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Abstract—The Defense Applied Research Projects Agency 
(DARPA) Learning Applied to Ground Vehicles (LAGR) program 
aims to develop algorithms for autonomous vehicle navigation that 
learn how to operate in complex terrain. For the LAGR program, The 
National Institute of Standards and Technology (NIST) has 
embedded learning into a control system architecture called 4D/RCS 
to enable the small robot used in the program to learn to navigate 
through a range of terrain types. This paper describes performance 
evaluation experiments on one of the algorithms developed under the 
program to learn terrain traversability. The algorithm uses color and 
texture to build models describing regions of terrain seen by the 
vehicle’s stereo cameras. Range measurements from stereo are used 
to assign traversability measures to the regions. The assumption is 
made that regions that look alike have similar traversability. Thus, 
regions that match one of the models inherit the traversability stored 
in the model. This allows all areas of images seen by the vehicle to 
be classified, and enables a path planner to determine a traversable 
path to the goal. 

The algorithm is evaluated by comparison with ground truth 
generated by a human observer. A graphical user interface (GUI) was 
developed that displays an image and randomly generates a point to 
be classified. The human assigns a traversability label to the point, 
and the learning algorithm associates its own label with the point. 
When a large number of such points have been labeled across a 
sequence of images, the performance of the learning algorithm is 
determined in terms of error rates. The learning algorithm is outlined 
in the paper, and results of performance evaluation are described. 
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I. INTRODUCTION 

The Defense Applied Research Projects Agency (DARPA) 
Learning Applied to Ground Vehicles (LAGR) program [1] 
aims to develop algorithms for autonomous vehicle navigation 
that learn how to operate in complex terrain. Over many years, 
the National Institute of Standards and Technology (NIST) has 
developed a reference model control system architecture 
called 4D/RCS that has been applied to many kinds of robot 
control, including autonomous vehicle control [2]. For the 
LAGR program, NIST has embedded learning into a 4D/RCS 

controller to enable the small robot used in the program to 
learn to navigate through a range of terrain types [3]. The 
vehicle learns in several ways. These include learning by 
example, learning by experience, and learning how to 
optimize traversal. In this paper, we present a method of 
evaluating a learning algorithm used in LAGR that associates 
terrain appearance with traversability. The paper briefly 
describes the learning method and then focuses on the 
evaluation procedure. The approach is illustrated with 
examples taken from tests run by the LAGR evaluation team. 

The appearance of regions in an image has been described in 
many ways, but most frequently in terms of color and/or 
texture. Ulrich and Nourbakhsh [4] used color imagery to 
learn the appearance of a set of locations to enable a robot to 
recognize where it is. A set of images was recorded at each 
location and served as descriptors for that location. Images 
were represented by a set of one-dimensional histograms in 
both HLS (hue, luminance, saturation) and normalized Red, 
Green, and Blue (RGB) color spaces. When the robot needed 
to recognize its location, it compared its current image with 
the set of images associated with locations. The location was 
recognized as that associated with the best-matching stored 
image. 

In [5] the authors also addressed the issue of 
appearance-based obstacle detection using a single color 
camera and no range information. Their approach makes the 
assumptions that the ground is flat and that the region directly 
in front of the robot is ground. This region is characterized by 
color histograms and used as a model for ground. In the 
domain of road detection, a related approach is described in 
[6]. In principle, the method could be extended to deal with 
more classes, and our algorithm can be seen as one such 
extension that does not need to make the assumptions because 
of the availability of range information for regions close to the 
vehicle. 

Learning has been applied to computer vision for a variety 
of applications, including traversability prediction. Wellington 
and Stentz [7] predicted the load-bearing surface under 
vegetation by extracting features from range data and 
associating them with the actual surface height measured 
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when the vehicle drove over the corresponding terrain. The 
system learned a mapping from terrain features to surface 
height using a technique called locally weighted regression. 
Learning was done in a map domain. We also use a map in the 
current work, although it is a two dimensional (2D) rather 
than a three dimensional (3D) map, and we also make use of 
the information gained when driving over terrain to update 
traversability estimates, although not as the primary source of 
traversability information. The models we construct are not 
based on range information, however, since this would 
prevent the extrapolation of the traversability prediction to 
regions where range is not available. 

Howard et al. [8] presented a learning approach to 
determining terrain traversability based on fuzzy logic. A 
human expert was used to train a fuzzy terrain classifier based 
on terrain roughness and slope measures computed from 
stereo imagery. The fuzzy logic approach was also adopted by 
Shirkhodaie et al. [9], who applied a set of texture measures to 
windows of an image followed by a fuzzy classifier and 
region growing to locate traversable parts of the image. 

Talukder and his colleagues [10] describe a system that 
attempts to classify terrain based on color and texture. Terrain 
is segmented using labels generated from a 3D obstacle 
detection algorithm. Each segment is described in terms of 
Gabor texture measures and color distributions. Based on 
color and texture, the segments are assigned to pre-existing 
classes. Each class is associated with an a priori traversability 
measure represented by a spring with known spring constant. 
We also make use of 3D obstacle detection in our work, but 
don’t explicitly segment the data into regions. We model both 
background and obstacle classes using color and texture, but 
all models are created as the vehicle senses the world. Given 
that we have no prior knowledge of the type of terrain that 
may be encountered, it is usually not possible to pre-specify 
the classes. Similarly, the vehicle learns the traversability of 
the terrain by interacting with it, either by driving over it or 
generating a bumper hit. 

II. THE LEARNING ALGORITHM 

The learning process takes input in the form of labeled 
pixels with associated (x, y, z) positions. The labels are 
provided on a pixel-by-pixel basis by an obstacle detection 
algorithm that works on stereo data [11]. Given the labels and 
color characteristics of the pixels, the learning algorithm 
constructs color and texture models of traversable and 
non-traversable regions and uses them for terrain 
classification. The approach to model building is to make use 
of the labeled color data to describe regions in the 
environment around the vehicle and to associate a cost of 
traversing each region with its description. The terrain models 
are learned using an unsupervised scheme that makes use of 
both geometric and appearance information.  

In our algorithm an assumption is made that terrain regions 
that look similar will have similar traversability. The learning 
works as follows (see [12]). The system constructs a map of a 
40 m by 40 m region of terrain surrounding the vehicle, with 

map cells of size 0.2 m by 0.2 m and the vehicle in the center 
of the map. The map is always oriented with one axis pointing 
north and the other east. The map scrolls under the vehicle as 
the vehicle moves, and cells that scroll off the end of the map 
are forgotten. Cells that move onto the map are cleared and 
made ready for new information.  

The model-building algorithm takes as input the color image, 
the associated and registered range data (x, y, z points), and 
the labels (GROUND and OBSTACLE) generated by the 
obstacle detection algorithm. Also associated with these data 
is the location and pose of the vehicle when the data were 
collected. When new data are received, the vehicle location 
and pose information are used to scroll the map so that the 
vehicle occupies the center cell of the map.  

Points are projected into cells based on their 3D positions. 
Each cell receives all points that fall within the square region 
in the world determined by the location of the cell, regardless 
of the height of the point above the ground. The cell to which 
the point projects accumulates information that summarizes 
the characteristics of all points seen by this cell. This includes 
color, texture, and contrast properties of the projected points, 
as well as the number of OBSTACLE and GROUND points 
that have projected into the cell. Color is represented by ratios 
R/G, G/B, and intensity. The intensity and color ratios are 
represented by 8-bin histograms stored in a normalized form 
so that they can be viewed as probabilities of the occurrence 
of each ratio. Texture and contrast are computed using Local 
Binary Patterns (LBP) [13]. These patterns represent the 
relationships between pixels in a 3x3 neighborhood in the 
image, and their values range from 0 to 255. The texture 
measure is represented by a histogram with 8 bins, also 
normalized. Contrast is represented by a single number 
ranging from 0 to 1. 

When a cell accumulates enough points it is ready to be 
considered as a model. We determine the sample size by 
requiring 95% confidence that the sample represents the true 
distribution. In order to build a model, we also require that 
95% of the points projected into a cell have the same label 
(OBSTACLE or GROUND). If a cell is the first to 
accumulate enough points, its values are copied to instantiate 
the first model. Models have exactly the same structure as 
cells, so this is trivial. If there are already defined models, the 
cell is matched to the existing models to see if it can be 
merged or if a new model must be created. Matching is done 
by computing a weighted sum of the squared difference of the 
elements of the model and the cell. Cells that are similar 
enough are merged into existing models; otherwise, new 
models are constructed. 

At this stage, there is a set of models representing regions 
whose appearance in the color images is distinct (Fig 1). Our 
interest is not so much in the appearance of the models, but in 
the traversability of the regions associated with them. 
Traversability is computed from a count of the number of 
GROUND and OBSTACLE points that have been projected 
into each cell, and accumulated into the model. Models are 
given traversability values computed as NOBSTACLE / (NGROUND 
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+ NOBSTACLE). These models correspond to regions learned by 
example. 

Learning by experience is used to modify the models. As the 
vehicle travels, it moves from cell to cell in the map. If it is 
able to traverse a cell that has an associated model, the 
traversability of that model is increased. If it hits an obstacle 
in a cell, the traversability is decreased. 

 
R/G G/B LBP Intensity

R/G G/B LBP Intensity

R/G G/B LBP Intensity

 
Fig 1. Examples of histograms used to construct models. 

Top row corresponds to the blue regions in the left image. 
Middle row corresponds to the green region. Bottom row 

corresponds to the red region. The blue region is not 
traversable, while the other two regions are traversable. 

To classify a scene, only the color image is needed (no range 
data). A window is passed over the image and color, texture, 
and intensity histograms and a contrast value are computed as 
in model building. A comparison is made with the set of 
models, and the window is classified with the best matching 
model, if a sufficiently good match value is found. Regions 
that do not find good matches are left unclassified. Windows 
that match with models inherit the traversability measure 
associated with the model. In this way large portions of the 
image are classified (Fig 2). 

The vehicle needs to know the locations of obstacle and 
ground regions, but has no stereo information during 
classification. To address this problem, the assumption is 
made that the ground is flat, i.e., that the pose of the vehicle 
defines a ground plane through the wheels. This allows 
windows that match with models to be mapped to 3D 
locations. Another assumption is that all obstacles (windows 
matching with models created from obstacle points) are 

normal to the ground plane. This allows obstacle windows to 
be projected into the ground plane and thus to acquire 3D 
locations. Because of the ground plane assumption, the 
algorithm only processes the image from in front of the 
vehicle to a small distance above the horizon, to catch the 
obstacles but ignore the sky. 

 

 
Fig 2. Top: Left and right eye views of a typical scene from 

Test 9. Bottom: Classification showing regions that are 
traversable in yellow, and not traversable in magenta. 

III. EVALUATING THE ALGORITHM 

The entire LAGR system was tested over the course of a 
year by a separate Government team using a vehicle 
functionally identical to the vehicles on which the software is 
developed. Tests occurred about once a month. Developers 
sent their control software on flash memory cards to the test 
facility. The software was loaded onto a vehicle which was 
commanded to travel from a start waypoint to a goal waypoint 
through an obstacle-rich environment. The environment was 
not seen in advance by the development teams. The 
Government team measured the performance of the system on 
multiple runs. To demonstrate learning, performance was 
expected to improve from run to run as the systems became 
familiar with the course. While these tests gave a good 
indication of how learning improved the overall performance, 
they did not provide evaluations of individual learning 
algorithms.  

Evaluating the algorithm described in this paper requires 
determining how well the learned models enable the system to 
classify the degree of traversability of the terrain around the 
vehicle. The evaluation makes use of ground truth generated 
by one or more human observers who use a graphical tool to 
generate ground truth points against which the learning 
algorithm is compared.  

Data sets used for the evaluation consist of log files 
generated during the tests conducted by the Government team. 
Log files contain the sequence of images collected by the two 
pairs of stereo cameras on the LAGR vehicle and information 
from the other sensors, including the navigation (GPS and 
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INS) sensors and bumper sensors (physical and IR bumpers). 
The NIST LAGR system performs exactly the same when 
playing back a log file as it did when it first ran the course, so 
long as no changes are made in the algorithms. Therefore, 
logged data is a good source for performance testing. 

The ground truth is collected by a human stepping 
sequentially through the log file, and classifying one or more 
points from each image. A graphical tool is used to display the 
image and randomly select a point (Fig. 3). The point is 
highlighted for the user, who selects one of the labels Ground 
(G), Obstacle (O), or Unknown (U). The tool then writes a 
record to a file containing the frame number, coordinates of 
the selected point, and the label provided by the user. Note 
that the Unknown label is used for points that are neither 
ground nor obstacle (such as sky) as well as points where the 
human truly cannot decide between ground and obstacle (such 
as at the base of an obstacle that merges smoothly with the 
ground). When ground truth collection is complete, the file is 
available for evaluating the performance of the learning 
algorithm (or any other algorithm that assigns traversability 
labels to regions). 

 

 
Fig. 3. The GUI for generating ground truth showing a 

frame from Test 7. 

 
The learning algorithm reads the ground truth file and the 

log file. It processes the log file as it usually does when 
running on the vehicle. Each time it comes to an image frame 
for which ground truth is available, it classifies the points 
selected in the frame and writes out a file containing the 
ground truth it read in plus an entry giving the learned 
classification of the pixel in the ground truth file. When the 
entire log file has been processed, the output file contains an 
entry for each ground truth point that gives both the human’s 
classification and the system’s classification. Under the 
assumption that the human’s classification is correct, an 
analysis can be conducted of the errors committed by the 
learning algorithm.  

 

IV RESULTS 

The evaluation was applied to a number of examples taken 
from data gathered by the LAGR evaluation team at locations 
in Virginia and Texas. Results are shown for these examples 
and an overall evaluation is given of the performance of the 
algorithm across all the data sets.  

In the evaluations, the learning system starts out with no 
models. This is how the system typically starts, at least for the 
first test run at each location. As it reads the log file and the 
ground truth data, the learning program both creates the 
models and classifies the ground truth points. This means that 
early in the sequence of images, only a small number of 
models are available for classification. As more of the terrain 
is seen, more models are constructed, and the range of regions 
that can be classified increases. The algorithm learns very fast, 
however, often creating the first few models from the first 
frame or two of data. Since the terrain doesn’t usually change 
abruptly, classification performs well from the start, 
particularly for points close to the vehicle.  

Four sets of ground truth data were created by three 
different people using the GUI in Fig. 3. The data were taken 
from log files of three different tests. Test 6 was conducted in 
September, 2005 in Fort Belvoir, VA. Test 7 was also 
conducted at Fort Belvoir, in October, 2005. The course was 
very different, however. Test 9 was conducted in San Antonio, 
TX at the Soutwest Research Institute’s Small Robot Testbed. 

A. Test 6 

Test 6 included a run along a path through a slightly wooded 
area, ending in an open field. Two synthetic obstacles made 
out of orange plastic mesh were placed in the path of the 
vehicle (Fig. 4), with the goal being to learn that the first 
fence represented an obstacle and use that knowledge to avoid 
the second fence. 

 
Fig. 4. A view of the first orange fence in Test 6. 

The ground truth created for Test 6 consisted of 
approximately 3 points per frame, using the log file of the first 
test run. Because the human sometimes labeled a point as 
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Unknown, and because some of the points randomly selected 
for ground truth were in the sky, the actual number of usable 
points was closer to 2 per frame (there were 1,270 frames). 

TABLE I shows a summary of the results of the evaluation. 
As can be seen, the algorithm labeled 87% of the points with 
the same class as the human. Of the incorrect labels, 30% 
arose from situations where the algorithm did not find a match 
with any model and labeled the points Unknown, 52% came 
from incorrectly labeling points as Obstacle instead of Ground, 
and 17% from labeling points as Ground instead of Obstacle. 

TABLE I 

Results for Test 6 
 

Test 6, 2513 Ground Truth Points 
No. Correct No. 

Incorrect 
% Correct % Incorrect 

2197 317 87.4% 12.6% 
Error Distribution Across Label Types 

Not Classified 
(Unknown) 

Obstacle instead 
of Ground 

Ground instead 
of Obstacle 

30% 52% 17% 
 

B. Test 7 

The course for Test 7 began in an open field. The 
straight-line path would put the vehicle in a position that 
required a long detour through dense bushes. Traveling to the 
right of the straight-line path led to an easy route to the goal. 
The Government team placed an artificial barrier in the path 
to make it difficult to choose the right hand direction the first 
time the course was seen (Fig. 5). The idea was that the 
vehicle would fight its way through the bushes on the first run 
before reaching the goal, but would learn to recognize the 
barrier and select the right hand route on subsequent test runs. 
In fact, this is what the NIST vehicle did. 

 

 
Fig. 5. A view of the Test 7 course from the vehicle (on the 

wrong side of the barrier). 

 
The ground truth for Test 7 was created from the log file of 

the first test run. Two different people generated ground truth 
files. One selected 1 point per frame, resulting in a usable 
count of 702 points, while the other selected 3 points per 
frame, resulting in a usable count of 2195 points, where 
usable points are determined as described above for Test 6. 
Having different selections of points for the same data set 
enabled us to see if there was any significant variation 
between people’s selection of labels and also let us see if a 
smaller number of points was as effective as a larger one. 

As can be seen in TABLE II and TABLE III, the results for 
both the small sample size and the large one are very similar, 
indicating that it is not necessary to label large numbers of 
points. What was surprising was that the distribution of the 
errors was different. For the smaller set, the percentage of 
errors due to the learning algorithm not being able to identify 
the class of the point was 46%, whereas the corresponding 
percentage for the larger set was 71%. In the tests we have 
done, the distributions of errors with different random sets of 
points has not shown any obvious pattern.  

TABLE II 

Results for Test 7, User 1 
 

Test 7, 702 Ground Truth Points 
No. Correct No. 

Incorrect 
% Correct % Incorrect 

592 110 84.5% 15.5% 
Error Distribution Across Label Types 

Not Classified 
(Unknown) 

Obstacle instead 
of Ground 

Ground instead 
of Obstacle 

47% 34% 19% 

 

TABLE III 

Results for Test 7, User 2 
 

Test 7, 2195 Ground Truth Points 
No. Correct No. 

Incorrect 
% Correct % Incorrect 

1884 312 85.8% 14.2% 
Error Distribution Across Label Types 

Not Classified 
(Unknown) 

Obstacle instead 
of Ground 

Ground instead 
of Obstacle 

71% 4% 25% 

C. Test 9 

Test 9 was conducted in the desert in December, 2005. The 
terrain was vegetated with both woodland and grassland 
features. The vegetation was dry, and there was not much 
color difference between the vegetation and the ground (Fig. 
6). The course ran along a mowed path through the terrain, but 
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there were other paths crossing the desired path which did not 
provide a traversable route to the goal. The Government test 
team expected the vehicles to explore the side paths on the 
first run, but learn that they were not productive and follow 
the preferred path on later runs. This is what the NIST vehicle 
did. 

 

Fig. 6. A view of the terrain in Test 9. 

 
 The ground truth for Test 9 was created from the log 

file of the first run, using a single point from each frame and a 
total of only 176 frames. There were a total of 290 points to 
be classified. As can be seen in TABLE IV, the system 
performed a little worse in this low-color environment, but 
still respectably.  

TABLE IV 

Results for Test 9 
 

Test 9, 290 Ground Truth Points 
No. Correct No. 

Incorrect 
% Correct % Incorrect 

232 58 80.3% 20.1% 
Error Distribution Across Label Types 

Not Classified 
(Unknown) 

Obstacle instead 
of Ground 

Ground instead 
of Obstacle 

19% 21% 60% 

 

D. Cumulative Results 

The results of all the performance evaluations are 
accumulated in TABLE V. As can be seen, 86% of the time 
the algorithm assigns similar labels to regions as do human 
observers. 
 

TABLE V 

Cumulative Results 
 

Tests 6, 7, and 9, 5701 Ground Truth Points 
Number of points classified 5701 
Number correct 4905 
Number incorrect 797 
 
Percentage correct 86% 
Percentage incorrect 14% 

 

IV EVALUATING ALGORITHM PARAMETERS 

Another way of using the ground truth data is to investigate 
the effects of the model parameters. We use five parameters, 
and here we discuss the effects of selecting subsets of these 
parameters. We explored using only color (no intensity or 
texture), using color plus intensity with no texture, and not 
using color. There are two color components, R/G and G/B. 
We did not explore removing only one of them. Nor did we 
look at the effects of contrast. Some of the results were 
surprising. 

TABLE VI 

Effects on Classification of Changing Model Parameters 
  

Test 7 Model Parameter Variation 
No Texture No Color Only Color 

% 
Correct 

% 
Incorrect 

% 
Correct 

% 
Incorrect 

% 
Correct 

% 
Incorrect 

83.52% 16.48% 53.26% 46.79% 86.25% 13.75% 
Test 9 Model Parameter Variation 

No Texture No Color Only Color 
% 

Correct 
% 

Incorrect 
% 

Correct 
% 

Incorrect 
% 

Correct 
% 

Incorrect 
82.35% 17.99% 76.12% 24.22% 56.40% 43.94% 
 
TABLE VI shows the classification success of the algorithm 
when it learns models with one or more features removed. It 
appears that removing texture has hardly any effect. The 
percentage of correct classifications for Test 7 goes down 
marginally (just over 2%), but the correct classification for 
Test 9 goes up (about 2%)! This is very surprising, since the 
data for Test 9 showed little color variation, so we assumed 
that the texture was providing most of the discrimination. It 
probably means that the texture measure we used is not 
suitable for this application (perhaps because it uses such a 
small neighborhood). 

On the other hand, taking color out of the model features has 
a big impact, dropping the classification accuracy in Test 7 
from about 86% to 53%. For Test 9 the accuracy also drops, 
but only from 80% to 76%. This is reasonable, since the data 
showed so little color variation. 
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Finally, if only color is used, the performance on Test 9 
degrades considerably, from 80% to 56%. The performance 
on Test 7 actually goes up marginally, although probably not 
significantly. We can conclude that intensity plays a 
significant role in classification, especially in Test 9. Color is 
clearly important, but the use of the Local Binary Pattern 
operator is questionable. 

V. CONCLUSION 

Knowing the traversability of terrain is very important to a 
robot that navigates off-road like those in the DARPA LAGR 
project. At NIST, we have developed several methods of 
learning traversability for use in the LAGR program. In this 
paper, we discussed our method of evaluating the performance 
of an algorithm that learns to classify terrain as either 
traversable or not traversable based on models it builds using 
color and texture features of the terrain. 

The performance evaluation is not specific to the particular 
algorithm shown in this paper. Once a human has generated a 
set of ground truth points, they can be used to evaluate any 
classification algorithm. It is straightforward to modify the 
number of classes the user has available to classify the points, 
although too many classes may lead to a higher rate of human 
error in classifying the points. The evaluation was also applied 
to the stereo obstacle detection algorithm that provides the 
input for the learning algorithm and in some sense determines 
the best performance that can be expected of it. The results 
showed that the obstacle detection algorithm agreed with 
human classification 91% of the time. 

The random nature in which the points to be classified are 
selected has the advantage of preventing any bias in the way 
that the image sequence is sampled. It has a problem, however, 
in that it is not possible to say anything about the way the 
errors are distributed in the images. There is a significant 
difference between errors that congregate at the boundaries of 
regions and those that appear throughout the image. Usually, 
errors close to boundaries are less of a concern since they 
amount to a disagreement about where the boundary actually 
occurs. Thus, two algorithms with the same performance in 
terms of correct classifications could differ greatly in their 
utility. The method used in this paper cannot provide a 
distinction based on error locations, but a quick scan of 
images such as Fig 2 gives a good idea of the error 
distribution. 

It should be pointed out that the results shown in this paper 
do not take into account some postprocessing that is done in 
the algorithm after an image frame is classified but before the 
results are sent to the planner. This involves removing 
singleton blocks (16x16 windows of pixels) classified as one 
type that lie within a region of the opposite type (e.g., a single 
non-traversable block within a traversable region as can be 
seen in Fig 2). Usually such blocks are the result of incorrect 
classification so removing them improves the overall 
performance of the algorithm. In one of the tests (Test 10), 
however, the vehicles had to make their way through a set of 
thin posts randomly placed in a field. By removing singleton 

blocks, the locations of some of the posts that had been 
correctly recognized by the algorithm as not traversable were 
lost. 

It is very helpful to be able to use the performance 
evaluation to tune the algorithm by determining the useful 
features and their relative contributions to the final 
classification. Our evaluation showed that the texture operator 
was not performing effectively and that using intensity as a 
feature is beneficial. We plan to explore alternative texture 
measures based on multiresolution Gabor filters as in [10] to 
see if they perform better. 

Overall, the results show that the algorithm for learning 
traversability works well, with a high degree of agreement 
between its classifications and those of a human observer. 
This provides confidence that the algorithm will enhance the 
performance of the LAGR control system as a whole. 
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