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Abstract— Simulation of robots and other vehicles in a virtual 
domain has multiple benefits.  End users can employ the simulation 
as a training tool to increase their familiarity and skill with the 
vehicle without risking damage to the robot, potential bystanders, or 
the surrounding environment.  Simulation allows researchers and 
developers to benchmark the robot’s performance in a range of 
scenarios without needing to physically have the robot and or 
necessary environment(s) present.  Beyond benchmarking current 
designs, researchers and developers can use the information gathered 
in the simulation to guide and generate new design concepts.  
USARSim (Urban Search and Rescue Simulation) is a high fidelity 
simulation tool that is being used to accomplish these goals within 
the realm of search and rescue.  One particular family of robots that 
can benefit from simulation in the USARSim environment is the 
Whegs™* series of robots developed in the Biologically Inspired 
Robotics Laboratory at Case Western Reserve University.  Whegs 
robots are highly mobile ground vehicles that use abstracted 
biological principles to achieve a robust level of terrestrial 
locomotion. This paper describes a Whegs robot model that was 
designed and added to USARSim’s current array of robots.  The 
model was configured to exhibit the same kind of behavioral 
characteristics found in the real Whegs vehicles.  Once these traits 
were implemented, a preliminary validation study was performed to 
ensure that the robot interacted with its environment in the same way 
that the real-life robot would. 
 
Keywords: USARSim, Biologically Inspired Robotics, Whegs, 
Urban Search and Rescue, Simulation 

I. INTRODUCTION 

A. Background on USARSim 

Urban Search and Rescue Simulation (USARSim) is a high 
fidelity simulation tool that can be used to simulate robots in 
various environments [11].  USARSim is built on top of Epic 
Games’ Unreal Tournament 2004* (UT2004) physics engine 
known as Unreal Engine 2.0.  The Karma Physics Engine* 
[9] is utilized to simulate physics within the game.  Unreal 
Script, the object oriented programming language for UT2004, 

                                                  
*Commercial equipment and materials are identified in this paper in order to 
adequately specify certain procedures. Such identification does not imply 
recommendation or endorsement by NIST, nor does it imply that the materials 
or equipment identified are necessarily the best available for the purpose. 

is used to give robots functionality and to define how the 
robot will interact with its environment.  Unreal Editor 
(UnrealEd) is used to create virtual worlds, or maps.  It is 
also used to create 3D solid models (static meshes) that can be 
used to either construct a robot, or to construct obstacles and 
objects that are placed within a particular map.   

The idea behind USARSim is as follows.  A virtual robot is 
built by creating static meshes to represent its individual parts. 
The parts are connected to each other through a configuration 
file that specifies where and how parts are connected to each 
other (motors, hinges, ball-and-socket joints, etc).  In 
addition to the robot, a map is created with obstacles that must 
be overcome, and objects and/or victims that need to be found.  
The physics engine handles the dynamics of how the robot 
should interact with the map that it is placed in.  By 
adjusting parameters known as Karma Parameters [9,10], the 
performance of the robot in simulation can be changed.  For 
example, changing the inertia tensor of a robot will affect its 
ability to rotate about particular body axes within a given 
world.  For robots and maps, end users can select from the 
options available in a current release of USARSim [11], or 
design their own.  Controller software is used to perform a 
range of tasks such as issuing simple drive commands, 
implementing autonomous features into the vehicle, and 
running multiple vehicles in a given environment [11,12]. 
This kind of setup allows an individual to build and simulate 
robots relatively quickly and inexpensively from both 
computational and monetary standpoints.  USARSim 
currently has applications in end-user training for Urban 
Search and Rescue robots, and in the RoboCup Simulation 
League [2,3].   

A disadvantage of USARSim is that the Karma Physics 
Engine is proprietary.  This means that the exact mechanics 
behind how the engine uses the Karma Parameters cannot be 
obtained.  Testing has been done to gain a better, more 
quantitative understanding of how the Karma Parameters 
affect the simulation, and how the parameters map to 
real-world quantities.  For example, conversion factors 
between the simulation’s length scales (Unreal Units and 
Karma Units) and real length scales (meters) have 
successfully been established and implemented in more recent 
releases of the software.  However, there are still parameters 
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where this kind of understanding has not been reached.  
Ultimately, this means that iterative testing and comparisons 
must be done on a given real and virtual robot to determine 
the set of Karma Parameters that yields the most realistic 
performance of the virtual vehicle. 

B. Background on Whegs 

Whegs robots are highly mobile unmanned ground vehicles 
that were developed in the Biologically Inspired Robotics 
Laboratory at Case Western Reserve University.  Their 
locomotion is based on abstracted biological principles 
observed in cockroach locomotion [1].  Unlike RHex which 
is a biologically inspired robot that predates Whegs [7], 
Whegs robots employ an appendage called a wheel-leg, which 
is made up of a hub with spokes equally spaced about the 
hub’s central axis (Fig. 1).  

  

 
Fig. 1. A three spoke wheel-leg appendage 

 
Most wheel-legs have three spokes.  Rotating the 

wheel-legs about their central axes at a constant speed allows 
a given Whegs robot to move in the same way that a wheeled 
vehicle would be driven.  In addition, the spokes allow the 
robot to obtain discontinuous footholds on irregular terrain, 
similar to legs [7].  Furthermore, the spokes also allow the 
wheel-leg to reach footholds that are taller than the wheel-leg 
radius.  These wheel-leg features allow Whegs robots to be 
propelled in a similar manner to wheeled vehicles.  They 
also enable Whegs robots to climb over and negotiate terrain 
that may be impassable to wheeled vehicles (Fig. 2). 

 

 
Fig. 2. (a) A wheel leg is able to obtain footholds on obstacles that are taller 

than the wheel-leg radius. (b) A wheel is unable to reach footholds of equal 
height 

 
Cockroaches have six legs and typically walk in a tripod gait, 

meaning that the front and rear legs on one side move in phase 
with the middle leg on the opposite side.  Contralateral pairs 
of legs move out of phase with each other (e.g. when the front 
left leg is in swing, the front right leg is in stance) [5].  When 
the animal comes to a large barrier, it moves its contralateral 
legs into phase to aid in surmounting the obstacle [6]. 
Similarly, Whegs robots employ six wheel-legs with 
contralateral pairs being placed out of phase such that the 
vehicle walks in a nominal tripod gait.  Each axle features a 
compliant mechanism that allows the robot to passively bring 
its wheel-leg pairs into phase.  This feature aids the robot in 
surmounting obstacles, and allows it to passively adapt its gait 

to changing and irregular terrain (Fig. 3). 
   

 
Fig. 3 Compliant mechanisms in the axles allow wheel-leg spokes to come 

into phase which aids in climbing obstacles 
 

Also, cockroaches have a body flexion joint.  They use the 
joint pitch the front of their bodies down to avoid high 
centering and to allow their front legs to reach the substrate 
[6]. More recent Whegs robots have been outfitted with body 
flexion joints or similar reasons.  In addition, the joint also 
allows the vehicle to pitch its body upward to get a foothold 
on an obstacle during a climb (Fig. 4) [8]. 

 

 
Fig. 4. Whegs robot with a body flexion joint surmounting a larger step than 

the robot’s body height 
 

In addition to Whegs robots, a series called Mini-Whegs™* 
has also been developed (Fig. 5). 

 

 
Fig. 5. Mini-Whegs and its relative size as compared to a cockroach 

 
These are intended to be smaller, more compact versions of 

Whegs robots.  They are on the order of 0.09 m long (9 cm), 
and have a top speed of about 10 bodylengths/second (0.9 
m/s).  Because of their small size, Mini-Whegs robots only 
possess four wheel-legs instead of six [4].  The four 
wheel-legs move in a diagonal gait.  While some work has 
been done with implementing compliance into the axles of 
these robots, for simplicity, Mini-Whegs typically lack both 
torsional compliance and body flexion joints [4]. 

While different types of Whegs robots have been 
constructed and tested, there is formalized method for 
developers to gauge a robot’s performance limits or test the 
viability of design ideas before construction begins.  Also, 
the only current way to learn how to operate a Whegs robot is 
to drive a real robot.  A Whegs simulation would allow robot 
designers to test their ideas before construction begins, 
allowing them to make design changes that will improve 
performance.  The simulation can also be used by developers 
to test robots in environments that are not readily available, or 
potentially damaging.  This would allow designers to gauge 
a given robot’s performance limits.  For robots in 
development, performance enhancing changes could then be 
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implemented.  In addition to design work, a Whegs robot 
simulation would allow end users to become skilled in 
operating Whegs vehicles in numerous environment(s) 
without having the robot or environment(s) physically present.  
This can reduce the risk of damaging the robot.  If a 
simulated robot is incapacitated, the simulation can be 
restarted rather than having to repair or rebuild the vehicle.   

In this paper, a virtual Whegs robot was created and given 
the same behavioral characteristics as a real robot.  The 
virtual robot’s performance was then benchmarked against the 
real robot.  Section II describes the approach and methods 
used to impart functionality to the virtual robot and 
benchmark its performance. Section III describes the results 
obtained during testing.  It also describes some of the 
problems that were encountered during testing and how these 
issues were resolved.  The final section summarizes the work 
presented in this study and discusses future work. 

II. METHODS 

To perform this study, a generic Whegs robot model was 
first created in USARSim by adding a “Whegs” class.  This 
class and its base classes were given functionality to enable 
the virtual robot with the same behavioral characteristics that 
are found in a real Whegs vehicle.  After the virtual robot 
had the necessary behaviors, it was run through several tests 
to gain an understanding of how particular Karma Parameters 
affected its performance.  Once the effects of these 
parameters were known, the virtual and real robots were 
placed in test scenarios with the same conditions.  The 
results of these tests were compared and used to make 
changes to the virtual robot’s Karma Parameters to improve 
its performance. 

For the purposes of this study, the virtual vehicle was 
modeled after a Mini-Whegs robot with torsional compliance.  
This was done in an effort to lay the ground work for creating 
any given Whegs vehicle while still maintaining a degree of 
simplicity during modeling and testing.  As stated above, 
Mini-Whegs robots typically lack a body flexion joint and 
only use four wheel-legs.  These features make Mini-Whegs 
robots easier to simulate because there are fewer features to 
control and less wheel-legs to monitor during testing.  
Torsional compliance, while not present on all Mini-Whegs 
vehicles, was not a feature present in USARSim.  Because 
this feature is found on many of the Whegs vehicles, it was 
felt that successfully modeling and implementing it would aid 
in laying the fundamental groundwork necessary for building 
more specific and accurate Mini-Whegs and full size Whegs 
models. 

A. Developing a Whegs™ Robot Model 

Modeling a Whegs vehicle can be broken down into two 
main steps: creating the appropriate static meshes, and writing 
and modifying classes to give the virtual vehicle the same 
types of behavioral characteristics as the real vehicle.  The 
static meshes were created using UnrealEd.  For the purposes 
of simplicity, the chassis was modeled as a rectangular block.  

The wheel-legs were modeled as cylinders (the hub of the 
wheel-leg) with three rectangular blocks (the spokes of the 
wheel-leg) attached to them and placed 120o apart (Fig. 6). 

 

 
Fig. 6. Wheel-Leg appendage created in UnrealEd 

 
Two separate wheel-leg meshes were made.  One 

resembled a “Y” shape (Fig. 6) while the other was an 
inverted “Y”.  The two meshes were used as contralateral leg 
pairs to achieve proper wheel-leg phasing. 

Incorporating the appropriate behavioral characteristics into 
the robot involved adding new functionality into USARSim.  
As mentioned above, there were no native USARSim features 
that allowed for passive torsional compliance.  To solve this 
problem, a new class called “KDSpringy” was created.  This 
class tells USARSim to make a hinge joint (KHinge) whose 
hinge type is set to a spring (KHingeType=Springy).  
Physically, this is like connecting two objects together with a 
torsional spring that is able to have stiffness and damping 
about a particular axis.  The spring attempts to maintain an 
input angle (KDesiredAngle) between two objects placed in 
an Unreal map (Actors).  In USARSim, this corresponds to 
maintaining a desired angle between the current part and its 
parent.  Once the KDSpringy class was created and the 
appropriate base classes were modified, it was implemented in 
the following way. 

 

Chassis

Wheel-LegJoint Spacer Plate

KDSpringyKCarWheelJoint

Chassis

Wheel-LegJoint Spacer Plate

KDSpringyKCarWheelJoint

 
Fig. 7. Illustration of how passive torsional compliance is implemented 

 
A static mesh that is used as a spacer plate was created.  As 

can be seen in Fig. 7, the chassis was connected to the spacer 
plate via a KCarWheelJoint.  A KCarWheelJoint is a joint 
that has a spin axis that is driven by a motor, and a steering 
axis that is driven by a controlled motor that attempts to 
achieve a specified orientation, similar to a servo.  The 
spacer plate was connected to the wheel-leg via KDSpringy.  
This setup effectively made the spacer plate the actual 
“wheel” that drove the vehicle.  However, because the 
wheel-leg’s parent is the spacer plate, the two parts rotate 
together.  Differences in their rotational speeds come from 
the reaction torques and forces that are experienced by the 
wheel-leg from the terrain, and from the parameter used to set 
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the stiffness of KDSpringy.  A large stiffness allows the 
spring to withstand large reaction torques before deflecting, 
thus allowing the wheel-leg and spacer plate to move at more 
closely matching speeds (this corresponds to the wheel-leg 
functioning like a normal wheel).  A lower stiffness means 
that the spring is easier to displace and must be deflected to 
the point where it is able to exert a large enough torque to spin 
the wheel-leg.  This enables the spacer plate to wind up the 
spring and build torque when a particular wheel-leg is unable 
to move, which allows the contralateral wheel-leg to come 
into phase with it.  This is precisely how Whegs robots 
behave in reality when surmounting obstacles.   

A disadvantage to this method is that UT2004 appears to 
only use tire properties for a tire (a KTire in UT2004) that is 
connected to a KCarWheelJoint.  KTire properties allow the 
user to control the following properties of the tire: Rolling 
Friction, Lateral Friction, Rolling Slip, Lateral Slip, Minimum 
Slip, Slip Rate, Tire Softness, Tire Restitution, and Tire 
Adhesion.  Even though the wheel-legs are defined as KTires, 
since they are connected via KDSpringy, it appears that they 
only have what are known as KActor properties.  KActor 
properties allow the user to control the following parameters:  
KFriction and KRestitution.  As can be seen, a KTire is the 
ideal case because more control is allowed over how the tire 
will interact with the environment.  This problem can be 
rectified by altering the static mesh so that individual 
wheel-leg spokes are added to the hub as tires.  However, 
this solution requires a larger number of parts and more class 
functionality to make the robot function properly.  Also, this 
approach gave adverse preliminarily results, which are 
discussed in the next section.  Because real Mini-Whegs 
robots do not use formal tires, the preliminary validation was 
performed with the wheel-legs as KActors.  It was felt that 
this approach would provide a good first approximation of the 
appropriate set of Karma Parameters that would yield realistic 
virtual performance while narrowing the search space at the 
same time. 

B) Virtual Test Maps and Validation Testing 

After the virtual robot was developed, two maps were 
created to test the vehicle’s performance.  One of these maps 
was a large empty room to test the vehicle in walking and 
running while minimizing its chances of hitting a wall.  The 
other map included basic obstacles such as: ramps, standard 
2x4 boards (3.81 cm by 8.89 cm actual cross sectional 
dimensions) and textbooks for climbing, a straightaway for 
walking/running testing, and stairs and large drops for falling 
and impact testing.  These worlds were used to compare the 
virtual robot’s performance to that of the real vehicle.  In this 
study, attention was focused on walking/running and basic 
climbing over textbooks.  The following metrics were used 
to evaluate the virtual robot’s performance: 
• Top speed of about 0.9 m/s without significant 

end-over-end rotation (~25 rad/s wheel-leg drive speed) 
• End-over-end rotation when attempting to climb up a 

wall at higher wheel-leg drive speeds 

• The ability to surmount obstacles (textbooks in this 
study) that are 0.04 m tall in head on and oblique angle 
(30o) approaches (Fig. 8) 

 

O
bs

ta
cl

e 30o

O
bs

ta
cl

e 30o

 
Fig. 8. Top view of head on and oblique approaches 

 
Fig. 9 provides an illustration of how robots are currently 

validated 
 

Karma Physics Engine

Virtual Robot

Karma Parameters

Real Robot Performance

Virtual PerformanceKarma Physics Engine

Virtual Robot

Karma Parameters

Real Robot Performance

Virtual Performance

 
Fig. 9. Illustration of how robots are currently validated 

 
As stated above, the Karma Physics Engine is proprietary, 

which means that the exact way in which the engine uses the 
Karma Parameters to affect the simulation cannot be directly 
obtained.  In addition, the engine uses its own unit system 
(e.g. lengths are in Unreal Units or Karma Units depending on 
the context).  The mapping between the Unreal Unit System 
and real world quantities is known for some parameters (e.g. 
length and time).  However, conversions for other 
parameters (e.g. force and torque) are still under investigation.  
Due to the proprietary nature of the engine, to perform a 
validation, a robot is run through the engine with an initial set 
of Karma Parameters, as illustrated in Fig. 9.  This yields the 
robot’s virtual performance, which is then compared with real 
robot performance through the use of video data and any other 
relevant performance metrics for the robot in question.  The 
information learned from the comparison is used to modify 
the Karma Parameters.  After parameter modification, the 
virtual robot is run through the engine again for comparison 
with the real robot.  This cycle is repeated until the virtual 
performance meets a desired level.  For actual validation 
testing, this method was combined with the following 
procedure: 

1) Baseline Run: First, the virtual robot was run through a 
range of drive speeds with an initial set of Karma Parameters.  
The goal of this run was to obtain performance data for an 
initial set of parameters for the purposes of comparison.  In 
the open room, vehicles were run through the following wheel 
leg drive speeds:  {0, 2, 10, 15, 20, 25, 30} rad/s. 

2) Individual Karma Parameter Variation: After the 
baseline performance test, individual Karma Parameters were 
varied through a range of values while leaving all other 
parameters at their initial settings.  For each value, the virtual 
robot was run through the same set of drive speeds used in the 
baseline run.  The purpose of these runs was to obtain data 
that illustrated how each parameter affected the vehicle’s 
performance.     
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3) Physical Reasoning: At this stage, physical reasoning 
was used to determine what conditions were required for the 
virtual robot to behave in a particular way in order to explain 
its performance and the effects of individual Karma 
Parameters. 

4) Karma Parameter Search: At this point, with an 
understanding of the effects of different Karma Parameters, 
the method illustrated in Fig. 9 was used to improve the 
virtual robot’s performance. 

The virtual robot was compared to physical observation of a 
real Mini-Whegs robot.  All simulation trials were recorded 
using FRAPS* [13] video capturing software.  In addition, 
the vehicle’s instantaneous velocity, position in the world, 
orientation with respect to the world coordinate frame, time, 
and speed change commands were logged to various files.  
The logged parameters were used to plot the vehicle’s speed 
and velocity components against time.  Velocities were 
reported in both world (fixed) and vehicle (moving) 
coordinates to help quantify the robot’s behaviors.  Steering 
was not used in any of the tests. 

III. RESULTS 

A. Dimensions Used in the Simulation 

Initial testing (phases 1-3 of the above described procedure), 
was done with a slightly larger vehicle.  Phase 4 was 
performed with a smaller vehicle (Table 1). 

 
  Initial Dimension Final Dimension 
Body Length (m) 0.1143 0.09 
  Width (m) 0.09144 0.068 
  Height (m) 0.01905 0.02 
Wheel-Legs Diameter (m) 0.096 0.0762 

Table 1. Initial and final dimensions used in the simulation 
 

The latter dimensions were chosen because they more 
accurately reflect the size and performance basis of current 
Mini-Whegs robots.  For example, the 10 bodylength/second 
speed listed above corresponds to a 0.09 m bodylength, so for 
this performance metric, the smaller vehicle size is more 
appropriate.  The study could have been performed with the 
larger size vehicle since a real vehicle could be created that 
has larger dimensions.  The dimensional change is only used 
here for convenience in comparing virtual and real 
performance. 

B. Functionality for Maintaining Proper Wheel-Leg Phasing 

During testing, it became apparent that new functionality 
would need to be added to the “Whegs” class to ensure that 
the virtual robot maintained proper wheel-leg phasing.  
Initially, when the vehicle spawned into a world, it would 
spawn properly with its wheel-legs out of phase, but then 
“fall” due to its mass such that the wheel-legs were in phase 
(Fig. 10). 

 

 
Fig. 10. Wheel-Legs are unable to maintain proper phasing without extra 

class functionality 
 
Occasionally, all of the wheel-legs would stay out of phase 

upon spawning such that the robot could be tested.  However, 
if the robot was not stopped with the correct orientation and 
speed, the wheel-legs would “fall” out of phase.  This 
behavior appeared to be independent of the torsional stiffness 
that was provided, and even occurred when the wheel-legs 
were connected directly to the chassis via a KCarWheelJoint.  
This was problematic because real Whegs robots maintain 
proper phasing even when stopped.  It was determined that 
this problem was due to the nature of the KCarWheelJoint 
class.  This class rotates a given Actor about a spin axis by 
applying a torque to overcome external torques.  If the motor 
applies no torque, then the actor will be rotated about the 
motor’s spin axis by all other external torques.  Physically, a 
KCarWheelJoint is analogous to having an axle that rotates a 
wheel mounted in a perfectly frictionless bearing and motor.  
Real Whegs robots have a drive train that connects each wheel 
leg to a single drive motor and torsional springs that are 
pretensioned which causes them to maintain proper phasing 
even when the motor is not running.  To fix this problem, a 
member function was added to the “Whegs” class that forces 
the KCarWheelJoint to achieve zero angular velocity by using 
a preset torque value when the robot is stationary (drive speed 
= 0 rad/s).  This solution appeared to solve the problem. 

C. Wheel-Legs Behaving as KActors Vs. Tires 

Initially, the wheel-legs were implemented as KTires.  
However, when attempts were made to run the robot, the 
wheel-legs would rotate but not cause the robot to translate, 
resulting in the wheel-legs spinning in place and the robot 
itself not making any forward progress.  It was determined 
that because the wheel-legs were not connected to 
KCarWheelJoints, KActor properties were used instead of 
KTire properties.  The default KActor friction value is zero, 
which led to the wheel-legs perfectly sliding on a given 
substrate.  An attempt to rectify this problem was made by 
implementing the solution proposed above:  making each 
spoke a KTire that is connected to the central hub via a 
KCarWheelJoint.  Because of the problems experienced in 
maintaining proper wheel-leg phasing mentioned in the 
section above, a function was added to the “Whegs” class that 
forces the spokes to maintain their initial orientation relative 
to their parent hub.  This solution resulted in the wheel-leg 
spokes drifting into altered positions over time, particularly at 
higher drive speeds.  An attempt to remedy this problem was 
made by increasing the torque used to maintain the spoke 
orientation.  This resulted in the vehicle going through 
seemingly nonphysical end-over-end rotation at higher wheel 
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leg drive speeds (about 15 rad/s and higher) while still 
translating forward, and did not appear to remove the drifting 
problem.  It was found that the only apparent way to 
influence the problem was to increase the vehicle’s inertia 
tensor or angular velocity resistance (KAngularDamping) 
Karma Parameters.  These parameters only seemed to slow 
down the rotation.  They also had to be raised to levels much 
higher than any other vehicle in the USARSim, including 
vehicles that are more massive such as the Hummer.   

The nonphysical nature of this behavior and its solution 
prompted performing the validation with the wheel-legs 
behaving as KActors instead of KTires.  This approach led to 
behavior that appeared to be more physically relevant when 
compared to the real vehicle.  Also, as stated above, because 
this approach offers a narrower parameter search and because 
the wheel-legs on Mini-Whegs vehicles are not formal tires, it 
was felt that using the wheel-legs as KActors would provide a 
reasonable approximation that would allow for relatively 
simple but effective preliminary validation. 

D. Effects of Individual Karma Parameters 

The robot’s speed and velocity components were plotted in 
both world and vehicle coordinates.  These plots were used 
as a tool to help examine the effects of individual Karma 
Parameters on the robot’s performance.  Example plots are 
shown in Fig. 11. 

 

 

 
Fig. 11. Velocity in vehicle coordinates (top) and world coordinates (bottom).  
In vehicle coordinates, x is forward, y is starboard, and z is out the bottom of 
the vehicle.  The absolute value of the velocity components is plotted here 

for comparison with the speed. 
 

The vertical black lines are the times at which speed change 
commands were issued.  The vehicle’s initial speed (which 

occurs around 15 s in the plots shown above) is due to it 
spawning into the world.  By looking at the body-fixed 
coordinate plot, it can be seen that the X-component of 
velocity in the vehicle coordinates is nearly identical to the 
speed, meaning that the vehicle is making forward progress 
and not translating to its left or right.  In addition, there is a 
point around 65 s where the X-velocity and the speed both 
drop while the Z-velocity spikes.  Upon comparison with the 
video data, it was observed that this was the location at which 
the robot flipped over, or end-over-ended.  This kind of 
feature was present in all cases where the robot flipped over.  
The world coordinate plot illustrates the vehicle’s tendency to 
move in a particular direction within the world.  In this plot, 
the robot is initially heading mostly in the Y direction.  
However, after it flips over at around 65 s, it also begins to 
have motion in the X-direction as well.  In addition to these 
kinds of observations, the data in the plots can be used to look 
at other phenomena such as the average speed of the vehicle 
for a given time interval and the variability of the data about 
the average. 

The following Karma Parameters were singly modified 
while leaving all other parameters at their initial settings to 
determine their effects on the performance of the vehicle: 
1) ChassisMass: This is the mass of the chassis.  With the 
initial parameters that were set, it was found that altering this 
parameter did not appear to have a large impact on the overall 
performance of the vehicle in terms of being able to reach a 
top speed, or end-over-ending. 
2) KMass: This is the mass of the Spacer Plates.  This mass 
was varied to determine the effects of raising and lowering 
mass that is not coincident with the vehicle’s center of mass.  
Initally, the mass of the chassis was very small, both 
compared to the spacerplates, and in an absolute sense, so this 
test also revealed how the vehicle’s overall mass affected 
performance.  When these masses were lowered to a value of 
0.002 in the Unreal Unit System, the vehicle immediately 
began to end over end at higher drive speeds (10 rad/s and 
over).  At mass values of 2 in the Unreal Unit System, the 
vehicle appeared to perform in a relatively predictable manner 
with only occasional end-over-end instances occurring at 
drive speeds between 25 rad/s and 30 rad/s. 
3) KFriction: This is the friction present in the wheel legs.  It 
was found that, as one would expect, higher values of friction 
(10 in this study) resulted in the wheel-legs not slipping on the 
substrate as much during walking.  Visible slippage occurred 
with lower friction values (0.5 in the Unreal Unit System).  
Both of these friction values yielded roughly the same vehicle 
average speeds for a given drive speed.  However, the 
variation about the average was much higher for the larger 
friction value.  This was attributed to stronger braking forces 
in the step cycle.  The wheel-legs provide both propulsive 
and braking forces, where braking occurs in the beginning of 
the stance phase, and propulsion occurs towards the end.  
Because the friction value is higher, both the brake and 
propulsion forces are increased.  Therefore, when a wheel 
leg touches down, it is able to provide better traction to propel 
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the vehicle, but also has a greater tendency to retard its motion 
initially. 
4) KRestitution: This parameter is similar in concept to the 
coefficient of restitution used in collision analysis.  A value 
of 1 corresponds to an elastic collision between two objects.  
Values less than one result in increasingly inelastic collisions.  
At a KRestitution value of 1 in the Unreal Unit System, as the 
vehicle’s drive speed was increased, it appeared to have 
increasingly continuous elastic collisions with the ground 
while its forward speed appeared to reach a relatively constant 
value that became independent of the input drive speed.  As 
a result, the vehicle’s average speed at higher drive speeds 
seems to flat-line when compared to other tests.  The average 
speed also had a great deal of variability for each drive speed. 
5) Torsional Stiffness: The torsional stiffness of the rear 
wheel-legs was set to 250 in the Unreal Unit system for all 
runs.  This value appeared to make the back wheel-legs 
rotate with the spacer plates under all circumstances.  The 
front torsional stiffness of the front wheel-legs was adjusted to 
see how adjusting the stiffness affected their motion.  As 
expected, higher values of stiffness led the wheel-legs to 
behave more like conventional wheels, where low stiffness 
values allowed the spring to “wind up” before rotating the 
wheel-legs.  Excessively low values of stiffness cause 
wheel-legs to fall out of phase when the vehicle is spawned.  
At these low values, when a drive command was issued, the 
wheel-legs would not rotate at first.  However, after the 
springs were deflected sufficiently, they would rotate forward 
to release the tension as one would expect. 

E. Karma Parameter Search 

After the effects of the above mentioned parameters were 
understood from the single parameter variations, testing was 
done to move the virtual robot towards matching real 
performance.  Table 2 indicates the parameters that were 
changed. 

 

 Karma Parameter (Unreal Unit System) 
Initial 
Value 

Current 
Value 

Chassi
s ChassisMass 0.00342 0.75 
  MaxTorque 32000 50 
  MotorTorque 2400 50 
  KCOMOffset (X, Y, Z)  0 0.04464 
  KCOMOffset (X, Y, Z)  0 0 
  KCOMOffset (X, Y, Z) 0 0 
Wheel 
Legs Wheel-Leg Kfriction 1 0.75 
  Wheel-Leg KRestitution 0 0.1 
  Wheel-Leg Kmass 0.0008 0.08 
Spacer 
Plate Spacer Plate Kmass 1 0 

  Spacer Plate KInertiaTensor(0) ~ Ixx  0.0035 0 

  Spacer Plate KInertiaTensor(3) ~ Iyy  0.0066 0 

  Spacer Plate KInertiaTensor(5) ~ Izz  0.0035 0 
Table 2. Initial and Current Karma Parameter Values 

 
Column 1 is a listing of the initial values of the Karma 

Parameters.  Column 2 represents the current values that they 
have been adjusted to.  As can be seen from Table 2, the 
following general changes were made.  First, because spacer 
plates are not found on the real robot, their mass and inertia 
values were set to zero so that they would have no effect on 
the dynamic characteristics of the vehicle.  Based on the 
results obtained from varying individual Karma Parameters, 
lowering the mass of the Spacer Plates caused severe 
end-over-ending of the vehicle.  This prompted raising the 
ChassisMass property of the vehicle to 1 in the Unreal Unit 
System, which drastically reduced this problem.  Based on 
testing of an actual Whegs robot on tile, it was observed that 
the wheel-legs slip during walking at higher speeds, similar to 
what can occur with lower values of the KFriction parameter.  
The vehicle also appeared to have a degree of elasticity with 
the ground, similar to when the KRestitution values were 
raised.  Accordingly, the KFriction and KRestitution values 
were lowered and raised respectively.  The center of mass of 
the vehicle (KCOMOffset) was not varied in the single 
parameter variation study.  However, after examining a 
particular Mini-Whegs vehicle, it was found that many of the 
components such as the steering servo, steering mechanism, 
and battery are located towards the front of the vehicle.  Also, 
the virtual vehicle still went into end-over-ending behavior 
more than was desired.  Therefore, the KCOMOffset value 
was adjusted to bring the center of mass of the vehicle 
forward.  This reduced the end-over-ending behavior slightly, 
but did not completely remove the problem.  While the 
center of mass is not typically in the forward section of a 
Mini-Whegs vehicle, the change was made here to judge its 
impact on the performance.  In addition to these parameters, 
the KCarWheelJoint motor torque and wheel-leg masses were 
also changed.  The motor torque was ultimately lowered 
from its initial value of 2400 to 50 in the Unreal Unit System 
to give the vehicle a more realistic level of drive torque (for 
comparison, the Hummer uses a motor torque value of 2400).  
The wheel-leg masses were raised from 0.0008 to 0.08 
(Unreal Unit System). 

F. Performance Results 

The parameter changes that were made appeared to move 
the virtual vehicle towards matching the performance of the 
real vehicle.  With the final set of parameters given above, 
the robot was able to walk at near top speeds with occasional 
end-over-ending.  It was also only able to end-over-end at 
walls with higher wheel-leg drive speeds (10 rad/s and up), 
which is normal Mini-Whegs behavior.  In climbing tests, 
the robot was able to successfully surmount a 0.04 m obstacle 
with head-on and 30o approaches. 

IV. DISCUSSION 

Basic functionality modifications of existing USARSim 
base classes along with functionality implemented in the 
newly defined “Whegs” class appears to successfully replicate 

111



the general behaviors of torsional compliance and wheel-leg 
phasing found in Whegs robots.  Karma Parameter 
modification based on physical reasoning and observation of 
real robots through videos and direct interaction appeared to 
result in improved, more realistic performance of the virtual 
robot in walking, running and basic climbing.  In addition, 
the procedure used in the parameter modification yielded 
insight into how each individual parameter contributes to the 
overall performance of the vehicle.  The procedure also 
yielded the velocity history of the vehicle in world and body 
coordinates, along with the speed of the vehicle, and the 
average speed for a given time increment.  This data was 
used to determine if the vehicle is able to attain a particular 
drive speed, the degree to which the vehicle collides with the 
ground, and the vehicle’s tendency to end-over-end. 

While the accomplishments listed above are significant first 
steps towards creating an accurate representation of a Whegs 
robot in USARSim, there are many steps that can be taken to 
improve the virtual robot’s performance.  With respect to the 
real robot, high speed video capture methods can be used to 
obtain data and establish performance metrics that can also be 
measured within the simulation for more accurate 
benchmarking.  In terms of the virtual robot, several steps 
can be taken including:  making the wheel-legs function as 
actual tires, refining the behavioral characteristics of the 
“Whegs” class and investigating the use of more detailed and 
accurate static meshes.  In terms of the Karma Parameters, 
the above tests can be conducted in more depth and expanded 
to better understand the effects of individual parameters on 
robot performance.  More testing can also be done to better 
understand how individual Karma Parameters map to real 
world quantities.  Also, while individual Karma Parameters 
can be varied, they are not necessarily independent, so the 
coupling between Karma Parameters needs to be understood.  
For the validation, a number of steps can be taken.  Several 
map substrate surfaces can be made from KActors and tuned 
to match the performance of real surfaces such as concrete, 
tile, wood, etc.  The virtual robot can then be tested and 
compared to the real robot on each of these surfaces, which 
would yield a better representation of the appropriate Karma 
Parameters for the robot.  With more rigorous performance 
metrics defined, numerical methods could be employed to 
help determine how well the virtual robot matches the real 
robot’s performance.  All of these steps would lead to a more 
reliable and repeatable simulation. 
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