
Design and Validation of a Whegs Robot in
USARSim

B.K. Taylor
Case Western Reserve Univ.

Cleveland, OH, USA
brian.k.taylor@case.edu

S. Balakirsky, E. Messina
NIST

Gaithersburg, MD, USA
stephen.balakirsky@nist.gov,

elena.messina@nist.gov

R.D. Quinn
Case Western Reserve Univ.

Cleveland, OH, USA
roger.quinn@case.edu

Abstract— Simulation of robots and other vehicles in a virtual
domain has multiple benefits. End users can employ the simulation
as a training tool to increase their familiarity and skill with the
vehicle without risking damage to the robot, potential bystanders, or
the surrounding environment. Simulation allows researchers and
developers to benchmark the robot’s performance in a range of
scenarios without needing to physically have the robot and or
necessary environment(s) present. Beyond benchmarking current
designs, researchers and developers can use the information gathered
in the simulation to guide and generate new design concepts.
USARSim (Urban Search and Rescue Simulation) is a high fidelity
simulation tool that is being used to accomplish these goals within
the realm of search and rescue. One particular family of robots that
can benefit from simulation in the USARSim environment is the
Whegs™* series of robots developed in the Biologically Inspired
Robotics Laboratory at Case Western Reserve University. Whegs
robots are highly mobile ground vehicles that use abstracted
biological principles to achieve a robust level of terrestrial
locomotion. This paper describes a Whegs robot model that was
designed and added to USARSim’s current array of robots. The
model was configured to exhibit the same kind of behavioral
characteristics found in the real Whegs vehicles. Once these traits
were implemented, a preliminary validation study was performed to
ensure that the robot interacted with its environment in the same way
that the real-life robot would.

Keywords: USARSim, Biologically Inspired Robotics, Whegs,
Urban Search and Rescue, Simulation

I. INTRODUCTION

A. Background on USARSim

Urban Search and Rescue Simulation (USARSim) is a high
fidelity simulation tool that can be used to simulate robots in
various environments [11]. USARSim is built on top of Epic
Games’ Unreal Tournament 2004* (UT2004) physics engine
known as Unreal Engine 2.0. The Karma Physics Engine*
[9] is utilized to simulate physics within the game. Unreal
Script, the object oriented programming language for UT2004,

*Commercial equipment and materials are identified in this paper in order to
adequately specify certain procedures. Such identification does not imply
recommendation or endorsement by NIST, nor does it imply that the materials
or equipment identified are necessarily the best available for the purpose.

is used to give robots functionality and to define how the
robot will interact with its environment. Unreal Editor
(UnrealEd) is used to create virtual worlds, or maps. It is
also used to create 3D solid models (static meshes) that can be
used to either construct a robot, or to construct obstacles and
objects that are placed within a particular map.

The idea behind USARSim is as follows. A virtual robot is
built by creating static meshes to represent its individual parts.
The parts are connected to each other through a configuration
file that specifies where and how parts are connected to each
other (motors, hinges, ball-and-socket joints, etc). In
addition to the robot, a map is created with obstacles that must
be overcome, and objects and/or victims that need to be found.
The physics engine handles the dynamics of how the robot
should interact with the map that it is placed in. By
adjusting parameters known as Karma Parameters [9,10], the
performance of the robot in simulation can be changed. For
example, changing the inertia tensor of a robot will affect its
ability to rotate about particular body axes within a given
world. For robots and maps, end users can select from the
options available in a current release of USARSim [11], or
design their own. Controller software is used to perform a
range of tasks such as issuing simple drive commands,
implementing autonomous features into the vehicle, and
running multiple vehicles in a given environment [11,12].
This kind of setup allows an individual to build and simulate
robots relatively quickly and inexpensively from both
computational and monetary standpoints. USARSim
currently has applications in end-user training for Urban
Search and Rescue robots, and in the RoboCup Simulation
League [2,3].

A disadvantage of USARSim is that the Karma Physics
Engine is proprietary. This means that the exact mechanics
behind how the engine uses the Karma Parameters cannot be
obtained. Testing has been done to gain a better, more
quantitative understanding of how the Karma Parameters
affect the simulation, and how the parameters map to
real-world quantities. For example, conversion factors
between the simulation’s length scales (Unreal Units and
Karma Units) and real length scales (meters) have
successfully been established and implemented in more recent
releases of the software. However, there are still parameters

105

where this kind of understanding has not been reached.
Ultimately, this means that iterative testing and comparisons
must be done on a given real and virtual robot to determine
the set of Karma Parameters that yields the most realistic
performance of the virtual vehicle.

B. Background on Whegs

Whegs robots are highly mobile unmanned ground vehicles
that were developed in the Biologically Inspired Robotics
Laboratory at Case Western Reserve University. Their
locomotion is based on abstracted biological principles
observed in cockroach locomotion [1]. Unlike RHex which
is a biologically inspired robot that predates Whegs [7],
Whegs robots employ an appendage called a wheel-leg, which
is made up of a hub with spokes equally spaced about the
hub’s central axis (Fig. 1).

Fig. 1. A three spoke wheel-leg appendage

Most wheel-legs have three spokes. Rotating the

wheel-legs about their central axes at a constant speed allows
a given Whegs robot to move in the same way that a wheeled
vehicle would be driven. In addition, the spokes allow the
robot to obtain discontinuous footholds on irregular terrain,
similar to legs [7]. Furthermore, the spokes also allow the
wheel-leg to reach footholds that are taller than the wheel-leg
radius. These wheel-leg features allow Whegs robots to be
propelled in a similar manner to wheeled vehicles. They
also enable Whegs robots to climb over and negotiate terrain
that may be impassable to wheeled vehicles (Fig. 2).

Fig. 2. (a) A wheel leg is able to obtain footholds on obstacles that are taller

than the wheel-leg radius. (b) A wheel is unable to reach footholds of equal
height

Cockroaches have six legs and typically walk in a tripod gait,

meaning that the front and rear legs on one side move in phase
with the middle leg on the opposite side. Contralateral pairs
of legs move out of phase with each other (e.g. when the front
left leg is in swing, the front right leg is in stance) [5]. When
the animal comes to a large barrier, it moves its contralateral
legs into phase to aid in surmounting the obstacle [6].
Similarly, Whegs robots employ six wheel-legs with
contralateral pairs being placed out of phase such that the
vehicle walks in a nominal tripod gait. Each axle features a
compliant mechanism that allows the robot to passively bring
its wheel-leg pairs into phase. This feature aids the robot in
surmounting obstacles, and allows it to passively adapt its gait

to changing and irregular terrain (Fig. 3).

Fig. 3 Compliant mechanisms in the axles allow wheel-leg spokes to come

into phase which aids in climbing obstacles

Also, cockroaches have a body flexion joint. They use the
joint pitch the front of their bodies down to avoid high
centering and to allow their front legs to reach the substrate
[6]. More recent Whegs robots have been outfitted with body
flexion joints or similar reasons. In addition, the joint also
allows the vehicle to pitch its body upward to get a foothold
on an obstacle during a climb (Fig. 4) [8].

Fig. 4. Whegs robot with a body flexion joint surmounting a larger step than

the robot’s body height

In addition to Whegs robots, a series called Mini-Whegs™*
has also been developed (Fig. 5).

Fig. 5. Mini-Whegs and its relative size as compared to a cockroach

These are intended to be smaller, more compact versions of

Whegs robots. They are on the order of 0.09 m long (9 cm),
and have a top speed of about 10 bodylengths/second (0.9
m/s). Because of their small size, Mini-Whegs robots only
possess four wheel-legs instead of six [4]. The four
wheel-legs move in a diagonal gait. While some work has
been done with implementing compliance into the axles of
these robots, for simplicity, Mini-Whegs typically lack both
torsional compliance and body flexion joints [4].

While different types of Whegs robots have been
constructed and tested, there is formalized method for
developers to gauge a robot’s performance limits or test the
viability of design ideas before construction begins. Also,
the only current way to learn how to operate a Whegs robot is
to drive a real robot. A Whegs simulation would allow robot
designers to test their ideas before construction begins,
allowing them to make design changes that will improve
performance. The simulation can also be used by developers
to test robots in environments that are not readily available, or
potentially damaging. This would allow designers to gauge
a given robot’s performance limits. For robots in
development, performance enhancing changes could then be

106

implemented. In addition to design work, a Whegs robot
simulation would allow end users to become skilled in
operating Whegs vehicles in numerous environment(s)
without having the robot or environment(s) physically present.
This can reduce the risk of damaging the robot. If a
simulated robot is incapacitated, the simulation can be
restarted rather than having to repair or rebuild the vehicle.

In this paper, a virtual Whegs robot was created and given
the same behavioral characteristics as a real robot. The
virtual robot’s performance was then benchmarked against the
real robot. Section II describes the approach and methods
used to impart functionality to the virtual robot and
benchmark its performance. Section III describes the results
obtained during testing. It also describes some of the
problems that were encountered during testing and how these
issues were resolved. The final section summarizes the work
presented in this study and discusses future work.

II. METHODS

To perform this study, a generic Whegs robot model was
first created in USARSim by adding a “Whegs” class. This
class and its base classes were given functionality to enable
the virtual robot with the same behavioral characteristics that
are found in a real Whegs vehicle. After the virtual robot
had the necessary behaviors, it was run through several tests
to gain an understanding of how particular Karma Parameters
affected its performance. Once the effects of these
parameters were known, the virtual and real robots were
placed in test scenarios with the same conditions. The
results of these tests were compared and used to make
changes to the virtual robot’s Karma Parameters to improve
its performance.

For the purposes of this study, the virtual vehicle was
modeled after a Mini-Whegs robot with torsional compliance.
This was done in an effort to lay the ground work for creating
any given Whegs vehicle while still maintaining a degree of
simplicity during modeling and testing. As stated above,
Mini-Whegs robots typically lack a body flexion joint and
only use four wheel-legs. These features make Mini-Whegs
robots easier to simulate because there are fewer features to
control and less wheel-legs to monitor during testing.
Torsional compliance, while not present on all Mini-Whegs
vehicles, was not a feature present in USARSim. Because
this feature is found on many of the Whegs vehicles, it was
felt that successfully modeling and implementing it would aid
in laying the fundamental groundwork necessary for building
more specific and accurate Mini-Whegs and full size Whegs
models.

A. Developing a Whegs™ Robot Model

Modeling a Whegs vehicle can be broken down into two
main steps: creating the appropriate static meshes, and writing
and modifying classes to give the virtual vehicle the same
types of behavioral characteristics as the real vehicle. The
static meshes were created using UnrealEd. For the purposes
of simplicity, the chassis was modeled as a rectangular block.

The wheel-legs were modeled as cylinders (the hub of the
wheel-leg) with three rectangular blocks (the spokes of the
wheel-leg) attached to them and placed 120o apart (Fig. 6).

Fig. 6. Wheel-Leg appendage created in UnrealEd

Two separate wheel-leg meshes were made. One

resembled a “Y” shape (Fig. 6) while the other was an
inverted “Y”. The two meshes were used as contralateral leg
pairs to achieve proper wheel-leg phasing.

Incorporating the appropriate behavioral characteristics into
the robot involved adding new functionality into USARSim.
As mentioned above, there were no native USARSim features
that allowed for passive torsional compliance. To solve this
problem, a new class called “KDSpringy” was created. This
class tells USARSim to make a hinge joint (KHinge) whose
hinge type is set to a spring (KHingeType=Springy).
Physically, this is like connecting two objects together with a
torsional spring that is able to have stiffness and damping
about a particular axis. The spring attempts to maintain an
input angle (KDesiredAngle) between two objects placed in
an Unreal map (Actors). In USARSim, this corresponds to
maintaining a desired angle between the current part and its
parent. Once the KDSpringy class was created and the
appropriate base classes were modified, it was implemented in
the following way.

Chassis

Wheel-LegJoint Spacer Plate

KDSpringyKCarWheelJoint

Chassis

Wheel-LegJoint Spacer Plate

KDSpringyKCarWheelJoint

Fig. 7. Illustration of how passive torsional compliance is implemented

A static mesh that is used as a spacer plate was created. As

can be seen in Fig. 7, the chassis was connected to the spacer
plate via a KCarWheelJoint. A KCarWheelJoint is a joint
that has a spin axis that is driven by a motor, and a steering
axis that is driven by a controlled motor that attempts to
achieve a specified orientation, similar to a servo. The
spacer plate was connected to the wheel-leg via KDSpringy.
This setup effectively made the spacer plate the actual
“wheel” that drove the vehicle. However, because the
wheel-leg’s parent is the spacer plate, the two parts rotate
together. Differences in their rotational speeds come from
the reaction torques and forces that are experienced by the
wheel-leg from the terrain, and from the parameter used to set

107

the stiffness of KDSpringy. A large stiffness allows the
spring to withstand large reaction torques before deflecting,
thus allowing the wheel-leg and spacer plate to move at more
closely matching speeds (this corresponds to the wheel-leg
functioning like a normal wheel). A lower stiffness means
that the spring is easier to displace and must be deflected to
the point where it is able to exert a large enough torque to spin
the wheel-leg. This enables the spacer plate to wind up the
spring and build torque when a particular wheel-leg is unable
to move, which allows the contralateral wheel-leg to come
into phase with it. This is precisely how Whegs robots
behave in reality when surmounting obstacles.

A disadvantage to this method is that UT2004 appears to
only use tire properties for a tire (a KTire in UT2004) that is
connected to a KCarWheelJoint. KTire properties allow the
user to control the following properties of the tire: Rolling
Friction, Lateral Friction, Rolling Slip, Lateral Slip, Minimum
Slip, Slip Rate, Tire Softness, Tire Restitution, and Tire
Adhesion. Even though the wheel-legs are defined as KTires,
since they are connected via KDSpringy, it appears that they
only have what are known as KActor properties. KActor
properties allow the user to control the following parameters:
KFriction and KRestitution. As can be seen, a KTire is the
ideal case because more control is allowed over how the tire
will interact with the environment. This problem can be
rectified by altering the static mesh so that individual
wheel-leg spokes are added to the hub as tires. However,
this solution requires a larger number of parts and more class
functionality to make the robot function properly. Also, this
approach gave adverse preliminarily results, which are
discussed in the next section. Because real Mini-Whegs
robots do not use formal tires, the preliminary validation was
performed with the wheel-legs as KActors. It was felt that
this approach would provide a good first approximation of the
appropriate set of Karma Parameters that would yield realistic
virtual performance while narrowing the search space at the
same time.

B) Virtual Test Maps and Validation Testing

After the virtual robot was developed, two maps were
created to test the vehicle’s performance. One of these maps
was a large empty room to test the vehicle in walking and
running while minimizing its chances of hitting a wall. The
other map included basic obstacles such as: ramps, standard
2x4 boards (3.81 cm by 8.89 cm actual cross sectional
dimensions) and textbooks for climbing, a straightaway for
walking/running testing, and stairs and large drops for falling
and impact testing. These worlds were used to compare the
virtual robot’s performance to that of the real vehicle. In this
study, attention was focused on walking/running and basic
climbing over textbooks. The following metrics were used
to evaluate the virtual robot’s performance:
• Top speed of about 0.9 m/s without significant

end-over-end rotation (~25 rad/s wheel-leg drive speed)
• End-over-end rotation when attempting to climb up a

wall at higher wheel-leg drive speeds

• The ability to surmount obstacles (textbooks in this
study) that are 0.04 m tall in head on and oblique angle
(30o) approaches (Fig. 8)

O
bs

ta
cl

e 30o

O
bs

ta
cl

e 30o

Fig. 8. Top view of head on and oblique approaches

Fig. 9 provides an illustration of how robots are currently

validated

Karma Physics Engine

Virtual Robot

Karma Parameters

Real Robot Performance

Virtual PerformanceKarma Physics Engine

Virtual Robot

Karma Parameters

Real Robot Performance

Virtual Performance

Fig. 9. Illustration of how robots are currently validated

As stated above, the Karma Physics Engine is proprietary,

which means that the exact way in which the engine uses the
Karma Parameters to affect the simulation cannot be directly
obtained. In addition, the engine uses its own unit system
(e.g. lengths are in Unreal Units or Karma Units depending on
the context). The mapping between the Unreal Unit System
and real world quantities is known for some parameters (e.g.
length and time). However, conversions for other
parameters (e.g. force and torque) are still under investigation.
Due to the proprietary nature of the engine, to perform a
validation, a robot is run through the engine with an initial set
of Karma Parameters, as illustrated in Fig. 9. This yields the
robot’s virtual performance, which is then compared with real
robot performance through the use of video data and any other
relevant performance metrics for the robot in question. The
information learned from the comparison is used to modify
the Karma Parameters. After parameter modification, the
virtual robot is run through the engine again for comparison
with the real robot. This cycle is repeated until the virtual
performance meets a desired level. For actual validation
testing, this method was combined with the following
procedure:

1) Baseline Run: First, the virtual robot was run through a
range of drive speeds with an initial set of Karma Parameters.
The goal of this run was to obtain performance data for an
initial set of parameters for the purposes of comparison. In
the open room, vehicles were run through the following wheel
leg drive speeds: {0, 2, 10, 15, 20, 25, 30} rad/s.

2) Individual Karma Parameter Variation: After the
baseline performance test, individual Karma Parameters were
varied through a range of values while leaving all other
parameters at their initial settings. For each value, the virtual
robot was run through the same set of drive speeds used in the
baseline run. The purpose of these runs was to obtain data
that illustrated how each parameter affected the vehicle’s
performance.

108

3) Physical Reasoning: At this stage, physical reasoning
was used to determine what conditions were required for the
virtual robot to behave in a particular way in order to explain
its performance and the effects of individual Karma
Parameters.

4) Karma Parameter Search: At this point, with an
understanding of the effects of different Karma Parameters,
the method illustrated in Fig. 9 was used to improve the
virtual robot’s performance.

The virtual robot was compared to physical observation of a
real Mini-Whegs robot. All simulation trials were recorded
using FRAPS* [13] video capturing software. In addition,
the vehicle’s instantaneous velocity, position in the world,
orientation with respect to the world coordinate frame, time,
and speed change commands were logged to various files.
The logged parameters were used to plot the vehicle’s speed
and velocity components against time. Velocities were
reported in both world (fixed) and vehicle (moving)
coordinates to help quantify the robot’s behaviors. Steering
was not used in any of the tests.

III. RESULTS

A. Dimensions Used in the Simulation

Initial testing (phases 1-3 of the above described procedure),
was done with a slightly larger vehicle. Phase 4 was
performed with a smaller vehicle (Table 1).

 Initial Dimension Final Dimension
Body Length (m) 0.1143 0.09
 Width (m) 0.09144 0.068
 Height (m) 0.01905 0.02
Wheel-Legs Diameter (m) 0.096 0.0762

Table 1. Initial and final dimensions used in the simulation

The latter dimensions were chosen because they more
accurately reflect the size and performance basis of current
Mini-Whegs robots. For example, the 10 bodylength/second
speed listed above corresponds to a 0.09 m bodylength, so for
this performance metric, the smaller vehicle size is more
appropriate. The study could have been performed with the
larger size vehicle since a real vehicle could be created that
has larger dimensions. The dimensional change is only used
here for convenience in comparing virtual and real
performance.

B. Functionality for Maintaining Proper Wheel-Leg Phasing

During testing, it became apparent that new functionality
would need to be added to the “Whegs” class to ensure that
the virtual robot maintained proper wheel-leg phasing.
Initially, when the vehicle spawned into a world, it would
spawn properly with its wheel-legs out of phase, but then
“fall” due to its mass such that the wheel-legs were in phase
(Fig. 10).

Fig. 10. Wheel-Legs are unable to maintain proper phasing without extra

class functionality

Occasionally, all of the wheel-legs would stay out of phase

upon spawning such that the robot could be tested. However,
if the robot was not stopped with the correct orientation and
speed, the wheel-legs would “fall” out of phase. This
behavior appeared to be independent of the torsional stiffness
that was provided, and even occurred when the wheel-legs
were connected directly to the chassis via a KCarWheelJoint.
This was problematic because real Whegs robots maintain
proper phasing even when stopped. It was determined that
this problem was due to the nature of the KCarWheelJoint
class. This class rotates a given Actor about a spin axis by
applying a torque to overcome external torques. If the motor
applies no torque, then the actor will be rotated about the
motor’s spin axis by all other external torques. Physically, a
KCarWheelJoint is analogous to having an axle that rotates a
wheel mounted in a perfectly frictionless bearing and motor.
Real Whegs robots have a drive train that connects each wheel
leg to a single drive motor and torsional springs that are
pretensioned which causes them to maintain proper phasing
even when the motor is not running. To fix this problem, a
member function was added to the “Whegs” class that forces
the KCarWheelJoint to achieve zero angular velocity by using
a preset torque value when the robot is stationary (drive speed
= 0 rad/s). This solution appeared to solve the problem.

C. Wheel-Legs Behaving as KActors Vs. Tires

Initially, the wheel-legs were implemented as KTires.
However, when attempts were made to run the robot, the
wheel-legs would rotate but not cause the robot to translate,
resulting in the wheel-legs spinning in place and the robot
itself not making any forward progress. It was determined
that because the wheel-legs were not connected to
KCarWheelJoints, KActor properties were used instead of
KTire properties. The default KActor friction value is zero,
which led to the wheel-legs perfectly sliding on a given
substrate. An attempt to rectify this problem was made by
implementing the solution proposed above: making each
spoke a KTire that is connected to the central hub via a
KCarWheelJoint. Because of the problems experienced in
maintaining proper wheel-leg phasing mentioned in the
section above, a function was added to the “Whegs” class that
forces the spokes to maintain their initial orientation relative
to their parent hub. This solution resulted in the wheel-leg
spokes drifting into altered positions over time, particularly at
higher drive speeds. An attempt to remedy this problem was
made by increasing the torque used to maintain the spoke
orientation. This resulted in the vehicle going through
seemingly nonphysical end-over-end rotation at higher wheel

109

leg drive speeds (about 15 rad/s and higher) while still
translating forward, and did not appear to remove the drifting
problem. It was found that the only apparent way to
influence the problem was to increase the vehicle’s inertia
tensor or angular velocity resistance (KAngularDamping)
Karma Parameters. These parameters only seemed to slow
down the rotation. They also had to be raised to levels much
higher than any other vehicle in the USARSim, including
vehicles that are more massive such as the Hummer.

The nonphysical nature of this behavior and its solution
prompted performing the validation with the wheel-legs
behaving as KActors instead of KTires. This approach led to
behavior that appeared to be more physically relevant when
compared to the real vehicle. Also, as stated above, because
this approach offers a narrower parameter search and because
the wheel-legs on Mini-Whegs vehicles are not formal tires, it
was felt that using the wheel-legs as KActors would provide a
reasonable approximation that would allow for relatively
simple but effective preliminary validation.

D. Effects of Individual Karma Parameters

The robot’s speed and velocity components were plotted in
both world and vehicle coordinates. These plots were used
as a tool to help examine the effects of individual Karma
Parameters on the robot’s performance. Example plots are
shown in Fig. 11.

Fig. 11. Velocity in vehicle coordinates (top) and world coordinates (bottom).
In vehicle coordinates, x is forward, y is starboard, and z is out the bottom of
the vehicle. The absolute value of the velocity components is plotted here

for comparison with the speed.

The vertical black lines are the times at which speed change
commands were issued. The vehicle’s initial speed (which

occurs around 15 s in the plots shown above) is due to it
spawning into the world. By looking at the body-fixed
coordinate plot, it can be seen that the X-component of
velocity in the vehicle coordinates is nearly identical to the
speed, meaning that the vehicle is making forward progress
and not translating to its left or right. In addition, there is a
point around 65 s where the X-velocity and the speed both
drop while the Z-velocity spikes. Upon comparison with the
video data, it was observed that this was the location at which
the robot flipped over, or end-over-ended. This kind of
feature was present in all cases where the robot flipped over.
The world coordinate plot illustrates the vehicle’s tendency to
move in a particular direction within the world. In this plot,
the robot is initially heading mostly in the Y direction.
However, after it flips over at around 65 s, it also begins to
have motion in the X-direction as well. In addition to these
kinds of observations, the data in the plots can be used to look
at other phenomena such as the average speed of the vehicle
for a given time interval and the variability of the data about
the average.

The following Karma Parameters were singly modified
while leaving all other parameters at their initial settings to
determine their effects on the performance of the vehicle:
1) ChassisMass: This is the mass of the chassis. With the
initial parameters that were set, it was found that altering this
parameter did not appear to have a large impact on the overall
performance of the vehicle in terms of being able to reach a
top speed, or end-over-ending.
2) KMass: This is the mass of the Spacer Plates. This mass
was varied to determine the effects of raising and lowering
mass that is not coincident with the vehicle’s center of mass.
Initally, the mass of the chassis was very small, both
compared to the spacerplates, and in an absolute sense, so this
test also revealed how the vehicle’s overall mass affected
performance. When these masses were lowered to a value of
0.002 in the Unreal Unit System, the vehicle immediately
began to end over end at higher drive speeds (10 rad/s and
over). At mass values of 2 in the Unreal Unit System, the
vehicle appeared to perform in a relatively predictable manner
with only occasional end-over-end instances occurring at
drive speeds between 25 rad/s and 30 rad/s.
3) KFriction: This is the friction present in the wheel legs. It
was found that, as one would expect, higher values of friction
(10 in this study) resulted in the wheel-legs not slipping on the
substrate as much during walking. Visible slippage occurred
with lower friction values (0.5 in the Unreal Unit System).
Both of these friction values yielded roughly the same vehicle
average speeds for a given drive speed. However, the
variation about the average was much higher for the larger
friction value. This was attributed to stronger braking forces
in the step cycle. The wheel-legs provide both propulsive
and braking forces, where braking occurs in the beginning of
the stance phase, and propulsion occurs towards the end.
Because the friction value is higher, both the brake and
propulsion forces are increased. Therefore, when a wheel
leg touches down, it is able to provide better traction to propel

x
z

y

X

Y
Z

110

the vehicle, but also has a greater tendency to retard its motion
initially.
4) KRestitution: This parameter is similar in concept to the
coefficient of restitution used in collision analysis. A value
of 1 corresponds to an elastic collision between two objects.
Values less than one result in increasingly inelastic collisions.
At a KRestitution value of 1 in the Unreal Unit System, as the
vehicle’s drive speed was increased, it appeared to have
increasingly continuous elastic collisions with the ground
while its forward speed appeared to reach a relatively constant
value that became independent of the input drive speed. As
a result, the vehicle’s average speed at higher drive speeds
seems to flat-line when compared to other tests. The average
speed also had a great deal of variability for each drive speed.
5) Torsional Stiffness: The torsional stiffness of the rear
wheel-legs was set to 250 in the Unreal Unit system for all
runs. This value appeared to make the back wheel-legs
rotate with the spacer plates under all circumstances. The
front torsional stiffness of the front wheel-legs was adjusted to
see how adjusting the stiffness affected their motion. As
expected, higher values of stiffness led the wheel-legs to
behave more like conventional wheels, where low stiffness
values allowed the spring to “wind up” before rotating the
wheel-legs. Excessively low values of stiffness cause
wheel-legs to fall out of phase when the vehicle is spawned.
At these low values, when a drive command was issued, the
wheel-legs would not rotate at first. However, after the
springs were deflected sufficiently, they would rotate forward
to release the tension as one would expect.

E. Karma Parameter Search

After the effects of the above mentioned parameters were
understood from the single parameter variations, testing was
done to move the virtual robot towards matching real
performance. Table 2 indicates the parameters that were
changed.

 Karma Parameter (Unreal Unit System)
Initial
Value

Current
Value

Chassi
s ChassisMass 0.00342 0.75
 MaxTorque 32000 50
 MotorTorque 2400 50
 KCOMOffset (X, Y, Z) 0 0.04464
 KCOMOffset (X, Y, Z) 0 0
 KCOMOffset (X, Y, Z) 0 0
Wheel
Legs Wheel-Leg Kfriction 1 0.75
 Wheel-Leg KRestitution 0 0.1
 Wheel-Leg Kmass 0.0008 0.08
Spacer
Plate Spacer Plate Kmass 1 0

 Spacer Plate KInertiaTensor(0) ~ Ixx 0.0035 0

 Spacer Plate KInertiaTensor(3) ~ Iyy 0.0066 0

 Spacer Plate KInertiaTensor(5) ~ Izz 0.0035 0
Table 2. Initial and Current Karma Parameter Values

Column 1 is a listing of the initial values of the Karma

Parameters. Column 2 represents the current values that they
have been adjusted to. As can be seen from Table 2, the
following general changes were made. First, because spacer
plates are not found on the real robot, their mass and inertia
values were set to zero so that they would have no effect on
the dynamic characteristics of the vehicle. Based on the
results obtained from varying individual Karma Parameters,
lowering the mass of the Spacer Plates caused severe
end-over-ending of the vehicle. This prompted raising the
ChassisMass property of the vehicle to 1 in the Unreal Unit
System, which drastically reduced this problem. Based on
testing of an actual Whegs robot on tile, it was observed that
the wheel-legs slip during walking at higher speeds, similar to
what can occur with lower values of the KFriction parameter.
The vehicle also appeared to have a degree of elasticity with
the ground, similar to when the KRestitution values were
raised. Accordingly, the KFriction and KRestitution values
were lowered and raised respectively. The center of mass of
the vehicle (KCOMOffset) was not varied in the single
parameter variation study. However, after examining a
particular Mini-Whegs vehicle, it was found that many of the
components such as the steering servo, steering mechanism,
and battery are located towards the front of the vehicle. Also,
the virtual vehicle still went into end-over-ending behavior
more than was desired. Therefore, the KCOMOffset value
was adjusted to bring the center of mass of the vehicle
forward. This reduced the end-over-ending behavior slightly,
but did not completely remove the problem. While the
center of mass is not typically in the forward section of a
Mini-Whegs vehicle, the change was made here to judge its
impact on the performance. In addition to these parameters,
the KCarWheelJoint motor torque and wheel-leg masses were
also changed. The motor torque was ultimately lowered
from its initial value of 2400 to 50 in the Unreal Unit System
to give the vehicle a more realistic level of drive torque (for
comparison, the Hummer uses a motor torque value of 2400).
The wheel-leg masses were raised from 0.0008 to 0.08
(Unreal Unit System).

F. Performance Results

The parameter changes that were made appeared to move
the virtual vehicle towards matching the performance of the
real vehicle. With the final set of parameters given above,
the robot was able to walk at near top speeds with occasional
end-over-ending. It was also only able to end-over-end at
walls with higher wheel-leg drive speeds (10 rad/s and up),
which is normal Mini-Whegs behavior. In climbing tests,
the robot was able to successfully surmount a 0.04 m obstacle
with head-on and 30o approaches.

IV. DISCUSSION

Basic functionality modifications of existing USARSim
base classes along with functionality implemented in the
newly defined “Whegs” class appears to successfully replicate

111

the general behaviors of torsional compliance and wheel-leg
phasing found in Whegs robots. Karma Parameter
modification based on physical reasoning and observation of
real robots through videos and direct interaction appeared to
result in improved, more realistic performance of the virtual
robot in walking, running and basic climbing. In addition,
the procedure used in the parameter modification yielded
insight into how each individual parameter contributes to the
overall performance of the vehicle. The procedure also
yielded the velocity history of the vehicle in world and body
coordinates, along with the speed of the vehicle, and the
average speed for a given time increment. This data was
used to determine if the vehicle is able to attain a particular
drive speed, the degree to which the vehicle collides with the
ground, and the vehicle’s tendency to end-over-end.

While the accomplishments listed above are significant first
steps towards creating an accurate representation of a Whegs
robot in USARSim, there are many steps that can be taken to
improve the virtual robot’s performance. With respect to the
real robot, high speed video capture methods can be used to
obtain data and establish performance metrics that can also be
measured within the simulation for more accurate
benchmarking. In terms of the virtual robot, several steps
can be taken including: making the wheel-legs function as
actual tires, refining the behavioral characteristics of the
“Whegs” class and investigating the use of more detailed and
accurate static meshes. In terms of the Karma Parameters,
the above tests can be conducted in more depth and expanded
to better understand the effects of individual parameters on
robot performance. More testing can also be done to better
understand how individual Karma Parameters map to real
world quantities. Also, while individual Karma Parameters
can be varied, they are not necessarily independent, so the
coupling between Karma Parameters needs to be understood.
For the validation, a number of steps can be taken. Several
map substrate surfaces can be made from KActors and tuned
to match the performance of real surfaces such as concrete,
tile, wood, etc. The virtual robot can then be tested and
compared to the real robot on each of these surfaces, which
would yield a better representation of the appropriate Karma
Parameters for the robot. With more rigorous performance
metrics defined, numerical methods could be employed to
help determine how well the virtual robot matches the real
robot’s performance. All of these steps would lead to a more
reliable and repeatable simulation.

ACKNOWLEDGEMENTS

We would like to thank Ben Balaguer and Richard
Bachmann for their contributions in developing this work.

This research was performed under an appointment to the
U.S. Department of Homeland Security (DHS) Scholarship
and Fellowship Program, administrered by the Oak Ridge
Institute for Science and Education (ORISE) through an
interagency agreement between the U.S. Department of
Energy (DOE) and DHS. ORISE is managed by Oak Ridge
Associated Universities (ORAU) under DOE contract number

DE-AC05-06OR23100. The opinions expressed here do not
necessarily reflect the policies and views of DHS, DOE, or
ORAU/ORISE.

REFERENCES
[1] Allen, T.J, Quinn, R.D., Bachmann, R.J., and Ritzmann, R.E. (2003)
"Abstracted Biological Principles Applied with Reduced Actuation Improve
Mobility of Legged Vehicles," IEEE International Conference on Intelligent
Robots and Systems (IROS 2003), Las Vegas.
[2] Balakirsky S, Scrapper C, Carpin S and Lewis M. (2006) “USARSim:
Providing a Framework for Multi-Robot Performance Evaluation,”
Performance Metrics for Intelligent Systems, Gaithersburg MD, USA.,
August 21-23, 2006.
[3] Balakirsky S, Scrapper C, Carpin S and Lewis M. “USARSim: A
RoboCup Virtual Urban Search and Rescue Competition,”
Proceedings of SPIE, 2007.
[4] Morrey, J.M., Lambrecht, B., Horchler, A.D., Ritzmann, R.E., and Quinn,
R.D. (2003) "Highly Mobile and Robust Small Quadruped Robots", IEEE
International Conference on Intelligent Robots and Systems (IROS 2003), Las
Vegas.
[5] Quinn, R.D., Kingsley, D.A., Offi, J.T. and Ritzmann, R.E., (2002),
"Improved Mobility Through Abstracted Biological Principles," IEEE Int.
Conf. On Intelligent Robots and Systems (IROS'02), Lausanne, Switzerland.
[6] Quinn, R.D., Nelson, G.M., Ritzmann, R.E., Bachmann, R.J., Kingsley,
D.A., Offi, J.T. and Allen, T.J. (2003), "Parallel Complimentary Strategies
For Implementing Biological Principles Into Mobile Robots," Int. Journal of
Robotics Research, Vol. 22 (3) pp. 169-186.
[7] Saranli, U., Buehler, M. and Koditschek, D. (2001) “RHex A Simple
and Highly Mobile Hexapod Robot”. International Journal of Robotics
Research, 20(7): 616-631.
[8 Schroer, R.T., Boggess, M.J., Bachmann, R.J., Quinn, R.D., and Ritzmann,
R.E. (2004) "Comparing Cockroach and Whegs Robot Body Motions," IEEE
Conference on Robotics and Automation (ICRA '04), New Orleans.
[9] “Unreal Developer Network Karma Reference.” Unreal Developer
Network. (9/25/2007) http://wiki.beyondunreal.com/wiki/
[10“Unreal Wiki: The Unreal Engine Documentation Site.” (DATE HERE)
http://wiki.beyondunreal.com/wiki/
[11] USARSim (9/25/2007) http://sourceforge.net/projects/usarsim
[12] MOAST (9/25/2007) http://sourceforge.net/projects/moast
[13] FRAPS (9/25/2007) http://www.fraps.com/

112

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AharoniBold
 /Alba
 /AlbaMatter
 /AlbaSuper
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BabyKruffy
 /Batang
 /BatangChe
 /BitstreamVeraSans-Bold
 /BitstreamVeraSans-BoldOblique
 /BitstreamVeraSansMono-Bold
 /BitstreamVeraSansMono-BoldOb
 /BitstreamVeraSansMono-Oblique
 /BitstreamVeraSansMono-Roman
 /BitstreamVeraSans-Oblique
 /BitstreamVeraSans-Roman
 /BitstreamVeraSerif-Bold
 /BitstreamVeraSerif-Roman
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chick
 /ComicSansMS
 /ComicSansMS-Bold
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /David-Bold
 /David-Reg
 /DavidTransparent
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dotum
 /DotumChe
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /Fat
 /FixedMiriamTransparent
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GlooGun
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /Impact
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokewood
 /Kartika
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /Latha
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MS-PMincho
 /MVBoli
 /Narkisim
 /NSimSun
 /OCRATTRegular
 /OpenSymbol
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /Rod
 /RodTransparent
 /Shruti
 /SimHei
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TeraSpecial
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

