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Abstract — Previous approaches to road sensing, namely road
detection were based on segmenting the sensor data, i.e. color camera
image, into road and non-road areas. Performance evaluation for
such algorithms could be performed in a relatively straightforward
fashion by comparing the algorithm’s result with ground truth.
Ground truth for such an image-based evaluation approach could
be limited to a geometrical structure describing the road area in
the original image. However, the development of our new high-
level road sensing approach, which is a model-based approach to
road recognition, makes new demands to performance analysis and
subsequent performance evaluation which would include comparison
with ground truth. In this paper1, we will briefly describe the new
road recognition approach, show performance analysis results and
discuss performance evaluation issues.
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I. INTRODUCTION

Previous approaches to road sensing, namely road detection

([4], [5], [10]) were based on segmenting the sensor data,

i.e. color camera image, into road and non-road areas. Per-

formance evaluation for such algorithms could be performed

in a relatively straightforward fashion by comparing the al-

gorithm’s result with ground truth (see [7], [10]). Ground

truth for such an image-based evaluation approach could be

limited to a geometrical structure describing the road area in

the original image. However, the development of our new

high-level road sensing approach [3], which is a model-

based approach to road recognition, makes new demands to

performance analysis and subsequent performance evaluation

which would include comparison with ground truth.

There are several approaches to performance evaluation

which can be classified into the following general categories:
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comparative evaluation compares the algorithms performance

with similar other algorithms or a ground truth; for analytic

evaluation the limits, computational complexity and theo-

retical optimality of the algorithm may be determined; the

performance on test data and execution times with different

parameters may measured; and finally the appropriateness to

the task can be analyzed given the context of a particular

application with its constraints (please refer to [7] for a more

detailed discussion on the subject).

We present in this paper a two-level approach to perfor-

mance analysis for a new road recognition approach providing

symbolic descriptions of the road structure. The first level of

performance analysis helps point out potentially problematic

areas and real-time issues by analyzing the behavior of the

tree search-based recognition approach. On the second level an

actual performance evaluation is performed by comparing the

symbolic results of the algorithm against (semi-) automatically

extracted ground truth.

This paper is organized as follows: In Section II we briefly

describe the new symbolic road recognition approach. In

Section III we introduce the first level of performance analysis

and discuss results. Finally, in Section IV we outline the sec-

ond level which is actual performance evaluation employing

ground truth and discuss issues with the automatic ground truth

generation as well as results.

II. SYMBOLIC ROAD RECOGNITION APPROACH

Our previous work on road detection on color images

demonstrated the advantages of using background knowledge

(in terms of models) in order to improve the recognition results

[5]. In the following, we will describe a new approach of a

model-guided road recognition process [3] and will discuss

the type of extracted features, the representation of models,

the recognition process, and the representation of the resulting

symbolic road data.

A. Feature Extraction

One important assumption of the new approach concerns the

orientation of the vehicle on the road. A normal orientation,

where the vehicle is limited to traverse only in lanes for which

the legal driving direction agrees with the vehicle’s direction,

provides a canonical form for the appearance of road on

images and may therefore simplify the representation process.

All other orientations of the vehicle do not comply with the
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normal orientation. We can allow the limitation of a normal

orientation if we assume that the autonomous system will be

aware of when it leaves the normal orientation (e.g. due to

avoidance of obstacles on the road).

Assuming normal orientation of the vehicle on the road, a

simple set of features, which are easily extracted and well-

understood, can be derived [2]. The features are based on

“slices” of the road perpendicular to the direction of the

vehicle. They can be extracted by applying one of several

approaches for detecting the road area in images or road edge

detecting algorithms (e.g. [1], [2], [5], [4], [8]).

Starting at the bottom image row, the left and right road

edge points in each row are determined. A pair of road edge

points described in both image and world coordinates (through

camera calibration) describes one feature item. The process

continues bottom-up row-by-row until the world coordinates

of the road edges reach a given maximum distance in front

of the vehicle (e.g. more than 55 m). Furthermore, additional

data will be associated with a feature item, e.g. information

about lane markings.

B. Model Representation

Figure 1 depicts our approach for representing road model

primitives. A “slice” of road is described by its width (geo-

metrical component) and lane structure in terms of number of

lanes and their legal directions (topological component). This

representation of road primitives is compatible with the type

of feature data described in Section II-A.

Fig. 1. Geometrical and topological representation of a “slice” of road.

A road type consists of an ordered group of primitive road

model items. For such groups additional constraints apply.

A road type might require a minimal and/or maximal lateral

length or, in the case of road widening and narrowing, a certain

monotonic behavior. Other constraints limit the connectivity

between (primitive) road types, e.g. a two-lane road segment

can connect to a three-lane road segment only through a

transitional segment. Primitive road items and road types are

organized hierarchically. Additionally, primitive model items

are grouped by the type of driving environment, e.g. highway

driving, rural road or urban road driving. Appropriate connec-

tors describe transitions from one environment to another (e.g.

a highway exit transfers the vehicle from highway driving to

rural road driving).

C. Recognition Process

The goal of the recognition process is to find associations

between feature items and (primitive) road models and even-

tually an interpretation of the scene. The application of a tree

search algorithm spans potentially all possible associations of

feature items and road models [6]. This process, however, is

computationally expensive and must therefore be constrained.

We define constraints on three different levels, the primitive

associations level, the group level, and the symbolic-level

interpretation.

On the primitive level, potential associations must comply

with unary constraints. For example, in order to associate a

feature item to a specific road model, the width of the road

has to be similar for both entities. Whenever a feature item

is associated with the same model as the previous feature

item, group-related constraints apply. Assuming that feature

items 1, 2, and 3 in Figure 2 are already associated with

a model A, the association of feature item 4 to model A

requires compliance of the extended Group A to group-related

constraints. For example, in the case of a road widening

(as part of an intersection) the group should comply with a

certain monotonic behavior and the group’s length should be

within the maximal length of the model. Assuming another

situation where feature items 1-4 are already associated to

model A, associating feature item 5 with model B would

trigger additional constraints. Starting a new group B causes

the previous group A to be closed. This, for example, requires

compliance with the minimum length constraint.

Fig. 2. Recognition process levels: primitive associations level, group level,
and symbolic-level interpretation.

Finally, the set of (locally) consistent groups may allow

a high-level interpretation of the scene. For example, the

occurrence of a regular road segment, a widening segment,

a narrowing segment, and another regular road segment (in

this order) can be a strong indicator for the existence of an

intersection.

Figure 3 depicts an example of a search tree used for

the recognition process. On each level of the tree, one sin-

gle feature item is associated with (potentially) all known

models (within the current driving environment, see Section

II-B). This potentially huge tree structure (considering all

possibilities) will be reduced in numbers of nodes by the

above described application of constraints. Branches in the

resulting tree that show consistent associations of feature items

to models from the root to a leaf of the tree represent surviving
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Fig. 3. Sample search tree. The feature items f1 - f5 are associated to the
models RR (Regular Road), RW (Road Widening) and < N > (for noise).
The branches of the search tree are being pruned whenever the associations
are inconsistent on the local, group or global level. Paths reaching from the
ROOT to one of the leaves are considered interpretations (e.g. blue path to
the green circle).

interpretations.

We use the number of nodes and the number of inter-

pretations as measures for performance analysis described in

Section III.

D. Symbolic Representation of Road Structures

Figure 4 shows three examples of the symbolic description

of our approach’s recognition results. Each node describes

one road segment’s road type, e.g. node A1 in Figure 4(a)

describes a straight road segment of a bi-directional two-lane

road. The nodes also contain geometrical information such as

the road width and segment length. Due to sensor limitations,

however, geometrical measures give only a coarse impression

and their interpretation should be considered carefully. The

examples in Figure 4(b) and Figure 4(c) show more complex

road structures. The occurrence of multiple road segments of

several types is represented by a chain of nodes.

Fig. 4. Examples for symbolic description of recognition results. Each Node
is of a certain type, e.g. Regular Road, two lanes, bi-directional (A1, B1, B3,
C1, and C3), T-Intersection, from right (B2 and C2) etc.

III. PERFORMANCE ANALYSIS

As described in Section II-C, we use a constrained tree

search approach for our high-level recognition process. Each

execution of tree search can be described by internal parame-

ters describing the resulting search tree structure - the number

of nodes and the number of interpretations. We use both

values to gain a first impression of the recognition system’s

performance.

Figure 5 shows performance analysis results. Figure 5(a)

shows the first frame of a test video sequence. In the back-

ground the original input image is depicted, in the upper right

corner the result of the underlying road detection, in the lower

center the most compressed representation of the symbolic

results (for the left and right side of the road separately), and

on the right side an iconic depiction of the symbolic results can

be seen. The graph in Figure 5(b) shows the number of nodes

(blue) and the number of surviving interpretations (yellow) for

each frame of the test sequence.

From experiments we learned that a typical successful run

of our system results in search trees of about a few hundred

nodes and about one interpretation. The graph in Figure 5(b),

however, shows (in the first half of the sequence) the occurance

of a magnitude higher number of nodes (> 2000) as well

as sporadic lack of any interpretations. We consider these as

clear indicators of problems with the recognition algorithm’s

performance for the following reasons:

• no interpretations mean lack of results and, therefore,

complete failure of the algorithm;

• a high number of nodes is usually (from our experience)

connected with failure or at least sub-optimal results;

• a high number of nodes also means a longer processing

time which is usually an issue in real-time implementa-

tion.

We analyzed the algorithm’s performance on the frames that

showed no interpretations and/or a high number of nodes and

we found out that in these cases most of the problems were due

to a calibration issue. Figure 6 shows the performance analysis

results for a second run after fixing some the discovered

calibration problems. Compared to the results depicted in

Figure 5(a), Figure 6(a) shows the correct symbolic result of a

bi-directional two-lane road. The graph in Figure 6(b) appears

now smoother with just a few problematic frames in the middle

of the sequence where a high number of nodes and lack of

interpretations point us to areas that need further investigation.

This fairly simple approach to performance analysis can

be used to support further development of the algorithm by

pointing out video frames that cause problems. An actual per-

formance evaluation beyond mere heuristics, however, requires

a more sophisticated approach and is described in the next

section.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of an algorithm one

needs a reference - the ground truth - to which the algorithm’s

results can be compared against. Considering our algorithm’s

results - chains of symbolic nodes - we need a repository of

world data from which we can extract comparable structures.

We decided to exploit an existing structure - the NIST Road

Network Database (RNDB). In the following, we describe
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(a)

(b)

Fig. 5. (a) First run road recognition result for the first frame of the test sequence. The algorithm erroneously recognized an intersection on the left side of
the road. (b) shows the number of nodes (depicted in blue) and the number of interpretations (yellow) for the first run (left road side only).
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(a)

(b)

Fig. 6. (a) Second run road recognition result for the first frame of the test sequence. There are no wrongly detected intersections anymore. (b) shows the
number of nodes (depicted in blue) and the number of interpretations (yellow) for the second run (left road side only).
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briefly the NIST Road Network Database, the extraction of

ground truth from this database, and performance evaluation

results.

A. NIST Road Network Database

In 2004, NIST embarked on an effort to create a Road Net-

work Database (RNDB) structure for the purpose of informing

an intelligent vehicle about the structure of the roadway to

allow for better path planning and autonomous mobility during

on-road driving. This database structure has been represented

in a MySQL database [11], documented [9] and populated

with detailed instances of roadways on the NIST campus. This

section will briefly describe the RNDB and describe how it

will be applied to the road recognition approaches described

in this paper.

Some of the fundamental components of the Road Network

Database are described below:

• Junctions - A junction is a generic term referring to two

or more paths of transportation that come together or

diverge, or a controlled point in a roadway, including

lanes splits, forks in the road, merges, and intersections.

Junctions are an abstract supertype in the sense that a

junction must be one of the types listed above.

• Intersections - Intersections are a type of junction in

which two or more separate roads come together.

• Lane Junctions - A lane junction is a location in a junction

in which two or more lanes of traffic overlap.

• Road - A road is a stretch of travel lanes in which the

name of the travel lanes does not change.

• Road Segment - A road segment is a uni-directional

stretch of roadway bounded by intersections.

• Road Element - A road element is a uni-directional stretch

of roadway bounded by any type of junction. Unlike

road segments, road elements can be bounded by merging

lanes, forks, etc.

• Lane Cluster - A lane cluster is a set of uni-directional

lanes (with respect to flow of traffic) in which no physical

attribute of those lanes change over the span of the lane

segment.

• Lane - A lane is a single pathway of travel that is bounded

by explicit or implicit lane marking. Lanes span the

length of a lane cluster of which they are a part.

• Lane Segment - A lane segment is the most elemental

portion of a road network captured by the database struc-

ture. Lane segments can be either straight line or constant

curvature arcs. One or more lane segments compose a

lane

• Junction Lane Segments - A junction lane segment is

a constant curvature path through a portion of a lane

junction.

For the purpose of road recognition system described in

this paper, the two structures that are of most interest are the

Road Segment and the Intersection. Figure 7 shows a sample

roadway with one of the road segments shaded. There are two

intersections shown, represented by black boxes with no lane

markings.

Fig. 7. Sample road network.

The Road Segment database structure contains information

such as:

• The road that the road segment is a part of

• The adjacent intersections

• The length of the segment

• The class of road segment (interstate highway, beltway,

country road, etc.)

Additional information can also be inferred by looking at

other classes that this structure points to, including:

• Beginning and end point of the road segment

• Number of lanes

The database structured has been populated with data from

the NIST campus using high-resolution LIDAR scans per-

formed by an external organization. Through post processing,

these LIDAR scans were tagged with information about road-

ways, parking lots, buildings, etc. This information was then

converted into the RNDB format and used to populate the

database.

Vehicles are localized on this road network using the Global

Positioning System (GPS) data that is returned from their

systems. Although this GPS data is often non-exact, one can

still run an algorithm to find the closest road segment to

the returned point (this is how off-the-shelf GPS navigation

systems work). Since the road segments are defined by their

known start and end point, this calculation is relatively trivial.

The Road Segment and Intersection structures in the RNDB

correspond nicely to the road and intersection concepts used by

the road recognition algorithms. As such, they should provide

a nice representation approach for the algorithms.

B. Ground truth Extraction from RNDB

After localizing the vehicle’s position within the road net-

work, we need to extract the ground truth for the current frame

of the video sequence. Figure 8 depicts the approach: From the

vehicle’s location and orientation a set of symbols describing

the road in front of the vehicle is extracted.

Due to the limitations of the sensor, only parts of this sym-

bolic structure are actually within the field of view. Therefore,

we need to prune the structure at the maximum look-ahead

distance which is known from camera calibration as being 55
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Fig. 8. Simple approach to ground truth extraction.

m. This, however, can only be a coarse estimate of the ground

truth because several situations may change the maximum

look-ahead distance, e.g.

• whenever the vehicle’s orientation is not parallel with the

ground, e.g. through tilting due to acceleration, deceler-

ation, or terrain undulations.

• whenever the road’s elevation in front of the vehicle

differs from the road plane the vehicle sits on.

In the case of the example in Figure 8, the following

symbolic road structure could be extracted as ground truth:

(REGULAR ROAD, INTERSECTION). The second symbol

(INTERSECTION), however, might or might not be part of

the actually visible road on sensor data. Such situations require

manual correction of the ground truth.

C. Performance Evaluation Results

Figure 9 shows the performance evaluation results for the

second run on the video sequence from Section III.

Most of the frames show no classification error at all. The

bigger block in the middle of the sequence shows an error of

50 %. This is due to the problem of ground truth generation

described in the previous section - the ground truth contains

information about an intersection that is actually not yet visible

on the sensor data. There are two more peaks in the graph

showing a classification error of 100 % (two frames in the

middle) and 30 % (two peaks at the end of the sequence).

These are good examples for the application of performance

evaluation in order to find problematic situations that need

further investigation.

In order to compare the performance of the algorithm on

video sequences as a whole, we also calculate the minimum,

maximum and average classification error throughout the video

sequence. This allows for example to compare the performance

of different versions (e.g. using different parameters) of the

algorithm on the same input data.

The graph in Figure 10 shows the average classification

error for the two runs from Section III. The improvement in

the second run is reflected by an average error of half the size

of the error in the first run.

V. CONCLUSION

We presented in this paper a two-level approach to perfor-

mance analysis for a new road recognition approach providing

symbolic descriptions of the road structure. The first level of

performance analysis helps point out potentially problematic

areas and real-time issues by analyzing the behaviour of the

tree search based recognition approach. A high number of

nodes and lack of interpretations in the resulting search tree

are considered as indicators for such problematic areas. On the

second level an actual performance evaluation is performed

by comparing the symbolic results of the algorithm against

a (semi-) automatically extracted ground truth. We pointed

out situations where a manual correction of the ground truth

is necessary. Both methods of performance analysis proved

helpful for the ongoing further development of high-level road

recognition for on-road driving. In order to allow comparison

of different approaches to road sensing, more efforts are

needed to bring together worldwide groups and to agree on

common grounds for performance analysis in the future.
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Fig. 9. Performance evaluation results for the second run on the test video sequence.

Fig. 10. Average classification error for the first and second run.
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