the object can be discretized. Future work will apply 
this technique to pedestrians and military vehicles. 
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