

Intelligent Vehicle Systems:
A 4D/RCS Approach

Editors
R. Madhavan, E.R. Messina, and J.S. Albus

Nova Science Publishers, Inc.

Table of Contents

Preface

Abbreviations/Acronyms

Chapter 1 4D/RCS References Model Architecture for Unmanned
 Ground Vehicles
Chapter 2 A Task Analysis Methodology for the Derivation and
 Organization of Knowledge for Real-time Control
 Systems
Chapter 3 Behavior Generation
Chapter 4 World Modeling and Knowledge Representation
Chapter 5 Sensory Processing
Chapter 6 Temporal Registration of Sensed Range Images for

 Autonomous Navigation
Chapter 7 Advanced LADAR for Driving Unmanned Ground
 Vehicles
Chapter 8 Standards-Based Architectural Framework for Intelligent
 Autonomous Vehicles
Chapter 9 Performance Evaluation of Autonomous Mobile Robots
Chapter 10 Development of Semi-Autonomous Robotic Ground
 Vehicles: DoD's Ground Robotics Research Programs:
 Demo I through Demo III

Glossary

Epilog

Preface

The autonomous driving capabilities of unmanned ground vehicles are advancing more rapidly than most
people – including many experts in the field – are aware. A fundamental understanding of how to integrate
perception, world modeling, knowledge representation, task decomposition, planning, and control for
autonomous ground vehicles is emerging. LADAR technology has developed to the point where it is
possible to construct geometric and dynamic models of the world that can support competent real-time
driving behavior. The computing power required to support high performance mobility is becoming
available. The U.S. military services are investing large sums of money in autonomous mobility research
for autonomous ground, air, undersea and surface vehicle systems. Commercial automotive companies
throughout the world are also making large investments in advanced cruise control, lane departure warning,
and collision mitigation systems. It seems likely that these investments will pay off in terms of significant
advancements in the next two decades. In the military domain, useful on-road and off-road autonomous
driving capabilities may be achieved by 2010. Human level performance in autonomous driving may be
feasible by 2020. In the commercial sector, intelligent driver assistance systems may produce major
reductions in automotive traffic injuries and fatalities within next 15 years.

Research in autonomous mobility began in the late 1960s. The first serious attempts at building intelligent
mobile robots took place at the Stanford Research Institute (SRI) with the “Shakey” robot project [1] and at
the Stanford University AI Lab with a robot cart [2]. The SRI project developed the theoretical foundations
of task planning and execution, and the Stanford cart demonstrated some primitive elements of computer
vision for navigation. These projects provided early insight into the type of algorithms that are required
and the surprising amount of computational power needed to achieve even the most rudimentary forms of
autonomous mobility.

The Autonomous Land Vehicle (ALV) program sponsored by DARPA during the 1980’s was the first
major research program to address the problem of autonomous driving in an outdoor environment. The
ALV program assembled a team of the nation’s most capable researchers, and provided them with state-of-
the-art sensing and computing resources. Yet, the ALV was only partially successful in following paved
roads at disappointingly slow speeds. The ALV program showed clearly that autonomous driving would be
neither easy nor cheap. In fact, many experts concluded that autonomous driving was an unrealistic goal,
and the Army should rely on teleoperation for unmanned systems. The rationale was that this approach had
proven successful for control of the Unmanned Air Vehicle systems for many years.

Thus, between 1989 and 1991, when the Army Research Lab sponsored Demo I (Shoemaker Chapter 10),
the first of three major Department of Defense programs designed to advance the state-of-the-art of robotic
driving, the focus was on teleoperation, with some minor enhancements such as “Retro-Traverse,” and
driving paths selected by an operator indicating waypoints on a TV screen. Demo I results revealed several
serious problems with the teleoperation strategy. The first and most important was the communication
bandwidth problem. Teleoperation requires communicating real-time TV images from the remote vehicle to
a human operator. A variety of compression algorithms were tried, but the basic problem is that
communications on the battlefield between ground vehicles are unreliable, and often non-existent.
Furthermore, teleoperation places a heavy workload on the operator, and often induces nausea when the
operator is in a moving vehicle.

Thus, during the mid 1990’s, DARPA and the Army cosponsored the Demo II program that once again
focused on autonomy (Shoemaker Chapter 10). The Demo II vehicles were Army HMMWVs heavily
loaded with computers and sensors. Monocular video was used for road following, and stereo vision was
used for detecting and avoiding obstacles. The Demo II program demonstrated the ability of autonomous
vehicles to navigate off-road at a few kilometers per hour, in environments consisting of relatively flat
desert terrain sparsely populated with large obstacles. However, stereo has proven problematic in
producing reliable high-resolution range information needed for detecting small obstacles, seeing through
sparse vegetation, or segmenting distant objects from the background.

Beginning in 1998, the Army Research Lab sponsored the Demo III eXperimental Unmanned Vehicle
(XUV) program (Shoemaker Chapter 10). The Demo III XUVs were built specifically for autonomous
mobility research and development. They demonstrated the ability to reliably drive at average speeds
between 5 and 7 km/h on trails through the woods and across rolling fields of tall weeds and underbrush.
They were able to follow roads and to navigate through urban streets cluttered with rubble and obstacles
such as parked cars and phone poles. A desired path could be provided to the XUVs in the form of widely
spaced (more than 50 m apart) geo-referenced waypoints specified by an operator. LADAR was used to
build an internal 3D model of the nearby terrain for planning safe paths through complex environments in
real time. The XUV mobility subsystem recomputed its local map and local path plans 10 times per
second. Multi-resolutional maps were used to support multi-resolutional planning. The Demo III program
also demonstrated the ability of a single operator at a remote computer terminal to simultaneously supervise
up to four XUVs driving autonomously.

Recent experiments with XUVs, Stryker vehicles, autonomous helicopters, and teleoperated hand-launched
aircraft have shown the ability of a single operator to supervise collaborative operations between multiple
unmanned ground vehicles and unmanned air vehicles. XUVs have successfully traveled distances of more
than 40 km without human assistance over dirt roads and trails, through woods and fields, with a variety of
vegetation.

DARPA has also continued to fund autonomous driving research. Recent programs related to autonomous
vehicles include PerceptOR, Unmanned Ground Combat Vehicle (UGCV), Software for Distributed Robots
(SDR), Mobile Autonomous Robotic Software (MARS), Learning Applied to Ground Robots (LAGR), and
the DARPA Grand Challenge. The PerceptOR program subjected a variety of sensors and perception
algorithms to a rigorous program of testing and evaluation. The UGCV program developed a vehicle with
articulated suspension designed for high mobility in difficult terrain. The MARS program funded studies of
the technical requirements for autonomous on-road driving in normal traffic. The LAGR program is
investigating how autonomous driving behaviors can be improved by learning from experience. The
DARPA Grand Challenge offered a $2 million prize to the team that builds an autonomous vehicle that
achieves the fastest time over a 135 mile course through the Nevada desert. The Grand Challenge was won
in October 2005 by a Stanford University team headed by Sebastian Thrun using a vehicle specially
modified for autonomous driving by the Volkswagen Corporation1.

Current programs sponsored by the Army Research Laboratory include the Robotic Collaborative
Technology Alliance (RCTA) [Error! Reference source not found.]. The RCTA funds a number of
universities and companies to work with General Dynamics Robotic Systems as a system integrator to
develop and demonstrate the latest autonomous driving technology. ARL also supports autonomous
mobility and tactical behaviors research at the National Institute of Standards and Technology. The work at
NIST is focused on how to enable autonomous vehicles to perform tactical behaviors that require driving
safely at tactical speeds on-roads in highway and city traffic in the presence of pedestrians.

Technology developed under the ARL research program is being transitioned to military vehicles under
Tank Automotive Research, Development, and Engineering Center (TARDEC) programs in Vetronics
Technology Integration, Crew Automation Testbed, and Road Following. Autonomous driving technology
developed by ARL and TARDEC is also being transitioned through the Mounted Maneuver Battle Lab at
Fort Knox into the Army Future Combat System. General Dynamics Robotic Systems is building an
Autonomous Navigation System that will enable Future Combat Systems vehicles to drive autonomously
during tactical maneuvers that involve collaboration between manned and unmanned vehicles, both on the
ground and in the air.

In addition, there are a number of well funded autonomous air and undersea vehicle programs that are
addressing issues of autonomous mobility in other environments. These include the Joint Unmanned
Combat Air System, the RotorCraft Pilot’s Associate, the Global Hawk, and several others. These
programs are sponsored by DARPA, Office of Naval Research, and the Air Force Research Laboratories.

In the civilian sector, during the 1990s, the U.S. Department of Transportation (DOT) sponsored a series of
experiments and demonstrations of autonomous highway driving. As part of this effort, a team from

Carnegie Mellon University demonstrated the ability to drive autonomously over 90% of the distance from
Pittsburgh to Los Angeles [4]. Around 2000, the National Traffic Safety Administration of DOT sponsored
studies on using LADAR to detect pedestrians and prevent accidents involving buses and pedestrians [5].
Current programs funded by DOT at NIST and elsewhere are focused on evaluating the effectiveness and
reliability of driver warning systems for lane departure and collision prediction [6]. Overseas, during the
early 1990s, a team headed by Prof. Dickmanns at Universitat der Bundeswehr, in Munich, Germany
demonstrated the ability to drive autonomously on the autobahn in traffic at speeds of 100 km/h [7]. More
recently, autonomous vehicles using similar technology have achieved speeds of 180 km/h on the autobahn
[8]. Over the last decade, the German Ministry of Defense sponsored a series of demonstrations of off-road
driving similar to the U.S. Army Demo III program, and the European Union has funded auto
manufacturers to aggressively pursue technologies for semi-autonomous driving systems. Similar
government and industry programs in Japan have demonstrated a variety of semi-autonomous driving
skills, such as collision warning, collision mitigation, lane departure warning, adaptive cruise control, stop-
and-go automatic driving in congested traffic, and automatic reverse parallel parking [9].

As a result of these programs, practical applications in both civilian and military sectors have begun to
emerge. In the United States, military interest in unmanned vehicles (air, ground, undersea, and on the
surface) has grown rapidly as increasingly sophisticated autonomous vehicle capabilities have been
demonstrated [10]. In Japan, Europe, and the U.S., automotive companies are actively pursuing
commercial applications of intelligent driver assistance technology [9].

The current rate of technological progress suggests that on-road vehicles will soon have the capability to
autonomously follow commercial trip planner type directions (e.g. MapQuest®) to distant locations, while
obeying rules of the road, negotiating intersections, and avoiding collisions with other vehicles and
pedestrians along the way. Within a decade or two, it may be possible to purchase automobiles and trucks
equipped with intelligent automotive autopilots –robot chauffeurs.

Overview and Organization of the Book

The purpose of this book is twofold:

1. To put into perspective what autonomous mobility capabilities are available now, and what
advances can be anticipated in the coming two decades.

2. To describe the theoretical foundations and engineering approaches that enable these capabilities.

Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design
methodology that has proven successful in guiding the development of autonomous mobility systems.
Chapters 2 through 7 provide more detailed descriptions of research that has been conducted and
algorithms that have been developed to implement the various aspects of the 4D/RCS reference model
architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and
standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility.
Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

Intended Audience

To be filled in

Acknowledgments

We would like to thank the reviewers of the book Prof. Kevin Passino of the Ohio State University and
Mrs. Mylene Ouimette of NIST. Their comments were invaluable in getting it to its current form. We
would also like to thank our sponsors, ARL, DARPA, DOT, DHS, and NIJ for their funding provided on
the research reported in the chapters of this book. More to be filled in …

Commercial Product Disclaimer

Commercial equipment and materials are identified in this paper in order to adequately specify certain
procedures. Such identification does not imply recommendation or endorsement by the National Institute of
Standards and Technology (NIST), nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

References

1. Fikes, R., Hart, P., Nilsson, N. “Learning and Executing Generalized Robot Plans”, Artificial

Intelligence, Vol. 3, No. 1-4, 1972.
2. Moravec, H. “Towards Automatic Visual Obstacle Avoidance”, Proceedings of the Fifth International

Conference on Artificial Intelligence, Cambridge, MA, pp. 584, August, 1977.
3. (RCTA Annual Report) Proceedings of Collaborative Technology Alliances Conference – Robotics,

April 29-May 1, 2003, College Park, MD, Requests for this document to U.S. Army Research
Laboratory, ATTN: AMSRL-WM-RP (Mr. Charles Shoemaker), 2300 Powder Mill Road, Adelphi,
MD 20783.

4. No Hands Across America,
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html

5. Thorpe, C., Duggins, D., McNeil, S., Mertz, C. “Side Collision Warning System (SCWS) Performance
Specifications for a Transit Bus”, Final Report, Federal Transit Administration under PennDOT
Agreement Number 62N111, Project TA-34, May 2002.

6. Szabo, S., Murphy, K.N., Juberts, M. “The AUTONAV/DOT Project: Baseline Measurement System
for Evaluation of Roadway Departure Warning System”, NISTIR 6300, National Institute of Standards
and Technology, Gaithersburg, MD, March 1999.

7. Dickmanns, E. D. et al. “The Seeing Passenger Car ‘VaMoRs-P’”, Proceedings of the International
Symposium on Intelligent Vehicles, pp. 24-26, 1994.

8. Dickmanns, E. “An Expectation-based, Multi-focal, Saccadic (EMS) Vision System for Vehicle
Guidance”, Proceedings of the International Symposium on Robotics Research (ISRR), Salt Lake City,
October 1999.

9. Bishop, R. “Presentation to a NIST/DARPA Workshop on Autonomous Driving”, DARPA Mobile
Autonomous Robot Software Workshop, 2003.

10. Shoemaker, C., Bornstein, J., Myers, S., and Brendle, B. “Demo III: Department of Defense Testbed
for Unmanned Ground Mobility”, SPIE Conference on Unmanned Ground Vehicle Technology, SPIE
Vol. 3693, April 1999.

Intelligent Vehicle Systems: A 4D/RCS Approach
Abbreviations/Acronyms

AI Artificial Intelligence
AM Autonomous Mobility (RCS node)
ARL Army Research Laboratory
BG Behavior Generation
C3 Command, Control, and Communications
C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance, and

Reconnaissance
CCD Charge Coupled Device
DHS Department of Homeland Security
EX Executor
FCS Future Combat Systems
FLIR Forward Looking Infrared Imaging
FSM Finite State Machine
GPS Global Positioning System
HMMWV High Mobility Multipurpose Wheeled Vehicle
h hour
INS Inertial Navigation System
ISD NIST Intelligent Systems Division
JA Job Assignor
KD Knowledge Database
LADAR LAser Distance And Ranging
m meter
ms millisecond
min minute
NIST National Institute of Standards and Technology
NN Neural Network
O&O Operational and Organizational (Plan Document)
OSD Office of the Secretary of Defense
PL Planner
PRIM Primitive (RCS node)
RCS Real-time Control System
RSTA Reconnaissance, Surveillance, and Target Acquisition
s second
SC Scheduler
SME Subject Matter Expert
SP Sensory Processing
TACOM U.S. Army Tank-Automotive and Armaments Command
TARDEC Tank Automotive Research, Development and Engineering Center
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
VJ Value Judgement
WM World Modeling
WSTAWG Weapon System Technical Architecture Working Group
XUV eXperimental Unmanned Vehicle
DARPA Defense Advanced Research Projects Agency

1

Chapter 1

4D/RCS Reference Model Architecture
for Unmanned Ground Vehicles

James Albus and Anthony Barbera

National Institute of Standards and Technology (NIST)
{james.albus,tony.barbera}@nist.gov

1. Introduction

Rapid advances in autonomous driving capabilities over the past two decades have been enabled by five
major technological developments:

1. advances in microelectronics that have produced three orders of magnitude increase in computing
power

2. advances in knowledge of how the human brain functions in perceiving the environment,
modeling the world, imagining the future, and generating behavior

3. development of imaging sensors that provide unambiguous information about the 3D geometry
and dynamics of the world

4. development of a reference model architecture that enables the integration of perception,
knowledge representation, value judgment, reasoning, planning, and control into a unified
intelligent real-time control system

5. development of a software engineering methodology that enables the embedding of tactical
behaviors in the reference model architecture

Each of these developments is significant in and of itself. However, in combination, these five
developments have enabled a major scientific breakthrough in autonomous vehicle systems. The next few
paragraphs elaborate on these enabling factors in more detail, and examine what might reasonably be
expected over the course of the next two decades.

1.1 Computational Power

Massive computational power is a necessary (but not sufficient) enabler of intelligent systems. Over the
past two decades, the computational power of computers of size, weight, and cost that can be easily
embedded in an average sized automobile has grown by more than 1000 times. In 1985, a computer
costing a $1000 was capable of about ten million operations per second. In 2005, a computer of similar
size, weight, and cost is capable of nearly ten billion operations per second. An increase of three orders of
magnitude is more than a quantitative improvement. A factor of a thousand produces a qualitative
transformation of revolutionary proportions. And, there is no indication that this exponential rate of growth
in computing power is declining, or about to decline. Rather, it is increasing. Today, the rate of growth in
computational power is about an order of magnitude every 5 years. Thus, over the next two decades, it
seems likely that the available computational power will increase by four orders of magnitude (i.e., by
10,000 times.) This means that algorithms that a few years ago were completely impractical for real-time
systems are now quite feasible. And algorithms that are not feasible today will become practical in 10 to
15 years.

By the year 2025, the computational power of a computer the size and cost of today’s laptop will be on the
order of 100 trillion operations per second (1014 ops.) This is a number that exceeds some estimates of the
computational power of the human brain. Today’s largest supercomputer already exceeds this capability
[3].

2

1.2 Knowledge of Cognitive Processes

Much has been learned over the past 20 years in the neurosciences and brain modeling community
regarding how the brain functions. Much is now known about how neural computational centers in the
brain and spinal cord control muscles in planning and executing coordinated movements. Much has been
learned about how the visual system processes images to extract edges, surfaces, objects, and groups.
Regions of the brain have been identified that recognize faces and hands; that represent space and time; that
interpret spoken words and phrases; and combine representations of visual objects with linguistic tokens.
Much is known about how acoustic signals are filtered and processed to compute direction, and recognize
frequencies, sounds, phonemes, words, and sentences. Knowledge is emerging of how the brain represents
spatial information in images and maps; how it represents procedural information in loops between
neuronal clusters that act like finite-state automata; how it represents symbolic information in the neural
equivalent of abstract symbolic data structures; how it links these data structures with the neural equivalent
of pointers that define relationships and class membership; and how it links symbolic data structures back
to images and maps with neural pointers that provide symbol grounding. Neuroscientists are learning how
the brain encodes state-variables, attributes, vectors, strings, and arrays with populations of neurons; how
cortico-thalamic loops provide filtering and recursive estimation; how top-down goals and priorities act to
focus attention, steer segmentation, and generate gestalt grouping hypotheses. And it is becoming clear
how the brain generates plans and executes strings of goal-driven sensory-interactive actions that form
characteristic behaviors [12,15,16,17].

Much also has been learned by computer scientists regarding how to build intelligent controllers, and how
to embed knowledge in computer systems. Cognitive architectures, expert systems, image processing
algorithms, neural nets, fuzzy systems, and blackboard architectures have been developed that model
various aspects of neuronal computation. Signal processing, information theory, game theory, decision
making, spatial reasoning, and search-based planning are mature disciplines. Hierarchical task
decomposition, process scheduling, representation of objects and processes, and control of complex
machines and vehicle systems are well understood, and software tools exist that enable engineers to build
large reliable systems. A reference model architecture and software development methodology provides a
unified framework for engineering systems of any desired level of intelligence.

1.3 Range Imaging

Safe driving at operational speeds in traffic, on roads, highways, and city streets requires the ability to
perceive and model the 3D environment with sufficient speed and precision to support real-time tactical
reasoning, path planning, obstacle avoidance, and dynamic control of vehicle motion. Until recently these
perceptual capabilities were beyond the capability of machine vision systems.

The problem is that projecting the 3D world onto a 2D image plane (of a television camera) produce only
2D images in which every pixel is completely ambiguous with regard to range. Biological vision systems
suffer from the same problem. The retina of the vertebrate eye produces only a 2D image, as does the
compound eye of the invertebrates. To recover the 3D information necessary for navigation in the 3D
world, the brain employs a number of techniques. These include stereo processing of images from two
eyes, and depth cues from image flow, motion parallax, occlusion, shading, and texture. The human brain
also applies cognitive knowledge about the expected size of objects, and a variety of assumptions to infer a
“best guess” as to the physical structure of the environment. Unfortunately, these processes are not fully
understood, and attempts by machine vision researchers to generate robust 3D models of the world from 2D
images have been less than successful.

Of course, there are sensing modalities that directly measure the 3D shape of the world. These include
sonar, radar, structured light, and LADAR (Laser Detection And Ranging). Of these, sonar and radar are
too low in angular resolution to reliably distinguish between objects that are both far away and close
together. Both sonar and radar are also subject to multi-path problems that generate unreliable results. In
addition, sonar is slow and structured light is effective only at short ranges.

3

Of the 3D sensing modalities, only LADAR is currently able to provide both the range and resolution
needed to build reliable, detailed, 3D dynamic models of the external world at distances required for
autonomous driving. LADAR works by measuring the time of flight of a laser beam projected from a
source and reflected back to a detector. There are two basic types of LADAR cameras. One operates by
mechanically scanning one or more laser beams over the target in a raster pattern to form an image. The
other operates by illuminating the target with a single pulse of light, and measuring the time of flight to
each pixel in the image with a focal plane array of detectors. Both types of LADAR cameras provide a
range value for each pixel. The result is a range image where there is a range value (or no-return) at each
pixel. No-return pixels occur where the target does not reflect enough energy to detect.

Current LADAR cameras provide range images with sufficient speed, reliability, and precision that image
processing algorithms can build a geometric and dynamic model of the environment within about 50 m of
the sensor. Input from an inertial navigation system enables the perception system to build a 3D map of the
world in the vicinity of the robot. Update rates of greater than 10 frames per second, enable off-road
driving speeds that are typically limited more by the roughness of the terrain than by the capabilities of the
LADAR. At night, autonomous vehicles have demonstrated off-road driving speeds higher than can be
safely achieved by human drivers using night-vision goggles.

LADAR cameras designed specifically for highway driving are being developed by commercial automobile
companies, especially in Europe and Japan. These cameras currently have the ability to detect and track
cars up to 80 m away and pedestrians at 40 m. The next generation of these systems will be capable of
detecting and tracking cars up to 150 m away. Currently, these cameras are quite expensive, e.g., in the
$50K to $100K price range. However, once they are manufactured in large quantities, it is anticipated that
prices will drop to a few thousand, and eventually to a few hundred dollars.

Hybrid CCD/LADAR cameras are being developed that overlay color images on range images. Some of
these have angular resolution approaching, and even exceeding, the resolution of the human fovea. These
cameras typically have range accuracy of a few centimeters at more than 100 m. This is much more precise
than human depth perception.

Segmentation and grouping are the computational processes that enable perception to distinguish objects
from background in the image domain. Segmentation separates pixels that belong to an object from those
that do not, and grouping clusters those pixels into a unified object. Segmentation and grouping are
prerequisites for transforming from the iconic domain to the symbolic domain. Segmentation enables the
computation of entity attributes, such as size, shape, position, orientation, velocity, color, and texture.
Grouping enables the representation of entity attributes in an abstract data structure such as a Lisp list, a C
struct, or a C++ object or class. Computation of entity attributes is a prerequisite for classification. When it
is determined that entity attributes match class prototype attributes, entities can be assigned to classes. The
significance of LADAR imaging resides in the fact that the operations of segmentation and grouping can be
performed much more easily and robustly in the 3D space of a LADAR point cloud than in the 2D space of
a color or intensity image array.

Examples of entity classes required for autonomous mobility are roads, trails, lane markings, cars, trucks,
motorcycles, pedestrians, intersections, traffic signals, and road signs. Once segmented, these objects can
be classified and recognized by geometric shape, motion, color, or texture. Relationships between entities,
events, and places can be represented by pointers, and pointers can define lists, strings, semantic networks,
grammars, and ontologies.

Types of relationships include spatial, temporal, causal, logical, and class relationships. These forms of
knowledge enable an autonomous vehicle to identify situations that focus attention and trigger action.
Knowledge of entity attributes, classes, and relationships are required by behavior generation processes to
generate appropriate behavior for situations such as on-coming traffic, intersections, cross traffic,
pedestrians, and traffic signals. Knowledge of entity attributes and state is required for recursive estimation
of situations, and prediction of future trajectories of moving objects. This knowledge is also required for

4

planning obstacle-free paths, and computing safe clearance for driving behaviors such as merging, passing,
and parking.

Next generation LADAR cameras and sensory processing algorithms are approaching the capabilities of
human perception in building geometric models of the environment. These have not yet been engineered as
real-time systems capable of the dynamic performance required for autonomous driving in normal traffic at
operational speeds, but the sensors, processing algorithms, and computational power to do this is clearly
within reach. What remains is largely an engineering effort to improve reliability and reduce cost.

1.4 System Integration

Engineering intelligent systems requires more than the existence of computational speed, understanding of
brain function, techniques for knowledge representation, and sensors and algorithms for perception. It
requires a reference model architecture for integrating the many different aspects of perception, world
modeling, knowledge representation, reasoning, decision-making, planning, and control into a unified
system capable of generating appropriate behavior under operational conditions. And it requires a
systematic methodology for engineering software to populate that architecture.

An architecture is a framework consisting of functional modules, interfaces, and data structures. A
reference model architecture defines how the functional modules and data structures are integrated into
subsystems and systems. The architecture represents a framework wherein issues such as functional
modularity, network connectivity, latency, bandwidth, reliability, semantics of communications between
modules, and overall system performance can be addressed. A reference model architecture for intelligent
systems provides a framework for representing knowledge about the environment (e.g., attributes of the
terrain, objects, groups, classes, places, and situations); the mission (e.g., goals, tasks, plans, schedules,
intentions, and priorities); and rules of behavior (e.g., beliefs, values, cost, risk, and worth). A reference
architecture provides infrastructure for perception, attention, and cognition, including methods for
reasoning, modeling, planning, guessing, and learning. And it defines human-machine interfaces (e.g.,
displays and controls for operators, simulation and training environments for users, and programming and
debugging tools for software developers.)

There are a number of architectures that have been developed for building intelligent systems. Some of
these such as Soar [18], ACT-R [19], Pilot’s Associate, and various Black-Board and Expert Systems
architectures are designed to model high-level cognitive elements of human reasoning. Others such as
Subsumption [2] are designed to model low-level reactive behaviors. Still others such as AuRA [5] 3-T
[6], Claraty [7], and 4D/RCS [4] are hybrid architectures designed to combine high-level planning with
low-level behaviors.

1.5 Engineering Methodology

The development of an engineering methodology methodology that enables the embedding of tactical
behaviors in the reference model architecture will be the subject of Chapter 2, and thus will not be
elaborated here.

2. The 4D/RCS Reference Model Architecture

4D/RCS (4Dimension/Real-time Control System) is the latest version of the RCS (Real-time Control
System) reference model architecture for intelligent control system design that has evolved over the past 30
years at NIST and elsewhere.

4D/ RCS addresses the full range of complexity inherent in embodied cognitive systems, from sensing
through perception to cognition, decision making, planning and control of appropriate behavior in real-
world environments. It incorporates and integrates many different and diverse concepts and approaches
into a harmonious whole. It is hierarchical but distributed, deliberative yet reactive. It spans the space

5

between the cognitive and reflexive, between planning and feedback control. It shows how high level goals
can be decomposed and merged with sensory feedback to generate action that is both goal directed and
sensory interactive. RCS bridges the gap between spatial distances ranging from kilometres to millimetres,
and between time intervals ranging from months to milliseconds. And it does so in small regular steps,
each of which can be easily understood and readily accomplished through well known computational
processes.

RCS has been used by many different engineers for building controllers for a wide variety of robots and
intelligent systems. These include laboratory robots, machine tools, inspection machines, intelligent
manufacturing systems, industrial robots, automated general mail facilities, automated stamp distribution
systems, automated mining equipment, unmanned underwater vehicles, autonomous operations for nuclear
submarines, and unmanned ground vehicles [8]. All implementations of RCS have resulted in real-time
intelligent control systems for industrial or military machines operating on realistic objects in real world
applications. Simulators have been built for software development and testing, but the emphasis has
always been on control of embodied systems.

RCS was originally inspired by a study of the neurological structures in the spinal cord and cerebellum that
provide coordinated dynamic control of muscles in the performance of skilled movements. The basic
design principle was the combining of commands from higher motor centers with feedback from sensors in
the muscles, joints, and tendons, and the transforming of these inputs into control signals to drive the
muscles in producing appropriate behaviors. This principle was formalized as a theory of cerebellar
function, and implemented in a neural model of the cerebellum that demonstrated the ability to learn simple
coordinated motions [22,23]. A neural network based on this model (the Cerebellar Model Articulation
Controller (CMAC)) was developed [24,25] that has subsequently been used by a number of researchers for
building controllers with the ability to learn simple behavioral skills [20,21]. The principle of top-down
control merging with bottom-up feedback remains a central feature of RCS today. Sensory processing is
influenced both by top-down expectations and bottom-up observations. World modeling is controlled both
by behavioral priorities and sensory feedback. Behavior generation is driven both by task goals and world
model situation assessments.

The first version of RCS was developed as a real-time sensory-interactive goal-directed control system for
a laboratory robot. Over the next 3 decades, the RCS reference model evolved from a neural model of
coordinated dynamic control into a cognitive architecture that bridges the gap between the fields of
artificial intelligence, image understanding, and modern control theory.

4D/RCS was developed for the Army Research Lab Demo III Experimental Unmanned Vehicle (XUV)
program [9]. 4D/RCS combines the RCS design concept with the 4D approach to machine vision
developed by Dickmanns et al. for autonomous highway driving [1,26].

4D/RCS provides an organizational framework of intelligent control nodes, each of which has a well
defined role, responsibilities, span of control, range of interest, and resolution of detail in space and time.
These can be configured to conform to any type of task management structure, including a military style
hierarchical command and control structure. They can be reconfigured at any time in response to
requirements imposed by changing operational orders, battlefield losses, or reinforcements.

An example of a 4D/RCS reference model architecture for a single vehicle in a scout platoon attached to a
battalion is shown in Figure 1. The architecture consists of a multi-layered multi-resolutional hierarchy of
computational nodes, each containing elements of sensory processing (SP), world modeling (WM), value
judgment (VJ), behavior generation (BG), and a knowledge database (KD) (included in the WM in Figure
1). Behavior generation plans and executes actions. Sensory processing transforms sensor data into
perceived and classified objects, events, and situations. WM processes maintain the KD that is the node’s
current best estimate of the external world at the scale and resolution that is appropriate for BG planner and
executor processes. The WM also generates predictions – both for BG planning and SP recursive
estimation. Value judgment evaluates the costs and benefits of predicted results of simulated plans for BG.
VJ also computes the level of confidence assigned to information stored in the KD, and assigns worth to

6

perceived objects, events, and situations. Each node in the architecture represents an operational unit in an
organizational hierarchy.

Processing nodes are organized such that the BG processes form a chain of command. There are, in
addition, horizontal communication pathways within nodes, and information in the knowledge database is
shared between WM processes in nodes above, below, and at the same level within the same subtree. On
the right in Figure 1, are examples of the functional characteristics of the BG processes at each level. On
the left, are examples of the scale of maps generated by the SP processes and populated by the WM in the
KD at each level. Sensory data paths flowing up the SP hierarchy typically form a graph, not a tree. VJ
processes are hidden behind WM processes in the diagram. A control loop may be closed at every node.
An operator interface may provide input to, and obtain output from, processes in every node (Numerical
values are representative examples only. Actual numbers depend on parameters of specific vehicle
dynamics).

Figure 1. A 4D/RCS reference model architecture for an autonomous vehicle in a scout platoon.

Throughout the 4D/RCS hierarchy, interaction between SP, WM, VJ, BG, and KD give rise to perception,
cognition, and reasoning. At lower echelons, the nodes generate goal-seeking reactive behavior where
representations of space and time are short-range and high-resolution. At higher echelons, nodes generate
goals and deliberative behavior where representations of space and time are long-range and low-resolution.
This enables high-precision fast-action response at low echelons, while long-range plans and abstract
concepts are being simultaneously formulated over broad regions of time and space at high echelons.
Typically, planning horizons expand by an order of magnitude in time and space at each higher echelon.

This hierarchical decomposition of roles and responsibilities provides a way to manage computational
complexity. Each node at each level has a well defined and limited set of task skills. Each node relies on
the echelon above to define goals and priorities, and provide long-range plans. Each node relies on the
echelon below to carry out the details of assigned tasks. Within each node, the KD provides a model of the
external world at a range and resolution that is appropriate for the behavioral decisions that are the
responsibility of that node.

Each 4D/RCS node is designed to carry out specific duties and responsibilities. Each node is assigned a
specified span of control, both in terms of supervision of subordinates, and in terms of range and resolution

O
PE

R
A

T
O

R
 I

N
T

E
R

FA
C

E

SP WM BG

SP WM BG

SP WM BG

SP WM BG

Pixels

5 m
maps

50 m
maps

SP WM BG SP WM BG

SP WM BG

0.5 second plans
Steering, speed

5 second plans
Subtask on object surface
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

SUBSYSTEM

SURROGATE SECTION

SURROGATE PLATOON

SENSORS AND ACTUATORS

Plans for next 2 hours

Plans for next 24 hours

0.05 second plans
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

500 m maps

LocomotionCommunication Mission Package

VEHICLE Plans for next 50 seconds
Task to be done on objects of attention

Plans for next 10 minutes
Tasks relative to nearby objects

5 km maps

50 km maps

RSTA

500 km maps SURROGATE BATTALION

Tasks relative to distant objects

Daily schedule of tasks

7

in space and time. Typically, control loops (or OODA loops1) are closed through each 4D/RCS control
node. Each node in the 4D/RCS hierarchy has a characteristic loop latency and update rate. Loop
bandwidth tends to decrease at higher echelons in the hierarchy, while span of control increases at each
higher echelon. One reason for the decline in loop bandwidth at the higher echelons is that patterns that
span greater range in time and space take longer to recognize. Another reason is that it takes longer to
generate plans in a larger search space.

As shown in Figure 1, there are surrogate nodes within each vehicle for the Section, Platoon, and Battalion
echelons. These enable any vehicle to assume the role of a command vehicle for a section, platoon, or
battalion commander. They also provide each vehicle with higher echelon plans, models, goals, and
priorities during those periods of time when the vehicle is not in direct communications with its supervisor.
For Army vehicles on the ground, this frequently occurs. Surrogate nodes enable single vehicles or groups
of autonomous vehicles to cooperate effectively and act appropriately, even when contact with human
operators is interrupted.

When 4D/RCS is applied to a system-of-systems, there is node for each organizational unit in the chain of
command. At the Vehicle echelon, there is a 4D/RCS node for each vehicle. At the Section echelon, there
is a node for each section, at the Platoon echelon a node for each platoon, and at the Battalion echelon a
node for each battalion. Duties and responsibilities at these upper echelons involve tactics, techniques, and
procedures that require a significant degree of interaction between manned and unmanned vehicles, and a
great deal of sophistication in perception, situation understanding, and tactical reasoning. Plans are
developed for tasks lasting minutes to hours. 4D/RCS nodes at the Section, Platoon, and Battalion echelons
are currently implemented by human commanders and their staff, using computer-assisted data fusion,
situation assessment, modeling, simulation, and planning systems. Tactics are developed that make best
use of unmanned ground and air vehicles by assisting manned vehicles to maximize effectiveness and
minimize causalities.

Figure 2 shows a first level of detail in a typical 4D/RCS node. In each node, a behavior generation
process accepts task commands with goals and parameters from a behavior generation process at the next
higher echelon, and issues commanded actions with subgoals and parameters to one or more behavior
generation process at the next lower echelon.

Figure 2. Internal structure of a 4D/RCS node.

* OODA refers to Observe, Orient, Decide, and Act [10]. The OODA loop was developed by Col John Boyd, USAF
(Ret).

KNOWLEDGE
DATABASE

SENSORY
PROCESSING

BEHAVIOR
GENERATION

PLAN

PREDICTED
INPUT

UPDATE

STATE

P
L

A
N

R

E
SU

L
T

S

PLAN

SIT
U

A
T

IO
N

E

V
A

L
U

A
T

IO
N

OBSERVED
INPUT

COMMANDED
ACTIONS (SUBGOALS)

PERCEIVED &
CLASSIFIED OBJECTS,
EVENTS &
SITUATIONS

COMMANDED
TASK (GOAL)

OPERATOR
INTERFACE

VALUE
JUDGMENT

WORLD
MODELING

EVALUATION

STATUS

STATUS
SENSORY

INPUT

SENSORY
OUTPUT

PEER INPUT
OUTPUT

RCS Node

TO HIGHER AND
LOWER ECHELON
WORLD MODELING

8

Each node reports on the status of its current task to its supervisor, and receives status reports from each of
its subordinates. Within the node, tentative plans are submitted by BG to WM where expected results are
simulated. These are sent to VJ for evaluations that are returned to BG for decision making. This is a
planning loop.

Each node also receives sensory input from lower levels of the SP hierarchy. This is compared with
predicted input from WM. Variance between predictions and observations are used by WM to update KD.
This is a recursive estimation loop. SP algorithms in each node also perform attention, segmentation, and
classification operations. Perceived and classified entities, events, and situations are evaluated by VJ and
entered into the KD by WM. Output from SP is forwarded up the SP hierarchy.

In each node, WM processes maintain a rich and dynamic database of knowledge about the world in the
form of images, maps, entities, events, and relationships, all of which are represented at a scale and
resolution optimal for performing the perceptual and behavioral responsibilities of that node. Other WM
processes use the knowledge database to generate estimates and predictions that support perception,
reasoning, and planning appropriate to that node. VJ processes in each node assign worth and importance to
objects and events, compute confidence levels for variables in the knowledge database, and evaluate the
anticipated results of hypothesized plans.

Communications between WM and SP processes in each node provide the information required for
focusing attention, segmentation, grouping, and recursive estimation of attributes and state, and
classification of objects, events, and relationships. Interactions between WM and BG processes provide the
simulation and modeling capabilities required for decision-making, planning, feedforward and feedback
control.

The 4D/RCS architecture also provides well-defined human-machine interfaces that allow human operators
to interact with the intelligent control modules, to monitor what is going on in any node, and/or to provide
supervision, or exert control in any node, at any time at any echelon of the hierarchy. In Figure 2, solid
lines indicate normal data pathways. Dotted lines indicate channels by which an operator can peek and
poke at data, and insert or modify control commands.

Figure 3 shows a second level of detail in a typical 4D/RCS node. The BG process accepts tasks and plans
and executes behavior designed to accomplish those tasks. The internal structure of the BG process
consists of a planner and a set of executors (EX). At the upper right of Figure 3, task commands from a
supervisor BG process are input. A planner module decomposes each task into a set of coordinated plans
for subordinate BG processes. For each subordinate there is an Executor that issues commands, monitors
progress, and compensates for errors between desired plans and observed results. The Executors use
feedback to react quickly to emergency conditions with reflexive actions. Predictive capabilities provided
by the WM may enable the Executors to eliminate delays in the feedback loop, and even generate pre-
emptive behavior.

9

Figure 3. A second level of detail of processes within a typical 4D/RCS computational node.

SP processes operate on input from lower echelons and sensors by windowing (i.e., focusing attention),
grouping (i.e., segmentation), computing attributes, filtering (i.e., recursive estimation), and classifying
(e.g., recognizing) entities, events, and situations.

A VJ process evaluates expected results of tentative plans. VJ process also assigns confidence and worth to
entities, events, and situations entered into the KD.

Figure 3 also illustrates that each node contains both a deliberative and a reactive component. Top-down,
each node generates and executes plans designed to satisfy task goals, priorities, and constraints conveyed
by commands from above. Bottom-up, each node closes a reactive control loop driven by feedback from
sensors. Within each node, deliberative plans are merged with reactive behaviors. Whenever the planner
develops a new plan, it is substituted for the old plan in the plan buffers of the Executors. Each Executor
treats its current plan as a reference trajectory. It uses planned actions as feedforward control signals, and
uses the difference between planned states and estimated states as feedback control signals.

2.1 Planners

In 4D/RCS, plans may be generated by any of a variety of planning algorithms, e.g., case-based reasoning,
search-based optimization, or schema-based scripting. Planning is distributed throughout the hierarchy.
Each RCS node has its own autonomous planner that generates plans for the agents in its operational unit.
Any node can accept plans from an outside source such as a human operator. Typically, planning at the
lower echelons is performed autonomously on-board the unmanned vehicle, and planning at the upper
echelons is done interactively by a human operator using a computer assisted planner in a human-robot
interface.

Predicted
Sensory Input

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

Agent1

Subtask
Command

Output

Subtask
Command

Output

Subtask
Command

Output

WORLD
MODELING

SIMULATOR
PREDICTOR

VALUE
JUDGMENT

cost
benefit

EXECUTOR

PLAN

BEHAVIOR
GENERATION

Expected
Results

Tentative
Plans

Images
Maps

Entities
Events
States

Attributes
Predicted

States

Task
Command

Input

EXECUTOR

PLAN

EXECUTOR

PLAN

Task Decomposition
PLANNER

KD

SENSORY
PROCESSING

Classify
Filter
Compute
Group
Window

BG
WMSP

VALUE
JUDGMENT

value

confidence

Classified
Sensory Output

Observed
Sensory Input

4D/RCS Node

Variance

10

There are two methods for generating plans that are currently being implemented in 4D/RCS.

2.1.1 Case-Based Planning
Case-based planning uses situation-action logic as the primary method of task decomposition. Case-based
planning uses a library of plans represented as state-graphs (or state-tables) with at least one plan for each
task command. There are typically two types of case-based planning: one that decomposes a task into job
assignments for multiple agents, and a second that decomposes each agent’s job assignment into a schedule
that may be coordinated with peer agents. Slots for parameters such as priorities, constraints, tolerances,
modes, and speeds may be filled in at planning time. This approach is discussed further in Chapter 2.

2.1.2 Search-Based Planning
Search-based planning performs a search over the space of possible states and actions to find the best
course of action, or the best sequence of subgoal states, to achieve the goal. Search-based planning may
use a map or spatial graph with cost overlays to evaluate various possible paths through the map or graph.
Typically, this requires a model that predicts how each planned action will affect the system state at the
appropriate level of resolution. Alternatively, search-based planning may use an inverse model that
predicts what actions are required to generate a sequence of desired states. In either case, the planner
generates a series of planned actions and resulting states that predict how the system is expected to behave
in the real world environment. These simulated actions and predicted states can then be evaluated by a
cost-function that takes into account constraints and priorities that are passed down from higher echelons,
as well as uncertainties and knowledge about the environment from sensors. A typical cost-function for an
autonomous ground vehicle may take into account the cost of fuel or time, the traversibility of terrain, the
estimated cost of collision with various types of objects, the risk of detection or attack by an enemy, and the
benefit or payoff of achieving or maintaining a goal.

Search-based planning is a widely researched field. A large variety of planning techniques have been
reported in the literature. One algorithm that has proven particularly efficient is the incremental creation
and evaluation of the planning graph. This incremental approach reduces the number of planning-graph
nodes that must be created and evaluated to find the cost-optimal path through the planning graph. This
approach is discussed further in Chapter 3.

3. 4D/RCS for Demo III

Figure 4 is a view of the first five echelons in a chain of command passing through the locomotion
subsystem of the 4D/RCS architecture developed for Demo III. On the right of Figure 4, Behavior
Generation (consisting of Planner and Executor) decompose high level mission commands into low level
actions. The text inside the Planner at each echelon indicates the planning horizon at that echelon.

At all echelons, 4D/RCS planners are designed to generate new plans well before current plans
become obsolete. Thus, action always takes place in the context of a recent plan, and feedback through the
executors closes reactive control loops using recently selected control parameters. To meet the demands of
dynamic battlefield environments, the 4D/RCS architecture specifies that replanning should occur within
about one-tenth of the planning horizon at each echelon.

The Executor at each echelon executes the plan generated by the Planner. Meanwhile, the Planner
is replanning based on an updated world state. Each planner has a World Model simulator that is
appropriate for the problems encountered within the node at its echelon. The Planners and Executors
operate asynchronously. At each echelon, the Planner generates a new plan and the Executor outputs new
commands to subordinates on the order of ten times within each planning horizon. At each lower echelon,
the planning horizons shrink by a factor of about ten. The relative timing relationships between echelons
are designed to facilitate control stability and smooth transitions among hierarchical control echelons. The
timing numbers in Figure 4 are illustrative only. The actual rates may differ in different applications.

At all echelons, Executors are designed to react to sensory feedback more quickly than the
replanning interval. The Executors monitor feedback from the lower echelons on every control cycle.
Whenever an Executor senses an error between its output CommandGoal and the predicted state (status

11

from the subordinate BG Planner) at the GoalTime, it may react by modifying the commanded action so as
to cope with that error. This closes a feedback loop through the Executor at that echelon within a specified
reaction latency.

At the bottom of Figure 4 are actuators that act on the world and sensors that measure phenomena
in the world. 4D/RCS is designed to accommodate a variety of sensors that include a LADAR, stereo CCD
cameras, stereo FLIRs, a color CCD, vegetation penetrating radar, GPS (Global Positioning System), an
inertial navigation package, actuator feedback sensors, and a variety of internal sensors for measuring
parameters such as engine temperature, speed, vibration, oil pressure, and fuel level.

To the left of the Planners and Executors are maps used for path planning. At each echelon, the
planning maps have range and resolution that are appropriate for path planning at its echelon. The bottom
(Servo) echelon has no map representation. The Servo echelon deals with actuator dynamics and reacts to
sensory feedback from actuator sensors. The Primitive echelon map has range of 5 m with resolution of 4
cm. This enables the vehicle to perform precise maneuvers such as parking or moving through narrow
passages, and to make small path corrections to avoid bumps and ruts. The Primitive echelon uses
accelerometer data to control vehicle dynamics and prevent roll-over during high speed driving. The
Subsystem echelon map has range of 50 m with resolution of 40 cm. This map is used to plan about 5 s
into the future to find a path that avoids obstacles and provides a smooth and efficient ride. The Vehicle
echelon map has a range of 500 m with resolution of 4 m. This map is used to plan paths about 1 min into
the future taking into account terrain features such as roads, bushes, gullies, or tree lines. The Section
echelon map has a range of 5 km with resolution of about 40 m. This map is used to plan about 10 min into
the future to accomplish tactical behaviors. Higher echelon maps (not shown in Figure 4) can be used to
plan platoon, company, and battalion missions lasting about 1, 5, and 24 h respectively. These are derived
from military maps and intelligence provided by the digital battlefield database.

On the far-left of Figure 4 are five levels of sensory processing. At each level there are segmented images
with labeled regions (or entities), symbolic frames representing entities, and links between the image
regions and frames. In the center are coordinate transforms that use range information to assign pixels and
regions in images on the left to regions in maps on the right. The maps have range and resolution defined
by the planning horizon of the planners at each echelon. The images have resolution and field of view
defined by the imaging optics and the attention window.

12

Figure 4. Five layers in a chain of command through the 4D/RCS architecture.

During the Demo III program, only the first three echelons in the locomotion subsystem of the 4D/RCS
reference model architecture were implemented. Most of the emphasis was focused on the Subsystem
echelon where terrain maps were overlaid with traversability costs, and planning algorithms were used to

N

5000 m range
40 m resolution

object
image

object
image

N N

50 m range
40 cm resolution

- 1 min horizon

EXECUTOR

VEHICLE
PLANNER

500 m range
4 m resolution

object
image

object
image

1

2

6

3

54

WM
simulator

pointers
object
image

vehicle

ground

sky
tree

rock

hill

N

classification
confirm grouping

filter
compute attributes

grouping
attention

building

vehicle

5 m range
4 cm resolution

FRAMES
Entities, Events

Attributes
States

Relationships

IMAGES
Labeled Regions

Attributes

MAPS
Labeled Features

Attributes
Icons

MAPS
Cost, Risk

Plans

EXECUTOR

ACTUATORSENSORS

WORLD

SENSORY
PROCESSING

WORLD MODELING
VALUE JUDGMENT BEHAVIOR GENERATION

groups

objects

surfaces

lists

pixel attributes

- 5 s horizon

EXECUTOR

SUBSYSTEM
PLANNER

EXECUTOR

PRIMITIVE
PLANNER

50 ms horizon

EXECUTOR

SERVO
PLANNER

vehicle state
sensor state

SP1
actuator state

ladar
signals

stereo CCD
signals

stereo FLIR
signals

color CCD
signals

radar
signals

actuator
signals

navigational
signals

actuator
power

SP5

pixels

compute attributes, filter, classification

labeled
pixels

labeled
lists

labeled
surfaces

labeled
objects

labeled
groups

WM
simulator

WM
simulator

WM
simulator

WM
simulator

N N

status

status

status

status

status

classification
confirm grouping

filter
compute attributes

grouping
attention

classification
confirm grouping

filter
compute attributes

grouping
attention

classification
confirm grouping

filter
compute attributes

grouping
attention

SP4

SP3

SP2

pointers
object
image

vehicle

ground

sky
tree

rock

hill
building

coordinate
transformations

SECTION
PLANNER

- 10 min horizon

Section Task
Command

a priori
maps

500 ms horizon

Vehicle
Task

Subsystem
Task

Primitive
Task

Servo
Task

Plan

Plan

Plan

Plan

Plan

13

search for the lowest cost path out to the visual horizon provided by the LADAR camera. Higher echelon
path planning using Digital Terrain Databases was performed in the Human-Robot Interface (HRI). Plans
generated in the HRI were sent to the XUV in the form of Vehicle echelon plans. The point where a
Vehicle echelon plan intersected the Subsystem echelon planning horizon was chosen as a goal for the
Subsystem echelon path planner. The Primitive echelon BG process used a “Pure Pursuit” algorithm to
generate commands to the Servo echelon, where a position servo algorithm was implemented to control
hydraulic steering actuators and hydrostatic wheel motors. Additional details are available from Chapter 10.

The most recent implementation of the 4D/RCS architecture resides on the ARL/NIST HMMWV mobility
testbed. On this vehicle, both feedforward and feedback algorithms have been implemented at the Servo
echelons to provide precise steering and speed control. Algorithms at the Primitive echelon generate
dynamically safe paths defined by straight lines and constant curvature arcs, with blending to minimize
jerk. Path planning at the Subsystem echelon provides obstacle avoidance and gaze control for mobility
sensors. The most recent application of 4D/RCS also addresses issues at the Vehicle, Section, and Platoon
echelons where tactical behaviors for missions such as route reconnaissance are being developed. The
Vehicle echelon coordinates all activities on the vehicle, including gaze control for distant vision,
communications with the C4ISR network, and mission packages such as weapons and countermine sensors.
More details are available from Chapter 3.

4. Representing Knowledge in 4D/RCS

The 4D/RCS architecture is designed to accommodate multiple types of knowledge representation
formalisms and provide an elegant way to integrate these formalisms into a common unifying framework.
This section will briefly describe the types of knowledge representations that have been researched and/or
implemented within the 4D/RCS architecture for autonomous driving and the mechanisms that have been
deployed to integrate them. More detail is provided in Chapter 4.

The 4D/RCS architecture represents knowledge in both declarative and procedural forms. Declarative
knowledge resides in the Knowledge Database (KD) in the form of images, maps, entities, events,
attributes, states, episodes, and relationships. Procedural knowledge resides in BG processes in the form of
rules, formulae, programs, procedures, recipes, scripts, and algorithms for decision-making, learning,
planning, and control. Procedural knowledge also resides in SP and WM processes for perception and
world modeling.

4.1 Declarative Knowledge

Declarative knowledge is about the condition of the world. Declarative knowledge may describe the size,
shape, state (i.e., position, orientation, velocity), and class of entities. It may describe the start-time,
duration, frequency, or temporal pattern of events. Declarative knowledge may also describe the spatial or
temporal relationships that exist between and among entities and events in places and situations.
Declarative knowledge is represented in a format that may be manipulated, decomposed, and analyzed by
reasoning engines.

Declarative knowledge enables a system to know the current state of the environment and its own situation
relative to other entities in the environment. Declarative knowledge enables a system to reason logically or
mathematically to predict what will result from possible future actions and events. Two types of
declarative knowledge that are captured within 4D/RCS are symbolic and iconic.

4.1.1 Symbolic Knowledge
Symbolic knowledge representations use abstract data structures (such as LISP frames, C structs, or C++
objects and classes) to represent things (e.g., actions, entities, or events) in the world that can be referenced
by name. 4D/RCS uses entity and event frames to represent symbolic knowledge. An example of an entity
frame is shown in Figure 5.

14

NAME = entity_id (uncertainty) // this is the frame address in the KD

// attributes – these are characteristics that address the question What?
color = red, green, blue intensities
size = length, height, width dimensions
shape = curvature, moments, axes of symmetry, etc.

// state – these are dynamic properties that address the question Where?
position = azimuth, elevation, range (uncertainty)
orientation = roll, pitch, yaw (uncertainty)
velocity =v-azimuth, v-elevation, v-range, v-roll, v-pitch, v-yaw (uncertainty)

// class – pointers to the entity image and classes to which the entity belongs
entity image = pointer to the entity image in which the entity appears
generic class1 = pointer to the generic class1 prototype
generic class2 = pointer to the generic class2 prototype
generic class3 = pointer to the generic class3 prototype

// value or worth of the entity
worth to preserve = value of preserving
worth to acquire = value of acquiring
worth to defend = value of defending
worth to defeat = value of defeating

// pointers that define parent-child relationships
belongs to = pointer to parent entity
has part1 = pointer to subentity1
has part2 = pointer to subentity2
has part3 = pointer to subentity3

// pointer that define situational relationships
on top of = pointer to entity below
beside-right =pointer to entity on right

// queues that store short-term state history and expected future states
short term memory = pointer to STM queue
short term expectations = pointer to STE queue

// functions that define behavior
behavior1 = responds-to
behavior2 = acts-like

Figure 5. The structure of a typical entity frame.

The entity name is an address or index by which the entity frame can be accessed in a database or library of
entities, and to which other entity frames can be linked. An uncertainty parameter can be associated with
the name to indicate how certain the system is that the entity has been properly identified. The entity frame
contains entity attributes that describe attributes such as color, size, and shape. Entity attributes are
characteristics and properties of the region occupied by the entity. Observed entity attributes can be
computed by integrating attributes of the pixels belonging to the entity in the observed image. Predicted
entity attributes can be computed by applying a model-based predictor to recently estimated entity
attributes stored in the world model. This is a recursive filter approach to perception.

Entity state-variables describe dynamic properties such as position, orientation, and velocity of the entity in
a particular coordinate system. These can be used as parameters in world modeling processes for

15

prediction and simulation, and by sensory processing functions for classification, detection, and
recognition. Uncertainty parameters can be associated with state-variables to indicate the dependability of
the estimates of these values. Observed state-variables are typically defined in sensor egosphere coordinate
system (i.e., a polar coordinate system with the sensor at the origin.) Estimated and predicted entity state-
variables may also be in egosphere coordinates, or in some other more convenient coordinate system.

In general, entity state-variables are time dependent. Thus, for each state-variable, there exists a string of
states that define its trajectory through state space. This can be represented in the entity frame by a queue
of states that store a short-term memory trace for each state-variable. Predicted future states of each entity
state-variable can also be represented in an entity frame by a queue of states that represent short-term
expectations for each entity state-variable.

An entity frame may contain a pointer to the image or map in which it appears. This can enable a graphic
engine to overlay entity names or attributes on the image or map. An entity frame may also contain
pointers to the class or classes to which the entity belongs. This enables an observed entity to inherit the
attributes of the class to which it belongs. An entity may have a hierarchy of class pointers. For example
an object entity frame may have a generic class pointer that identifies it as a member of the class of trees.
The object entity frame may also have a second generic class pointer that identifies it as a member of the
class of pine trees, as well as a specific class pointer that identifies it as a particular pine tree.

The entity frame may contain value attributes that define how valuable an object is as a target (if a foe), or
how worth defending (if friend). Value attributes may also define how much a particular entity or situation
should be feared or avoided, what its worth is as a source of shelter or food, or as a vantage point. This
enables a decision process to calculate whether the expected benefit of achieving a situation would be
worth the anticipated cost or risk of pursuing it.

An entity frame may contain pointers that define inheritance relationships with other entities. Each entity
frame has a pointer to the frame of a parent entity of which it is a part, and a set of pointers to frames of
child entities (or sub-entities) that are its parts. For example, an object entity frame typically will have a
parent pointer to the entity frame of the group to which the object belongs. It will have a number of sub-
entity pointers to the surface entity frames of the surfaces and boundaries that are its parts. Inheritance
pointers are established and maintained by grouping and classification operations performed by sensory
processing functions at various levels in the hierarchy.

An entity frame may also contain pointers that define spatial, temporal, causal, or other types of
relationships that pertain to that particular entity. An entity frame may include a set of functions that
describe the behavior of the entity under certain conditions or in response to certain stimuli. Simple
functions may define the behavior of objects under the influence of gravity or friction. Complex functions
may define how the entity might be expected to respond to an attack or a gesture of friendship. Behavioral
functions may include parameters such as speed, endurance, strength, or range of weapons. Behavioral
functions and parameters may be inherited from generic or specific class prototypes. A block diagram of an
entity frame is shown in Figure 6.

16

NAME
attributes
state

pointers

9876543210123456789

belongs-to
has-part1
has-part2
class1
class2

shape
size
color
behavior

position
motion

observed states expected states

Entity
Frame

Figure 6. An entity frame consisting of a name, an attribute vector, a state vector, a queue of
state vectors consisting of observed and expected states, and a set of pointers that describe
relationships with other patterns.

Entity, event, and task frames can be interconnected by pointers to form networks that represent causal,
semantic, and situational relationships. Situational networks may represent situations or geometric
relationships such as “on-top-of”, “beneath”, “to-the-right-of”, “in-front-of”, and “inside-of”. Situational
networks may also have pointers to maps or images that pictorially display spatial relationships. Causal
networks represent the cause-and-effect relationships between entities, events, situations, and actions that
occur in the world. Semantic networks represent the relationships between entities, attributes, situations,
actions, and events that define meaning and enable reasoning, logic, and language. Forward pointers from
images to nodes in a semantic network, and backward pointers from semantic net nodes to images on the
egosphere provide symbol grounding between entities, events, and relationships in the external real-world,
and their corresponding representations in the world model.

4.1.2 Iconic Knowledge
Iconic knowledge provides information about objects and situations in space and time in a manner that
directly represents spatial and temporal relationships (e.g., images, maps, and state trajectories.) Iconic
representations typically use scalars, vectors, or arrays to represent things that can be measured (e.g.,
attributes) about the world. Iconic representations typically subdivide the world and are referenced by
location. The location of each element in an iconic representation often corresponds to (or projects onto) a
dimension or location in physical space. For example, the location of a pixel in an image corresponds to a
geometrical projection of the world onto the image, and vice versa. The location of an element in a vector
or array may also correspond to the location of a tactile sensor on the skin. Iconic depictions are a form of
metrical representations.

Each pixel of an iconic array may be represented by a Boolean or real number representing the value of a
physical attribute such as light intensity, color, altitude, range, or density at that point in the array. Each
pixel may also be represented by a vector of attributes representing the values of spatial or temporal
gradients of intensity, color, and range; or of image flow direction and magnitude. A pixel vector may also
contain a pointer to a symbolic data structure representing an entity (e.g., an edge, vertex, surface, object,
or group) to which the pixel belongs. An array of pixel vectors generates a 3D matrix of attribute, entity,
class, and worth images (as shown in Figure 7).

Iconic representations have scale, and are limited in range and resolution. Both images and maps have a
finite number of pixel elements. Images have limited fields of view and maps have boundaries. Similarly,
temporal events have beginning and end, and can only be sampled at a finite rate.

17

Examples of iconic knowledge currently used within 4D/RCS include maps and images. Maps may be
expressed in a variety of formats including survey and aerial maps, or Digital Terrain Elevation Databases
(DTED) containing information about hydrology, ground cover, roads, bridges, streams, woods, and
buildings. Images include video or LADAR images from cameras mounted on the ground vehicle. To be
useful for path planning beyond line of sight, the information gathered by sensors on the ground vehicle
must be registered with a priori maps provided by external sources.

Figure 7. Attribute, entity, class, and value images. These images are registered to form a 3D
matrix such that each pixel has an attribute vector, a pointer to an entity frame, one or more
pointers to the class(es) to which the pixel belongs, and values assigned to the region where
the pixel is located.

A hybrid iterative algorithm has been developed for registering 3D LADAR range images obtained from
unmanned aerial vehicles with LADAR images obtained from unmanned ground vehicles [13]. Registration
of the UGV LADAR to the aerial survey map minimizes the dependency on GPS for position estimation.

red = rd
blue = bl
green = gr
brightness = I
xgrad = dI/dx
ygrad = dI/dy
tgrad = dI/dt
range = r
rxgrad = dr/dx
rygrad = dr/dy
rflow = dr/dt
xflow = dx/dt
yflow = dy/dt

list name = list entity to which the pixel belongs
surface name = surface entity to which the pixel belongs
object name = object entity to which the pixel belongs
group name = group entity to which the pixel belongs

A
tt

ri
b

u
te

 im
ag

es
E

n
ti

ty

im
ag

es
C

la
ss

im

ag
es

generic class 1 to which the pixel belongs
generic class 2 to which the pixel belongs
generic class 3 to which the pixel belongs
specific class to which the pixel belongs

V
al

u
e

im
ag

es

worth to acquire
cost/risk/worth to traverse
worth to defend
worth to destroy
worth to defeat

18

This is important when GPS estimates are unreliable or unavailable. More details are available from
Chapter 6.

4.2 Procedural Knowledge

Procedural knowledge is the knowledge of how to perform tasks. Procedural knowledge can be captured in
task frames. A task frame is a data structure specifying all the knowledge necessary for accomplishing a
task. A task frame is essentially a recipe consisting of a task name, a goal, a set of parameters, a list of
materials, tools, and procedures, and set of instructions of how to accomplish a task. For each task that a
RCS node is able to perform, there exists a task frame. For example, a task frame may include:

1. the task name (index into the library of tasks the RCS node can perform) The task name is a pointer
or an address in a database where the task frame can be found.
2. a task identifier (unique id for each task command) The task identifier provides a means for keeping
track of tasks in a queue.
3. a task goal (a desired state to be achieved or maintained by the task) The task goal is the desired
result of executing the task.
4. a task goal time (time at which the task goal should be achieved, or until which the goal state should
be maintained)
5. one or more task objects (on which the task is to be performed) Examples of task objects include
objects to be observed, sectors to be reconnoitered, vehicles to be driven, targets to be attacked or
defended, weapons or cameras to be aimed.
6. a set of task parameters (that specify, or modulate, how the task should be performed) Examples of
task parameters are speed, force, priority, constraints, tolerance on goal position, tolerance on goal
time, tolerance on path, coordination requirements, and level of aggressiveness.
7. agents (that are responsible for executing the task) Agents are the subsystems and actuators that
carry out the task.
8. task requirements (tools needed, resources required, conditions that must obtain, information
needed) Tools may include instruments, sensors, and actuators. Resources may include fuel and
materials. Conditions may include temperature, pressure, weather, visibility, soil conditions, daylight
or darkness. Information needed may include the state of a task, or a description of an event or
situation in the world.
9. task constraints (upon the performance of the task) Task constraints may include speed limits, force
limits, position limits, timing requirements, visibility requirements, tolerance, geographical boundaries,
or requirements for cooperation with others.
10. task procedures (plans or schema for accomplishing the task, or procedures for generating plans)
Plans may be prepared in advance and stored in a library, or they may be computed on-line in real-
time. Task procedures may be simple strings of things to do, or may specify contingencies for what to
do under various kinds of circumstances.
11. control laws and error correction procedures (defining what action should be taken for various
combinations of commands and feedback conditions) These typically are developed during system
design, but may be refined through learning from experience.

Some of the slots in the task frame are filled by information from commands. Others are properties of the
task itself and what is known about how to perform it. Still others are parameters that are supplied by the
WM.

The task procedures (slot #10 in the task frame) consist either of plans, or planning procedures for
generating plans. In general, plans can be represented as state-tables (or state-graphs.) State-tables and
state-graphs are duals. The advantage of the state-graph representation is that behavior can easily be
visualized. The advantage of the state-table representation is that state-tables can be directly executed by
an extended finite-state automata. A state-table (or corresponding state-graph) may contain as many state-
dependent branching conditions as necessary to cover the space of things that the system is capable of
doing in response to situations represented in the system’s world model.

Both state-graph and state-table representations can be changed by adding or modifying rules at any node
in the state graph, or by adding nodes to the graph. This enables the 4D/RCS node to learn new rules, and

19

formulate new behaviors to optimize its probability of success. What is required for state-graph learning is
for an expert critic to point out where in the state-graph the system should have performed differently, what
piece of information in the system’s world model should have been used to trigger the different behavior,
and what the different behavior should have been. This is the type of information typically supplied to a
human student by a human instructor or teacher.

State-table representations of task decomposition often call functions to perform mathematical calculations
such as feedback and feedforward control equations. Parameters in these equations can be adjusted by a
variety of machine learning techniques.

5. Perception

Perception is the intelligent system’s window onto the world. Perception begins with sensing and ends
with a World Model containing information that is relevant to the task at hand and adequate for decision-
making and planning.

In biological creatures, perception is a hierarchical process that begins with arrays of tactile sensors in the
skin, arrays of photoreceptors in the eyes, arrays of acoustic sensors in the ears, arrays of inertial sensors in
the vestibular apparatus, arrays of proprioceptive sensors (that measure position, velocity, and force) in the
muscles and joints, and a variety of internal sensors that measure chemical composition of the blood,
pressure in the circulatory system, and several other sensory modalities. Biological perception results in an
awareness of the situation in the world and of the self in relation to the world.

In 4D/RCS, visual perception is a hierarchical process that begins with arrays of pixels in cameras, signals
from inertial sensors and GPS receivers, and signals from actuator encoders. It ends with a world model
consisting of data structures that include a registered set of images and maps with labeled regions, or
entities, that are linked to each other and to entity frames that contain entity attributes (e.g., size, shape,
color, texture, temperature), state (e.g., position, orientation, velocity), class membership (e.g., road, lane
marker, tree, vehicle, pedestrian, building), plus a set of pointers that define relationships among and
between entities and events (e.g., situations.) These provide the autonomous vehicle with awareness of the
world and of itself in relation to objects in the world.

It should be noted that, contrary to popular opinion, perception does not function by reducing a large
amount of sensory data to a few symbolic variables that are then used to trigger appropriate behaviors.
Instead, perception increases and enriches the sensory data by computing attributes and combining it with a
priori information so that the World Model contains much more information (not less) than what is
contained in the sensory input. For example, of the multiple image representations in Figure 7, only the
intensity, color, and range images come directly from sensory input. Enriching the sensory input expands
the dimensionality of the decision space and enables the perception processes to segment the world into
meaningful entities, events, and relationships, and to detect patterns and recognize situations that can then
be bound to symbolic variables that trigger behavior.

To cope with complexity, perception does not treat all regions of the visual world equally. Attention
focuses sensory processing resources on those parts of the world that are important to goal-driven task
decomposition processes, or that are novel or unexpected. Attention masks out (or assigns to the
background) those parts of the sensory input that are irrelevant to task goals, or those aspects of sensory
input that are predictable and therefore not noteworthy. The role of attention is to focus perceptual
resources on what is important for achieving current and near future task goals.

In 4D/RCS, sensory processing generates a hierarchy of image entities and entity frames. These are linked
to a hierarchy of maps with differing range and resolution. It should be noted, however, that the hierarchy
of range and resolution for maps is not parallel with the hierarchy of image entities and entity frames. The
hierarchy of entities is generated by grouping and segmentation processes at each level of the SP hierarchy.
The hierarchy of range and resolution of maps is specified by the planning horizon of the behavior
generation processes in the BG hierarchy that use the maps. This can be seen in Figure 4, where distant

20

objects in the image may appear only in the section echelon map, whereas close objects in the image appear
magnified in the primitive echelon map.

There are five sensory processing steps that may be implemented at each level in the SP hierarchy in Figure
4.

5.1 Focus Attention

At the lowest level in the SP hierarchy, focusing attention means pointing the high resolution part of the
visual field toward those regions of the world that contain information important to the task. At higher
levels, focusing attention means that SP computing resources are committed to regions in the image that are
important to the task, while remaining regions are largely ignored.

5.2 Grouping and Segmentation

Portions of the visual field that belong together must be grouped into entities and segmented from the rest
of the image. At the lowest level, grouping consists of integrating all the energy imaged on each single
pixel in the camera. At higher levels, pixels and entities are grouped according to gestalt heuristics such as
proximity, similarity, contiguity, continuity, and symmetry. Grouping also establishes pointers from
segmented regions in the image to entity frames that contain knowledge about the entity attributes, state,
and relationships. Each grouping operation is a gestalt hypothesis that represents the system’s best guess of
how to interpret the sensory input.

5.3 Computation of Entity Attributes

Attributes and state of each entity must be computed and stored in an entity frame. Attributes may include
size, shape, color, texture, and temperature. State includes position, orientation, and velocity.

5.4 Recursive Estimation

Recursive estimation on entity attributes filters noise and enables the perception system to confirm or deny
the gestalt hypothesis that created the entity in step two. Recursive estimation uses entity state and state-
prediction algorithms to track entities from one image to the next. When predictions correlate with
observations, confidence in the gestalt hypothesis is strengthened. When variance occurs between
predictions and observations, confidence in the gestalt hypothesis is reduced. When confidence rises above
a credibility threshold, the gestalt hypothesis that established the entity is confirmed.

5.5 Classification

Confirmed entity attributes can be compared with attributes of class prototypes. When a match occurs, the
entity can be assigned to the class. Once an entity has been classified, it inherits attributes of the class.
There is a hierarchy of classes to which an entity may belong. For example, an entity may be classified as a
geometrical object, as a tree, as an evergreen tree, as a spruce tree, and as a particular spruce tree. More
computing resources are required to achieve more specific classifications. Thus, an intelligent system
typically performs only the least specific classifications required to achieve the task.

The 4D/RCS architecture suggests that these five steps should be performed at each echelon of the sensory
processing hierarchy.

A simple example of these processes is illustrated in Figure 8. Figure 8(a) is a range image from a high
resolution LADAR camera. The range image in Figure 8(a) is segmented (using a connected components
algorithm based on proximity in 3D space) into the object entity image shown in Figure 8(b). In Figure
8(b), each object is labeled with a different color. For each labeled object entity in Figure 8(b), attributes
are computed and stored in an object entity frame of the form shown on the left in Figure 8(c). The
attributes in the object entity frame are then compared with stored class prototype attributes, as shown on
the right in Figure 8(c). When a match is detected between object attributes and class prototype attributes,

21

the entities in the object entity image are assigned to the matching class, and a class image can be created as
shown in Figure 8(d). In this simple example, only height and width attributes were needed to classify two
objects in Figure 8 as adult humans.

Figure 8(a). A range image of two human mannequins, vehicles, two posts, and a wall in the
background.

Figure 8(b). A segmented entity image. The different colors refer to different objects. Each
pixel in the entity image points to a entity frame with a set of attributes and a class pointer.

Obj(132)

1) number of pixels
2) average range
3) x-centroid
4) y-centroid
5) height
6) width
7) surface texture
8) dominant color
9) pitch orientation
10) roll orientation
11) class
12) entity image ptr

Obj(150)

Obj(12)

Observed attributes

Obj(132)

1) number of pixels
2) average range
3) x-centroid
4) y-centroid
5) height
6) width
7) surface texture
8) dominant color
9) pitch orientation
10) roll orientation
11) class
12) entity image ptr

Obj(150)

Obj(12)

Observed attributes

22

Figure 8(c). When object attributes match class prototype attributes, the objects can be can be
assigned to the matching class.

Figure 8(d). A class image. Each pixel points to the class to which it belongs.

Relationships
between

Frames and
Classes

Obj(132)

1) number of pixels
2) average range
3) x-centroid
4) y-centroid
5) height
6) width
7) surface texture
8) dominant color
9) pitch orientation
10) roll orientation
11) class
12) entity image ptr
13) entity label

Class(adult human)

height
width
surface texture

Obj(150)

Obj(12)

Observed attributes

Class prototype

Relationships
between

Frames and
Classes

Obj(132)

1) number of pixels
2) average range
3) x-centroid
4) y-centroid
5) height
6) width
7) surface texture
8) dominant color
9) pitch orientation
10) roll orientation
11) class
12) entity image ptr
13) entity label

Class(adult human)

height
width
surface texture

Obj(150)

Obj(12)

Observed attributes

Class prototype

23

6. Experimental Results

Experimental validation of the 4D/RCS architecture has been provided by the performance of the Army
Research Lab Demo III eXperimental Unmanned Vehicle (XUV) shown in Figure 9.

Figure 9. The Army Demo III Experimental Unmanned Vehicle. On the left-top is the
LADAR. In the center-top is a Reconnaissance Camera ball. On the right-top is a pan/tilt
unit with a color stereo pair, a FLIR stereo pair, and a color high resolution monocular
camera. The white panel in the center front is for a radar. The front bumper is instrumented
to detect obstacles hidden in the weeds (Photo courtesy of General Dynamics Robotic
Systems).

Four of these XUVs were put through an extended series of demonstrations and field tests during the fall
and winter of 2002-2003. The vehicles were built and operated by General Dynamics Robotic Systems.
The tests were conducted by the National Institute of Standards and Technology. The purpose of the tests
was to show that autonomous mobility technology had reached a technology readiness level where a system
prototype could be demonstrated in a relevant environment.

The XUVs were equipped with an inertial reference system, a commercial grade GPS receiver (accurate to
about +/- 20 m), a LADAR camera with a frame rate of 10 frames per second, and a variety of internal
sensors. The LADAR had a field of view 90 degrees wide and 20 degrees high with resolution of about ½
degree per pixel. It was mounted on a pan/tilt head that enabled it to look in the direction that it planned to
drive. The LADAR was able to detect the ground out to a range of about 20 m, and detect vertical surfaces
(such as trees) out to a range of about 60 m. Routes for XUV missions were laid out on a terrain map by
trained Army scouts, and given to the XUVs in terms of GPS waypoints spaced more than 50 m apart.

During the technology readiness tests, the XUVs operated completely autonomously until they got into
trouble and called for help. Typical reasons for calling for help were the XUV was unable to proceed
because of some terrain condition or obstacle (such as soft sand on a steep slope, or dense woods), and was
unable to find an acceptable path plan after several attempts at backing up and heading a different direction.
At such a point, an operator was called upon to teleoperate the vehicle out of difficulty. During these
operations, data was collected on the cause of the difficulty, the type of operator intervention required to
extract the XUV, the time required before the XUV could be returned to autonomous mode, and the work
load on the operator.

During three major experiments designed to determine the technology readiness of autonomous driving, the
Demo III experimental unmanned vehicles (XUVs) were driven a total of 550 km, over rough terrain: 1) in
the desert, 2) in the woods, 3) through rolling fields of weeds and tall grass, 4) on dirt roads and trails, and
5) through an urban environment with narrow streets cluttered with parked cars, dumpsters, culverts,

24

telephone poles, and mannequins. Tests were conducted under various conditions including night, day,
clear weather, rain, and falling snow (See Figure 10). The unmanned vehicles operated without any
operator assistance over 90% of both time and distance. A detailed report of these experiments has been
published [11]. High resolution LADAR ground truth data describing the terrain where the XUVs
experienced difficulties was also gathered and analyzed [14]. Chapter 9 describes the technology readiness
level experiments in more detail.

Figure 10. An Army Demo III eXperimental Unmanned Vehicle driving autonomously
through the woods during a snow storm at Ft. Indiantown Gap, Pennsylvania in January,
2003.

It should be noted that the Demo III technology readiness tests were performed in environments devoid of
moving objects such as on-coming traffic, pedestrians, or other vehicles. The inclusion of moving objects
in the environment, and the development of perception, world modeling, and planning algorithms for
operating in the presence of moving objects is a topic of current research.

7. Summary

The 4D/RCS reference model architecture has enabled the integration of perception, knowledge
representation, planning, adaptation, learning, and control into a system of systems that enables intelligent
behavior in single autonomous vehicles, as well as groups of vehicles that include semi-autonomous
manned vehicles, and unmanned ground and air vehicles.

The 4D/RCS architecture provides a framework for integrating high-level cognitive functions with low-
level reactive behaviors in a unified real-time control system design.
4D/RCS is hierarchical but distributed, deliberative yet reactive. It spans the space between the cognitive
and reflexive, between planning and feedback control. It bridges the gap between spatial distances ranging
from kilometers to millimeters, and between time intervals ranging from months to milliseconds. And it
does so in small regular steps, each of which can be easily understood and readily accomplished through
well known computational processes.

Each organizational unit in 4D/RCS refines tasks with about an order of magnitude increase in detail, and
an order of magnitude decrease in scale, both in time and space. At the upper levels, most of the
computational power is spent on cognitive tasks, such as analyzing the past, understanding the present, and
planning for the future. At the lower levels, most of the computational power is spent in motor control, and
the early stages of perception.

Yet at every level, the computational infrastructure is fundamentally the same (except for scale in time and
space). The architecture consists of generic computational nodes and modules (that theoretically could be

25

implemented as neural nets, or finite state automata, or production rules). Each node accepts inputs and
produces outputs with specified range and resolution in time and space. Knowledge is represented in arrays
(images and maps), strings, pointers, frames (entities and events), and rules. At various levels and in many
different ways, computational nodes (groups of agents) process sensory data, model the world, and
decompose high-level intentions into low-level actions. Within each node, this process is both limited in
complexity and finite in scope.

4D/RCS makes the processes of intelligent behavior understandable in terms of computational modules that
can be engineered into practical machines. The 4D/RCS architecture can be implemented using a software
development methodology described in Chapter 2. The 4D/RCS methodology provides software
development guidelines and tools for the capture of knowledge, skills, and abilities from textbooks, subject
matter experts, and experience in real and virtual training environments.

Many current DOD projects have chosen 4D/RCS as a reference model architecture. These include, the
Army Research Lab Robotics Collaborative Technology Alliance, the Army Future Combat System
Autonomous Navigation System, and the Army Tank Automotive Research, Development, and
Engineering Center Vetronics Integration program.

It should be noted, however, that many features of the 4D/RCS reference model architecture have yet to be
fully implemented in any application. Although the fundamental concept has been demonstrated as valid,
and the more advanced features have been shown to be feasible, much more work remains to be done
before the 4D/RCS architecture is fully populated with operational software.

The problem of autonomous driving is far from solved. There is still much left to do. Many new
algorithms need to be developed for attention, segmentation, grouping, recursive estimation, predictive
filtering, world modeling, knowledge representation, decision-making, reasoning, planning, reacting, and
controlling actuators. Many new approaches to perception, cognition, and behavior need to be developed
and tested.

References

1. Dickmanns, E.D., Graefe, V. “Dynamic Monocular Machine Vision”, and “Application of Dynamic

Monocular Machine Vision”, Journal of Machine Vision and Applications, pp. 223-261, November
1988.

2. Brooks, R.A. “A Robust Layered Control System for a Mobile Robot”, IEEE Journal of Robotics and
Automation, RA-2, pp. 14-23, 1986.

3. An Overview of the BlueGene/L Super Computer, The BlueGene Team,
http://www.llnl.gov/asci/platforms/bluegenel/sc2002-pap207.pdf, 2002.

4. Albus, J., et al. “4D/RCS: A Reference Model Architecture for Unmanned Vehicle Systems”, Version
2.0, NISTIR 6910, National Institute of Standards and Technology, Gaithersburg, MD 20899, 2002.

5. Arkin, R.C. “Behavior-Based Robotics”, MIT Press, Cambridge, MA, 1998.
6. Gat, E. “Three-Layer Architectures. In Mobile Robots and Artificial Intelligence”, D. Kortenkamp, R.

P. Bonasso, and R. Murphy (eds.), pp. 195-210, Menlo Park, CA, AAAI Press, 1998.
7. Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R., Das, H. “CLARAty: Coupled Layer

Architecture for Robotic Autonomy” JPL Technical Report D-19975, December 2000.
8. Albus, J. “The NIST Real-time Control System (RCS): An Approach to Intelligent Systems

Research”, Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, pp. 157-174, 1997.
9. Shoemaker, C., Bornstein, J., Myers, S., and Brendle, B. “Demo III: Department of Defense Testbed

for Unmanned Ground Mobility”, SPIE Conference on Unmanned Ground Vehicle Technology, SPIE
Vol. 3693, Orlando, FL, April 1999.

10. http://www.12manage.com/methods_boyd_ooda_loop.html
11. Camden, R., Bodt, B., Schipani, S., Bornstein, J., Runyon, T., French, F., Shoemaker, C., Jacoff, A.,

and Lytle, A., “Autonomous Mobility Technology Assessment Final Report”, Army Research
Laboratory Technical Report – 3471, Aberdeen Proving Ground, MD, April 2005.

26

12. Albus, J.S. and Meystel, A.M., “Engineering of Mind: An Introduction to the Science of Intelligent
Systems”, John Wiley & Sons, Inc., New York, NY, 2001.

13. Madhavan, R., Hong, T., Messina, E. “Temporal Range Registration for Unmanned Ground and Aerial
Vehicles”, Journal of Intelligent and Robotic Systems, Springer Science & Business Media B.V., Vol.
4, No. 1, pp. 47-69, September 2005.

14. Witzgall, C., Cheok, G.S., Gilsinn, D.E., “Terrain Characterization from Ground-Based LADAR”,
Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, National
Institute of Standards and Technology, Gaithersburg, MD, 2003.

15. Koch, C. “The Quest for Consciousness: A Neurobiological Approach”, Roberts & Company
Publishers, March 2004.

16. Kandel, E., Schwartz, J., Jessell, T., “Essentials of Neural Science and Behavior”, McGraw-
Hill/Appleton & Lange, September 1996.

17. Fuster, J. “Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human
and Nonhuman Primate”, MIT Press, June 1999.

18. Laird, J., Newell, A., and Rosenbloom, P., “SOAR: An Architecture for General Intelligence”,
Artificial Intelligence, Vol. 33, pp. 1-64, 1987.

19. Anderson, J. “The Architecture of Cognition”, Lawrence Erlbaum Associates, Mahwah, N.J., 1983.
20. Miller, W.T., Glanz, F.H., Kraft, L.G. “CMAC: An Associative Neural Network Alternative to

Backpropagation”, Proceedings of the IEEE, Special Issue on Neural Networks, vol. 78, pp. 1561-
1567, October 1990.

21. van der Smagt, P., Hirzinger, G. “The Cerebellum as Computed Torque Model”, Proceedings of the
Fourth International Conference on Knowledge-Based Intelligent Engineering Systems & Applied
Technologies, R. J. Howlett and L. C. Jain (eds.), pp. 760-763, 2000.

22. Albus, J.S., “A Theory of Cerebellar Function”, Mathematical Biosciences, Vol. 10, pp. 25-61, 1971.
23. Albus, J.S., “Theoretical and Experimental Aspects of a Cerebellar Model”, Ph. D. Thesis, University

of Maryland, College Park, MD, 1972.
24. Albus, J.S., “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller

(CMAC)”, Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control,
September pp. 220-227, 1975.

25. Albus, J.S., “Data Storage in the Cerebellar Model Articulation Controller (CMAC)”, Transactions of
the ASME Journal of Dynamic Systems, Measurement, and Control, pp. 228-233, September 1975.

26. Dickmanns, E., “A General Dynamic Vision Architecture for UGV and UAV”, Journal of Applied
Intelligence, Vol. 2, pp. 251-270, 1992.

Chapter 2

A Task Analysis Methodology for the Derivation and
Organization of Knowledge for Real-time Control Systems

Anthony Barbera and James Albus

National Institute of Standards and Technology (NIST)
{tony.barbera,james.albus}@nist.gov

2.1 Introduction: The 4D/RCS Task Analysis Methodology for Organizing and Representing

Task Knowledge
The RCS methodology has evolved over a number of years as a technique to capture task knowledge and

organize it in a framework conducive to implementation in computer control systems. A fundamental premise of
this methodology is that the present state of the task activities sets the context that identifies the requirements for all
of the support processing. In particular, the task context at any time determines what is to be sensed in the world,
what world model states need to be evaluated, which situations need to be analyzed, what plans should be invoked,
and what behavior generation knowledge needs to be accessed. This results in a design methodology that
concentrates first and foremost on a clear understanding of the task and all of the possible subtask activities.

This methodology starts with the definition of the task knowledge in the form of a task decomposition tree that
represents the branching of tasks into layers of simpler and simpler subtask activities. This task decomposition
framework is used to provide an organized manner of partitioning the knowledge into smaller and smaller pieces so
at the end one is left with detailed descriptions of the knowledge required for each subtask activity in terms of the
component actions that make up that specific activity along with the identification of the relevant objects and events
that affect its execution.

This chapter explores the RCS design methodology in some detail, showing how it is used to define and
represent knowledge in a task context-sensitive framework that can be reliably and consistently updated as new
knowledge is discovered. An important attribute of this representation is that knowledge be accessible to Subject
Matter Experts (SMEs) for analysis and critique. The RCS methodology is a scenario-based engineering process.
In this chapter, the analysis of an autonomous on-road driving task will be used as a real-world example to detail the
steps of this process.

The Generic 4D/RCS module

 The 4D/RCS methodology models real-time, goal oriented task control as containing three major processing
components (see Chapter 1) within each control module [1]:

1) sensory processing to measure, recognize, and classify entities and events of task interest in the
environment;

2) internal world model processing that represents and derives world states, situations, and evaluations in a
task context manner and provides value judgment processing that computes the expected cost, benefit, and
risk of alternative courses of action; and

3) behavior generation processing that reasons from this world model, selects plans, and executes appropriate
output actions that best accomplishes the goal task.

A 4D/RCS control system is formed from a number of these control modules organized in a hierarchical

relationship where each module performs a finer task decomposition of the goal it receives from its supervising
module. In each of these control modules, these three processing components work together, receiving a goal task,
breaking it down into a set of simpler subtasks, determining what has to be known in the internal world model to
decide on the next course of action, and alerting the sensory processing as to what internal world objects have to
have their states updated by new sensory readings/measurements. The design methodology for understanding the

control problem for a 4D/RCS control system, therefore, tries to discover and represent the task knowledge in a
manner consistent with this view of the three major component activities.

Task Decomposition Steps
The 4D/RCS methodology concentrates on the task decomposition as the primary means of understanding the

knowledge required for intelligent control. This approach begins with the knowledge “mining” activities to retrieve
knowledge from SMEs. The gathering and formatting of this knowledge can be summarized in six steps, each of
which follows from the knowledge uncovered by the previous step. Figure 1 presents a high level summary view of
the overall approach that will be detailed step-by-step in the following sections.

Figure 1. The six steps of the RCS methodology approach to knowledge acquisition and representation.

 This methodology has been formalized into an engineering process that provides a well-structured approach to

identifying the task knowledge. The purpose of this engineering process is to provide a standard approach to begin
analyzing any problem for which one is trying to develop an intelligent control system. Without this type of
process, one is left with ad hoc approaches that model every system differently, result in development of
components of very uneven complexity with ill-defined task responsibilities, unclear interfaces, and tangled
execution interactions which result in unreliable systems. A standard engineering process on the other hand,
identifies a starting point to attack large complex systems that seem overwhelming when first approached. It
provides formulaic steps that result in a systematic discovery of the knowledge set in a manner consistent with its
use in the implementation of the control system. And it results in a representation that remains understandable by the
SMEs. Thus, the task knowledge can be evaluated, critiqued, and added to in a manner that allows continued robust
growth and improvement of the capabilities of large complex intelligent control system implementations.

The 4D/RCS engineering process for the discovery of and structuring of the task knowledge follows a six-step

process:

1) Determine Task Decomposition: The first step involves an intensive analysis of domain knowledge from
manuals and SMEs, especially through the use of scenarios. The output of this effort is a structuring of this
knowledge into a task tree form of finer and finer commands (actions/verbs) at finer and finer levels of task
description. The use of scenarios in a task analysis has been discussed in [2].

2) Define Agent Architecture: Next, the hierarchical organization of agent control modules that will execute
these layers of commands is defined. This is the same as coming up with a business or military organizational
structure of agent control modules (people, soldiers) to accomplish the desired tasks. This step forces a more
formal structuring of all of the subtask activities in the sense of defining which knowledge will reside with
which agent control module.

3) Define and Group Task Decision Rules: This step clarifies how each agent’s input command will
decompose through the use of rules that identify all of the task branching conditions with their corresponding
output commands (Input Condition - Output Action rules). Each of these command decompositions at each
agent control module will be represented in the form of a state table of ordered production rules (which is an
implementation of an extended Finite State Machine (FSM)). The ordered list of simpler output commands
required to accomplish the input command and the named input condition-branching situations that transition
the state table to the next output command are the primary knowledge represented in this step.

4) Determine Dependent World States: The condition side of each rule is a named situation that identifies the
transitioning condition to the next output action. In this step, these situations are defined in greater detail in
terms of their dependencies on world states and task states. This step attempts to define the detailed antecedent
states that cause a particular situation to be true. As an example, the situation of ConditionsGoodToPass used
to transition a rule to the output action of changing into the passing (left – oncoming) lane within a
PassVehInFront state table might include an antecedent world state such as “NoConstructionInPassZone”
(Figure 1). Throughout this chapter, concatenated phrases such as PassVehInFront will be used to signify
actions and their selecting situations.

5) Identify Objects to be Classified: Here, all of the objects and entities together with their particular features
and attributes that are relevant to defining the above world states identified in step 4 are identified and named.

6) Specify Sensing Requirements: The last step is to use the context of each particular subtask to establish the
required minimum sensing distances and, therefore, the resolutions at which the above objects and entities
must be measured and recognized by the sensory processing component. This step establishes a set of
requirements and/or specifications for the sensor system at the level of each separate subtask activity. Also
relevant for each subtask activity will be whether the sensor system or the objects or both will be moving and
at what speed since this will dramatically affect sensing requirements. Environmental conditions such as
temperature, lighting conditions, weather, etc. and their effects on sensing are also considered here.

2.2 The use of scenarios as the primary tool to discover task knowledge
The 4D/RCS engineering process approach is to analyze the driving tasks through an evaluation of a large

number of particular individual scenarios of previously experienced on-road driving events and from these
descriptions to derive a task decomposition representation of possible task activities at various levels of abstraction
and detail. Additionally, one has to also think of what the situation might be that causes one to choose to execute
one subtask activity rather than other possible alternate subtask activities. For example, if one wishes to pass the
vehicle in front of own vehicle on a two lane undivided road, the conditions/situations that would cause own vehicle
to begin the passing maneuver have to be determined i.e., start to move into the oncoming left lane to go around the
vehicle.

 These conditions/situations become the input conditions of the if-then rules of the knowledge set that define
how the task is execute in response to input state changes. Detailed analysis of each of these conditions/situations is
used to identify their antecedent world states. These world states, in turn, are further analyzed to identify all of the
entities, objects, and attributes that have to be sensed to determine if any of these world states exist. The major
problem is how to uncover all of this knowledge in the first place. To do this, a technique of having the subject
matter expert recount past events through scenarios will be used.

The use of scenarios to recount particular events that the SME has experienced has the benefit of aiding the
associative memory recall process of humans. Humans are particularly good at storing and retrieving information in
a story format that follows a sequence – this sequential, associative retrieval is symptomatic of human associative

memory. It appears human memories are stored in the sequence that they occurred along with everything else that
was sensed at the time. This is suggestive of why humans use stories to record and recall oral histories and
traditions and why “war-stories” of past notable events can be recalled with such great detail. It is this ability to
recall all of the associated detail that goes along with the sequence of activities concerned with a particular event or
activity that leads to the use of scenarios as the primary technique to get at the SME’s embedded knowledge.

Discussion of various scenarios allows one to determine which tasks seem to be subsets of other tasks. This
allows one to first put structure to the task decomposition tree, to establish what the higher-level tasks are and what
tasks become component subtasks to them. From this, one can establish that FollowLane is a subtask to
PassVehInFront which is a subtask to a commercial trip planner-like (e.g. MapQuest®) tasks of GoOn-roadname,
TurnRightOnto-roadname, etc.

During this process, each of the various scenarios will be discussed in great detail, noting sequences of simpler
activities and the situations that define when a particular activity was selected in a particular instance. For example,
the PassVehInFront task requires that the FollowLane behind the vehicle to be passed until the
ConditionsGoodToPass situation occurs, followed by pulling out into the oncoming lane, which is a
ChangeToLeftLane maneuver. Then proceed down this lane (FollowLane) until the vehicle has been cleared with
sufficient distance (ClearOfPassedVehicle) and there is an opening in front of that vehicle that can be pulled back
into. Now ChangeToRightLane and continue normal FollowLane activities. From this scenario vignette, a
sequence of finer resolution subtasks can be defined that make up the pass vehicle task. These are FollowLane,
ChangeToLeftLane, FollowLane, ChangeToRightLane, and FollowLane. Details exposed during the recounting of
specific instances of passing maneuvers result in uncovering various world states that combine to create situations
that affect the decisions of when to execute each of these simpler subtask activities.

A specific remembrance of a passing maneuver might identify the need to watch for a bicyclist ahead in the
road because of the significant increase in risk that results with two cars going side-by-side around the bicyclist
thereby considerably reducing the allowed road space offset that the vehicle being passed can provide around the
bicyclist. Another recounting might identify a time when a passing maneuver was begun only to have the expert
surprised by a second vehicle from behind already trying to pass own vehicle. These types of recounting result in
the identification of all sorts of other pertinent world states relevant to the passing task.

As a result, requiring the SME to recount various experiences as scenarios/stories leads to a very detailed
discussion of a number of relevant subtasks; their correct sequencing to accomplish larger tasks; alternate contingent
activities; and the detailed situational parameters (world states) that have to be looked for in order to choose the best
action out of the possible set of available actions. This then is the expert’s knowledge.

Once an initial task tree has been identified, the activities can be organized into a more rigorous layering by
creating an organizational structure of agent control modules that are responsible for executing the different levels of
the task decisions. This use of separate executing agents organized into an execution hierarchy provides a
mechanism to formalize the task decision tree by assigning certain decisions to particular agent control modules.
This creates well-defined sets of subtask commands from each supervisor agent control module to its subordinate
agent control module, thus forcing to group and label various sets of related activities of the driving task with a
subtask context identifier such as PassVehInFront, TurnLeftAt_StopSign, PullOffOnto_LeftShoulder, etc. Each of
these identifiers is really a subtask goal command at some level in the execution hierarchy. The task decision rules
that identify the task decomposition of subtask goal command within an agent control module can be encoded within
an FSM. These FSMs can be represented either in the form of a state graph or as a state table. In each of these state
tables, the rules that are relevant to a particular subtask activity at a particular level of abstraction are grouped.
These rules identify the specific situation that will trigger the state table to transition to the next state and the output
actions that will occur as a result. The use of these grouped sets of rules into separate state tables applies a well-
structured formalism to the task description. It also has the advantage of keeping the task description easily
understandable to the user since each state table only encodes the small number of rules associated with one
particular subtask activity at one level in the task decomposition decision tree.

Scenarios will be continually used during this development to see if the state tables can be stepped through
detailed sequences of activities to correctly respond to various situations. In other words, this organizational
representation of state tables should correctly execute the sequence of subtasks required to carryout high-level
commands. This procedure tests the basic sequencing of the finer level tasks at each layer to validate that an entire
operational sequence can be represented and also to ensure correct representation of any coordination between
different control modules that might be required during the task execution.

 Scenarios also are used to test alternate execution of the possible subtasks by introducing different world
states/situations and see if the representation of the state table grouping of rules will correctly adapt. During this
process, many additional situations and world states are usually identified along with concomitant finer delineated
output actions. These become new rules that are added to the appropriate state tables.

The six steps of the 4D/RCS engineering methodology will be examined now in more detail:

2.3 Step 1: The development of the task decomposition tree and identification of task
coordination requirements

The first step is to gather as much task related knowledge as possible with the goal of defining a set of
commands that incorporate all of the activities at all levels of detail. For on-road driving, this knowledge source
would include driving manuals [3], state and federal driving codes, manuals on traffic control devices and detailed
scenario narratives from SMEs of large numbers of different driving experiences.

Many scenarios are explored in great detail in an attempt to come up with the names of commands that
describe the activities at finer and finer resolutions of detail. Figure 2 provides an example. The high level goal of
GotoDestination-name (such as GoToDestination-post office) is decomposed into a set of simpler commands such
as, GoOnRoad-roadname, TurnLeftOnto-roadname. At the next level down, these commands are decomposed into
simpler commands such as DriveOnTwoLaneRoad, PassVehicleInFront and these are decomposed to yet simpler
commands such as FollowLane, ChangeToLeftLane, etc.

Figure 2. Task decomposition decision tree for on-road driving example. Shows the simpler commands that are used at
each lower layer to represent the finer and finer resolutions of detail activities.

Four very important things are being done with the knowledge in this step.
1) The first is the discovery and naming of simpler component subtasks that go into making up the more complex

tasks.
2) The second is that for each of these component subtasks, a subtask command name is defined.
3) The third is the understanding of the coordination of subtask activities that the task involves.
4) The fourth is the careful grouping of these commands by layer and decomposition to ensure that all of the

examples of on-road driving tasks can be completely described, from the start to finish of a scenario, by the
proper sequencing of these commands at the appropriate levels.

2.4 Step 2: The design of a multi-resolutional organizational architecture to structure task

responsibilities and extent of authority
Once a set of commands is defined, an organization of agents is needed to execute them. This step is identical

to laying out an organizational structure of people in a business or the military. What needs to be done at various

levels of detail is known and now an organization of intelligent agents is needed to do it. This structure is built from
the bottom up. The above detailed task decomposition will provide the levels of agents to have in the organization
but not how many agents at each level or how they are grouped and coordinated. This step starts

Figure 3. The hierarchical organization of agent control modules that are to execute the task command decomposition.

at the bottom with an agent control module assigned to each actuator in the system and then uses the knowledge of
the task activities to understand how agents should be grouped under supervisors to best coordinate the task
commands from step 1.

Figure 3 illustrates how a grouping of agent control modules is assembled to accomplish the commands
defined in step 1. In this example, the lowest level servo agent control modules are represented by icons of the
actuators being controlled. The steering wheel servo control module is represented by a steering wheel icon, the
brake servo by a brake pedal icon, etc. For this simple example, only four actuator agent control module icons are
shown.

The brake, throttle, and transmission servo agent control modules are grouped under a single supervisor agent
control module, which will be termed the Speed Control Agent. This supervisor agent control module will receive
commands such as Accelerate at some value. This module then has to coordinate its output commands to the brake,
the throttle, and the transmission to accomplish this command. By a similar analysis, the Steering Wheel Servo
Agent is placed under a supervisor agent will be termed the Steering Control Agent Module. This supervisor agent
control module will receive commands such as TurnToAbsHeading and will compute the required steering wheel
commands to output to the Steering Wheel Servo Agent.

The Vehicle Trajectory Control Agent receives commands in the form of constant curvature paths for the
vehicle to be following. It continuously calculates the real-time vehicle dynamic motion vector and coordinates
steering commands to the Steering Control Agent and speed commands to the Speed Control Agent to accomplish
dynamically feasible moves.

The Elemental Maneuvers Control Agent receives commands of basic movement operations such as
FollowLane, ChangeToRightLane, StopAtPoint, etc. along with a table of Objects-Of-Interest. These objects are

listed along with their positions, motion vectors, passing speeds, passing offset distances, cost-to-violate passing
speed or offset, and other parameters that allow the Elemental Maneuvers Control Agent to calculate modifications
to the commanded basic movement path to generate the output constant curvature paths that should successfully
negotiate collision-free movement around these local objects. These calculated constant curvature paths are output
to the Vehicle Trajectory Control Agent.

The Driving Behaviors Control Agent Module receives commands of basic drive behavior operations such as
FollowRoad, CrossThruIntersection, TurnRightAtIntersectionTo-roadname, etc. This module detects and
recognizes relevant vehicles and objects, reasons about the driving codes and the effect of the present state of the
other vehicles and objects (such as pedestrians or traffic control devices – signal lights), chooses appropriate
behaviors (such as PassVehInFront), builds the Objects-of-Interest table and outputs this table along with the next
basic movement command such as FollowLane to the Elemental Maneuvers Control Agent.

The Route Segment Control Agent Module receives commercial trip planner-like (e.g. MapQuest®) commands
of major route segment moves i.e. a single command that identifies a road to be traveled until an intersection with a
designated crossing road where a right or left turn is to be made. This route segment may encompass a number of
intersections that have to be crossed before the goal intersection is reached. These commands are of the form
GoOn-roadnameTurnRightOnto-roadname. This module has access to a priori maps, detects and reads road name
signs, detects intersections and navigates at the level of commanding the Driving Behavior Control Agent to
FollowRoad, CrossThruIntersection, TurnRightAtIntersectionTo-roadname, etc. This module also notes upcoming
travel constraints such as lane restrictions (NoTrucks, ExitOnly, etc.) and upcoming turns and exits in order to
command preferred goal lanes (for multilane roads) to the Driving Behaviors Control Agent Module.

The Destination Manager Control Agent Module receives commands in the form of end point destinations such
as school, work place, gas station, post office, grocery store, etc. This module has access to a priori maps,
driving/traffic history such as traffic conditions at different times of the day or under different weather conditions.
This module also has access to real-time remote sensing through radio traffic, construction, accident, and weather
reports. All of this information is continuously evaluated to develop a sequence of commercial trip planner-like
(e.g. MapQuest®) route segments that map a path to the destination. If any remote sensing or local sensing by the
vehicle (a backup is detected past the next intersection) indicates that a change in this route may be desirable, this
module recalculates another set of route segments from its present location to the destination and immediately
outputs the first route segment command of this new list to the Route Segment Control Agent.

As seen in Figure 3, the execution of the commands at the levels above the Vehicle Trajectory Control Agent
are being executed by a single agent at each level since there are no multiple subordinate agent control modules to
be coordinated at these levels in this simple example.

In a more detailed example implementation, there would be additional agent control modules for engine
control, lights and turn signal control, windshield wiper/washer control, multiple pan/tilt turrets that carry different
sensor sets, etc. This step 2 would be the point at which these additional organizational elements would be defined
and laid out to properly coordinate their activities in accordance with the task decomposition descriptions from step
1.

2.5 Step 3: Defining and grouping the rules that define the procedural knowledge of the task

decomposition
At this stage of the knowledge definition process, the vocabulary and syntax of commands have been defined.

Also available are a preliminary representation of how each command decomposes into subcommands, and where in
the agent control hierarchy these decompositions take place. Step 3 defines the process to establish the rules that
govern each command’s decomposition into its appropriate sequence of simpler output commands. These rules are
discovered by first listing the approximate sequence set of simpler output commands for a particular input command
and then by identifying the conditions that select when to execute these output commands. In this manner, each
state table that governs the execution of each command at each level is defined.

Figure 4 illustrates this step with a state table of the PassVehInFront input command at the Driving Behaviors
Agent Control Module. This PassVehInFront command is decomposed into five simpler output commands:
FollowLane, ChangeToLeftLane, FollowLane, ChangeToRightLane, and FollowLane. These output commands
came from the task decomposition tree for PassVehInFront identified in step 1 and their sequence is illustrated with
the simple scenario drawing of the green car passing the blue car before the oncoming red car gets too close. This
collection of input and output commands are assigned, in step 2, to the particular agent control module where this
state table resides. These output commands are placed in the right hand side or Output Action column of the
PassVehInFront state table. The knowledge that is being added by this step 3 is to identify and name each situation
(Input State/Situation - the left hand column of the state table) that, when true, will transition the line to the

corresponding Output Action/Command. These named situations are the conditions that cause the branching in the
task tree that results in the execution of this particular subtask (output command).

Each newly named state transition situation with its corresponding output action command represent a single
production rule that is shown as a single line in the state table. The sequence that these lines (rules) are executed is
ordered by the addition of a state variable (“S1”, “S2”, etc). In the example in Figure 4, the first rule shown in the
state table says that if this is a “New Plan” (input condition), then the output action side of the rule (the right hand
side of the state table) sets the state to “S1” and outputs the command to Follow Lane. As a result of executing this
rule, this agent module is now in state “S1” and can only execute rules that include the state value of “S1” in their
input condition.

The only rules that will be searched by this module are those in the particular state table that groups the rules
relating to this particular input command (PassVehInFront). In this state table as shown, there is only one line (rule)
that contains the state value “S1” as one of its input conditions. Thus, only that line can match and it will not match
until the situation ConditionsGoodToPass is also true. When this situation occurs, this line will match (this rule will
fire) and the module will go to state “S2” and will issue the output command to ChangeToLeftLane. This output
command is sent to the subordinate agent control module (Elemental Maneuvers Agent Control Module) where it
becomes that module’s input command invoking a corresponding state table evaluation of that command at this
subordinate level.

 By this process, the large set of rules governing the task decision tree execution is grouped both by the agent
control module in the hierarchy and by the task context of the particular command at each agent. This results in
only a very small number of rules (i.e., only those that are relevant to the particular active command at each agent
control module) being searched at any given time. Note that this knowledge discovery representation and
organization have been completely driven by looking at the problem from the detailed task decomposition point of
view.

Figure 4. State table for the Pass Vehicle In Front command. Each line is a rule relevant to this task. The left column
contains the branching conditions of the task decision tree. The right column contains the output commands or branches.

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoTra jSeg

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoTrajSegDoTrajSegDoTra jSeg

Steer AdjustThrottle ApplyBrake

GotoDestination.
..

GoOn…Rd

PassVehInFront

FollowLane

FollowCirCW

Steer_Angle Speed&Acc

GoalPath
Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Steering
Control

Speed
Control

P
N
D
2
1

DriveOnTwoL aneRd

PassVehInFro nt

PassVehIn Front

DriveOn Two LaneRd

NegotiateLaneConstr ict

.
PassVehInFront .

BEHAVIOR
GENERATION

COMMANDED
TASK (GOAL)

STATUS

STATUS

NEXT
SUBGOAL

SENSORY
INPUT

STATE-
TABLES

GENERIC 4D/RCS
CONTROL MODULE

SENSORY
PROCESSING

KNOWLEDGE
DATABASE

BEHAVIOR
GENERATION

WORLD
MODEL

VALUE
JUDGMENT

STATUS

STATUS (PassVehInFront)

(FollowLane)

SubTask
Decomposition

FollowLane ChangeToRightLaneChangeToLeftLane FollowLane

PassVehInFront

FollowLane

(PassVehInFront)

(FollowLane)

PLAN STATE TABLE
Input State/Situation Output Action

PassVehInFront

 S2 ChangeToLeftLane

 S3 FollowLane

 S0 FollowLane
Done

S1 FollowLane

 S4 ChangeToRightLane

 S1 ConditionsGoodToPass

S2 InPassingLane

S4 ReturnedToLane

NewPlan

 S3 ClearOfPassedVehicle

STEP 3

STEP 1

STEP 2

The branching shown in these state tables is of the transition type, i.e., the identification of a situation in the
world that will cause a branching to a new activity – here when the situation ConditionsGoodToPass is true,
transitionining to the action to ChangeToLeftLane from the action of FollowLane. Until this situation becomes true,
the last action that had been transitioned to, namely, FollowLane will be the output. As part of this process, one
should continuously ask what happens if the transitioning situation becomes untrue and none of the other listed
situations are true. This often leads to discovering additional branches not uncovered previously. For example, if
ConditionsGoodToPass becomes true and if transition is made to the ChangeToLeftLane action, what should be the
response activity if ConditionsGoodToPass becomes false while ChangeToLeftLane is being executed?

Using this as an incitement to further explore this particular activity, experts are asked to come up with a
scenario that illustrates this situation. In this new scenario, the passing maneuver (changing to the left lane) will
have started, when the vehicle that is being attempted to pass suddenly starts to also move into the left lane to pass
the vehicle in front of it (for example). The situation of ConditionsGoodToPass has just become false. In this
scenario, the passing maneuver will have to be aborted to return back to the current lane. When the scenario is
examined in detail, one could either be in the process of changing to the left lane or already be in the left lane and
executing a FollowLane output action. From this, two additional situation-action pairs are identified – one for the
case where own vehicle is still in the process of changing to the left lane and one for the case where own vehicle is
in the left lane and trying to overtake the vehicle in front.

GotoDestination...

GoOn…Rd Turn RightOnto...RdTurnLeftOnto.. .Rd

FollowLan e

DoTrajSeg

DriveOn TwoLaneRd PassVehIn Front Nego tiateL an eCo nstriction

Ch an geToRig htLaneChangeToLeftLane

G oOn…Rd G oOn…Rd

Fo llo wLane Fo llo wLane

DoTrajSegDoTrajSegDoT rajSeg

Steer AdjustThro ttle App lyBrake

Got oDestination.
..

GoOn…Rd

PassVehInFront

FollowLane

FollowCirCW

Steer_Angle Speed&Acc

GoalPath
Trajectory

Destination
Manager

Driving
Behaviors

Rout e Segment
Manager

Elemental
Maneuvers

Steering
Cont rol

Speed
Control

P
N
D
2
1

STEP 1

STEP 2

Figure 5. State table for the Pass Vehicle In Front command. A new subtask branch (FallBackToRightLane) has been
added and the state table has had two additional lines added to represent the two cases where the pass has to be aborted
due to CondNotGoodToPass.

A slightly different output action has also been identified, namely, to FallBackToRightLane which requires
own vehicle to slow until it has sufficient re-entry room behind the vehicle that is being tried to pass before
changing to the right lane. This action will be executed once own vehicle has already moved entirely into the left
lane and has transitioned to the output action of FollowLane to speed pass the vehicle in front.

Figure 5 illustrates the resulting changes. An output action command (FallBackToRightLane) has been added
in addition to two additional lines to the state table to deal with the two cases that have been identified where the

situation ConditionsGoodToPass becomes false after this situation has been already used to transition to a
ChangeToLeftLane output action.

It can be seen that in both added lines, the return is to the state “S1” so that after the output action of either of
these two lines has been accomplished, one will be in the correct logic state to once again start looking for the
opportunity to pass.

Summary of first three steps
An important summary will now be made about the structuring of the knowledge base in these first three steps.

These three steps were concerned with task knowledge expressed as the finer and finer branching of the decision
process where each branch represents a different subtask activity relevant to the branch above it. This task
branching was divided up and assigned to particular agents organized in a hierarchical structure consistent with how
the various subtasks should be coordinated. Finally, the conditions or situations that must be true for a particular
branch to be selected are identified and represented with the branch activity as condition-action pairs or rules. All of
the rules that identify the sub-branches of one part of the tree are organized into a state table.

These first three steps provide a complete listing of the task decomposition rules (i.e. these rules that determine

when the system has to do something different in order maintain progress towards the goal.) These rules have been
grouped into layers of resolution (where they are contained within specific agent control modules), and within each
layer, grouped into tables of rules relevant to a single input command. Within each table they are ordered in their
execution sequence by additional state values.

These first three steps can be thought of as identifying the procedural knowledge involved in the task decision

process, i.e. naming all of the task branching conditions and their selected output actions. The next three steps will
identify all of the knowledge that is used to evaluate whether or not the branching conditions are true.

2.6 Step 4: Identifying relevant world states whose analysis and evaluation will provide the
basis for the real-time situational assessment

In this step, the set of antecedent world states on which the task branching situations (in the input condition
side of the state tables) depend in order to be evaluated are to be indentified. This is best illustrated with an
example. Figure 6 shows the PassVehInFront state table. The output command to ChangeToLeftLane is issued
when the ConditionsGoodToPass situation occurs as described above.

At this point in the process, the expert knowledge sources will be asked: “What does one have to know about
the state of the world to say that ConditionsGoodToPass?” Again, a number of detailed scenarios are used to drill
down to the parameters that go into this situation assessment. There is a very large set of states of the world that
affect this situation. These are listed as they come up in different scenario discussions as well as the information
that is discovered in driving manuals and driving codes. Examples of some of these are: “there cannot be an on-
coming car within the passing distance”, “there must be a broken yellow lane marker on own vehicle side of center
in the lane”, “there cannot be a railroad crossing within the passing distance”, “own vehicle is not being passed by
another vehicle”, etc. These are referred to as world states since they seem to describe certain attributes about the
present state of the world that are relevant to the present task.

Once the world states relevant to ConditionsGoodToPass are listed, they are checked to see if groupings can be
made. In this case, some world states are grouped into a category termed LegalToPass, and others into other
categories termed EnvironmentSafeToPass, SituationInFrontOkToPass, SituationInBackOkToPass,
OncomingTrafficOkToPass, etc. These groupings are aggregate world states leading to the evaluation of the
situation ConditionsGoodToPass. For this example, for this situation to be true, all of the aggregate world states
have to be true. For each of the aggregate world states to be true, all of their component world states have to be true.
This provides a classification of world states that aids in the understanding and discovery of additional relevant
world states.

The purpose of this step is to provide a listing of all of the dependent world states that affect whether the task

branching condition/situation identified in the first three steps is true or not.

The sensitivity of this situation to neither these world states nor what functions are used to weight and evaluate their
individual or combined truth have not yet been identified. The identification of these dependent world states does not

rely on whatever technique is used to evaluate their contribution to the situation (such as ConditionsGoodToPass).
Different implementation paradigms will determine this sensitivity, weighting, costing, and other evaluation functions
as they see fit.

Figure 6. The identification of all of the antecedent world states used to evaluate whether the situation
ConditionsGoodToPass is true or not.

2.7 Step 5: Identifying the objects, attributes, and events in the real world that create the

relevant world states

This step identifies all of the objects, their features and attributes that need to be measured by the sensing system to
create the world states described above. Figure 7 continues with the passing example. As described above, one of
the aggregate world model states was LegalToPass which was a grouping of a number of related world states all of
which deal with various legal restrictions on the passing operation. One of these component world states that
identify a legal restriction is NoRailroadCrossingInPassZone. In this step, all of the objects, their features, and
attributes that are relevant to creating each world state are to be identified. For the world state named
NoRailroadCrossingInPassZone, these relevant objects would include the railroad crossbuck emblem, crossing
lights, crossing gate, crossing signs either alongside the road or painted on the road surface, the railroad tracks, and
the train itself. Further, each object is defined in terms of its characteristic features or attributes that will be used for
recognition of the object (e.g. the width and length and height above ground of the crossbuck planks) and/or its state
(e.g. flashing lights or a lowered gate as indicator of active warning state).

Figure 7. Example of the objects that are used to establish the NoRailroadXinPassZone world state and how the sensor
measurement resolutions are determined.

2.8 Step 6: Deriving sensing capabilities required to measure and recognize the objects,

attributes, and events
In this last step, the resolution requirements for the measurement of the objects by the sensors are to be

defined. This is done by determining the expected recognition distances to these objects during particular subtask
activities. In the case of the subtask activity of PassVehInFront, the ability to see objects such as the railroad
crossing crossbuck sign at the far limit of the expected passing zone is required. For a vehicle attempting to pass
another vehicle on a 75 km/h two lane undivided road, the passing zone could easily be 200 m or more. This means
that the crossbuck, which is found at the railroad crossing itself, would have to be sensed and recognized by the
sensory processing system at this distance of 200 m (Figure 7). Using this distance together with the knowledge of
the size of the crossbuck plank elements, an estimate of the absolute minimum sensory processing capability
required to recognize it at this distance can be made. If a minimum of a 3 pixel square to detect the crossbuck is
assumed, this results in the requirement that the image sensors having a minimum resolution capability of 0.09°.
This is an absolute minimum estimate and for recognition it is desirable to have considerable more pixels-on-target
requiring even higher sensor resolution. But this process has provided a technique to establish these ranges of
sensor resolutions for all of the various subtask activities.

This process also helps the identification of all of the other relevant objects and their relationships as they
apply to each subtask activity. In this example, it is important to establish that the railroad crossbuck that is being
detected is on the road of travel as opposed to a side road up ahead. So it is not sufficient to detect objects, it is also
very important to establish the relationship of certain of those objects with one another (in this example, the
crossbuck is located on the road of travel, not an adjacent road) for each particular subtask activity.

2.9 Discussion of example implementation
 Application of the 4D/RCS engineering methodology to the problem of on-road driving has produced a

control architecture of seven layers of agent control modules (including the lowest level steer, throttle, brake, and
transmission agent control modules) with a total of over 170 command/plans, each of which is described by a state

table of Situation/Action rules. This is illustrated in Figure 8. For the RouteSegment and DriveBehavior agent
control modules, commands are underlined and the plans that can be selected are listed under the appropriate
underlined command. For example, at the DriveBehavior agent, the FollowRoad command can select a plan to
PassVehInFront, or DriveOnTwoLaneRd, or DriveOnMultiLaneRd, or PullOntoRoad, etc. depending on the present
world state. Each of these plans is a separate state table describing this task behavior with an appropriate set of
rules. Each of these rules would have a branching condition/situation from which are derived detail world states,
objects, and measurement resolutions. At the Subsystem, Trajectory, and Servo levels only the commands are listed.

A large number of commands and plans have been detailed out in their respective state tables, identifying the
named branching condition/situations required. A number of these situations have been examined to specify their
antecedent world states and objects. As a result, an initial estimate has been made of the number of knowledge
items involved for autonomous on-road driving. These are approximately:

a) 1000 named condition/branching situations in the input condition side of the state tables.
b) 10000 world states that are antecedents to the situation evaluations.
c) 1000 to 2000 objects to be detected in the world to arrive at the world states.

Thus, on-road autonomous driving is characterized by a very large (but finite) knowledge set that would be
extremely difficult to deal with if not for a systematic way to organize it.

The task decomposition approach has provided a single consistent process of well-defined sequential steps to

both discover the relevant knowledge and to organize it. The knowledge has been partitioned into two large
elements:

1) task procedural knowledge (i.e. how to do things) concerned with the description and representation of the
task decomposition through layers of agent control modules performing control decision branching decisions,
encoded as rules in state tables. This is basically the set of procedures to follow for every situation that occurs
in on-road driving; this is an explicit set of knowledge represented in rules.

2) world knowledge (i.e. what is the present situation) concerned with the description and representation of all of
the states of the world and all of the objects to be sensed that are used to generate each of the condition
branching situations in each state table. This is basically the expert pattern recognition and reasoning
knowledge that looks at the world and identifies/assesses the present situation so that a task decomposition
procedure can be followed. World knowledge is a more intuitive set of expert knowledge and harder to get at.
It is represented in the situation dependencies on world states and objects in the environment.

The representational format for all of the knowledge has been driven by a requirement to identify everything

according to its relevance to task activities. This has a very important impact on the implementation. This
organization of the task knowledge is in a form that can be directly implemented. It has threaded access to all of
the knowledge from the task through world model states to objects and their attributes to be measured. This is
exactly the form the control system needs so it can access all of the information relevant to the present task activity
as rapidly as possible.

The definition of the knowledge base in this task-oriented format also supports a number of other processes, in

particular, this knowledge base:
1) provides the basis for developing specifications and conformance tests for the procuring of complex

autonomous systems,
2) provides the essential task detail to support writing Operational Requirements Documents (ORDs)

and Operational and Organizational (O&O) plan documents,
3) provides the consistent detailed requirements definitions necessary for system developers to build

robust, reliable control systems,
4) identifies where the project goals are limited by the present state of sensor and sensory processing

capabilities, and clearly identifies those research and development areas where significant impacts can
be made, and

Figure 8. Illustration of the agent control architecture for on-road driving with the command/plan names listed and a
brief description of the task responsibility at each level.

5) greatly aids in the creation of performance metrics [4] that can be used to accurately assess component
capabilities at very fine levels rather than treating entire autonomous systems as black boxes.

2.10 Analysis of multiple vehicle tasks

This chapter has detailed the analysis of task activities for a single vehicle control system, namely, that of on-
road driving autonomous vehicle. However, the hierarchical organizational structure of 4D/RCS nodes that will
execute the various layers of subtask activities has been branched into separate subtrees (see the SteerServo and
SpeedServo subtrees detailed above and in the Chapter 3 description of the NIST High Mobility Multpurpose
Wheeled Vehicle (HMMWV) mobility implementation) where it is necessary to represent the control of actions of
separate physical subsystems. The control of these separate subsystems can and does occur in parallel and has
varying degrees of interlocked coordination depending on the particular subtasks.

Similarly, groups of separate physical subsystems can also be groups of vehicles. Two detailed sets of
analyses of tasks involving group coordination and control of multiple vehicles have been analyzed in exactly the
same manner as described above. These tasks have been:

1) Conduct Port Security (provide security for an in-foreign-port navy ship) by a group (eight) of
Unmanned Aerial Vehicles (UAVs), and

2) Several Army missions (Conduct a Route Reconnaissance, Establish an Observation Post (OP),
Conduct a Bridge Assessment) for a Cavalry Scout Platoon of either six (Bradleys) or 10
(HMMWVs) vehicles.

In both of these projects, the high level mission was analyzed and the appropriate commands to each and all of

the subsystems were determined that included the coordination activities at each supervisory level where
coordination of multiple subsystems occurred. The task decomposition of the Army missions starts with
commands/operational orders to the top level node, equivalent to the scout platoon leader. This might be a
mission/order to Conduct a Route Reconnaissance. Using the 4D/RCS task analysis approach, this mission/order is
decomposed down through finer and finer task resolutions, branching to identify the commands to equivalent section
leaders, and below that, to equivalent vehicle commanders (whose node is very closely associated with the RCS
node that was defined as the Route Segment Manager in the on-road driving example above). However, for these
systems the equivalent vehicle commander node would also be coordinating a Surveillance subsystem (equivalent to
a soldier mission observer), a Lethality subsystem (equivalent to a soldier gunner), and a Communication subsystem
as well as the Drive Behavior subsystem (which is equivalent to the soldier driver) that was described in the example
in this chapter.

This analysis identifies the coordinating knowledge required for the supervisory nodes to determine the next
appropriate commands to send to their subordinate nodes (platoon leader to section leaders, section leader to vehicle
commanders, and vehicle commander to vehicle subsystems such as Surveillance, Lethality, Drive Behavior, and
Communications). It details the indicators to be sensed in the environment to be able to evaluate the present
relevant situations that are used to select the next actions, contingencies, commands, and reports for the proper
coordination of the subordinates in accomplishing the supervisor’s command.

Thus, the analysis makes no distinction for multiple vehicles. The analysis is an approach to discover the
knowledge necessary to accomplish the goal by controlling and coordinating the available subsystem components
whether these subsystem components are groups of vehicles, individual vehicles, or separate subsystems on a single
vehicle.

2.11 Conclusions and Future Work

Having thus created this knowledge base that offers all of the above listed advantages, one is still faced with
the problem that the knowledge base is extremely large and no single computer storage technique captures it. The
4D/RCS task analysis process has resulted in the knowledge being defined and documented in drawings, spread
sheets, documents, data bases etc., but it is still stored as data in a computer, which means that it will require
significant effort by the humans involved to retrieve and reassemble it into relevant knowledge views for different
applications or even for accessing for future enhancements.

 Current research is exploring the use of ontologies [5] to store this knowledge in a semantic model format in a
computer-interpretable form. The hope is that ontology tools and techniques will provide a more consistent, single
representational model through their descriptions of agents, processes, classes, properties, and inter-relationship
definitions that will eventually be able to capture this knowledge and, most importantly, all of the implied

relationships in a single consistent computer-interpretable knowledge base. This super-ontology would allow the
ability:

1) to add additional knowledge into the knowledge base and have it automatically check consistency
with the previous knowledge and with the deep knowledge that expresses more basic concepts that the
new knowledge descriptions have to obey;

2) to have it automatically retrieve responses to semantic based inquires;
3) to have it automatically construct executable models of the knowledge that can be used to drive

simulations for operational testing and specification evaluation as well as the automatic development
of training systems;

4) to have it automatically populate cost-based planning and evaluation algorithms; and
5) to have it automatically build out and update intelligent control systems.

References

1. J. Albus, et.al. 2002, "4D/RCS Version 2.0: A Reference Model Architecture for Unmanned Vehicle Systems,"

NISTIR 6910, National Institute of Standards and Technology, Gaithersburg, MD.
2. E. Mettala, D. J. Cook and K. Harbison, Application of the Scenario-Based Engineering Process to the Unmanned

Ground Vehicle Project, in Reconnaissance, Surveillance, and Target Acquisition for the Unmanned Ground
Vehicle , O. Firschein and T. Strat (eds.), 1997.

3. J. McKnight, and B. Adams, Driver Education Task Analysis. Volume 1. Task Descriptions, Human Resource
Research Organization, Department of Transportation, National Highway Safety Bureau 1970.

4. A. Barbera, J. Horst, C. Schlenoff, E. Wallace, D. Aha, 2003, Developing World Model Data Specifications as
Metrics for Sensory Processing for On-Road Driving Tasks. In Proceedings of the 2003 PerMIS Workshop.
Gaithersburg, MD.: NIST Special Publication 990.

5. C. Schlenoff, R. Washington, A. Barbera, 2004, Experiences in Developing An Intelligent Ground Vehicle (IGV)
Ontology In Protégé, presented at the 2004 Protégé Conference in Washington, D.C.

Chapter 3

Behavior Generation

Stephen Balakirsky, Tom Kramer, Fred Proctor, and Tony Barbera
National Institute of Standards and Technology (NIST)

{stephen.balakirsky,thomas.kramer,frederick.proctor,tony.barbera}@nist.gov

3.1: Introduction

Previous chapters in this book have outlined a comprehensive reference model architecture for the control
of an autonomous system and illustrated how a complex problem may be decomposed to fit into this task
hierarchy. This chapter will attempt to provide insight into how autonomous behaviors may be elicited
from such a system through the use of the behavior generation (BG) portion of the RCS echelon. Each RCS
echelon contains a BG process which, as shown in Figure 3.1, contains a Job Assigner (JA) and one or
more agents. Each of these agents may be further decomposed to contain one or more planners and an
executor.

The JA performs four functions within BG. It accepts input task commands from an executor in a higher
level BG process, decomposes the input task into job assignments for each planning agent within the BG
process, transforms each job assignment’s coordinate frame to the agent’s preferred frame of reference, and
allocates resources to the agents to allow them to accomplish their assigned jobs.

Figure 3.1: The BG portion of an RCS_NODE.

The task planner accepts a job assignment from the JA and computes one or more sequences of activities
that accomplish the assigned job. In parallel to this operation, the contingency planner computes a set of
contingency plans that may be executed if abnormal or unexpected readings are obtained from the world
model. For example, the autonomous mobility echelon BG of an on-road driving system may compute a
sequence of constant curvature arcs to traverse in order to meet its superior’s goals in the task planner and
an additional set of constant curvature arcs that would bring the vehicle to a safe and controlled stop on the
road’s shoulder in case of an emergency. The best sequence of activities from each planning system is
passed to the executor (EX) which selects the appropriate plan to execute and then executes all or a portion
of that plan.

4D/RCS supports several modes of behavior generation including reactive behavior, off-line planning, and
real-time planning. Reactive behaviors strive to embed the control strategy into a collection of pre-
programmed reactions (sense-action mappings) that are very similar to human reflexes [5]. This approach
provides a direct, constant-time response to the sensed environment, which requires an expert to isolate
each possible combination of sensor output and map them to actions. Under the 4D/RCS approach, reactive
behaviors are most often used to correct small control errors and in response to emergency situations. The
reactive behaviors are controlled by the EX which is constantly evaluating the predicted state of the world
against the sensed state of the world. If the error between these two becomes too large, the EX is able to
swap out the current plan for one of a number of pre-computed reactive plans or actions that are stored in a
plan library, or a deliberative plan from the contingency planner.

4D/RCS and its predecessor RCS have long supported off-line planning. In fact, Versions I and II of RCS
used off-line planning exclusively [2]. Through the 6-step process illustrated in Chapter 2, off-line plans
may be devised to accomplish many different classes of tasks. These off-line plans consist of a carefully
designed state graph or state table with branching conditions that represent alternative actions that are
triggered by environmental stimuli and events. The resulting plans define one or more paths through the
state space and consist of a string of actions and a string of resulting states. In general, the actions and
resulting states may be viewed as subtasks that will be passed through the hierarchy. At each hierarchical
level, this planner “computes plans that extend from the anticipated starting state out to a planning horizon
characteristic of that level. On average, planning horizons shrink by about an order of magnitude at each
lower level” [2].

Real-time planning consists of the process of performing a real-time search through the system’s state
space in order to devise an optimal or near-optimal sequence of activities to perform in order to accomplish
a set of goals. As 4D/RCS matured, this class of planning was incorporated for such tasks as vehicle route
planning, and the resulting state sequences have been viewed as subtasks for lower levels of the hierarchy.
The remainder of this chapter will focus on new techniques for integrating real-time planning into the
4D/RCS architecture and with off-line planning systems. Three real-time planning techniques will be
discussed along with a novel cooperative planning mechanism that will operate in the place of task
decomposition between 4D/RCS hierarchical levels. Finally, a discussion of a behavior generation system
that has been implemented on NIST’s High Mobility Multi-purpose Wheeled Vehicle (HMMWV) will be
presented.

3.2 BG Interfaces
In order for any hierarchical system to function properly, there must be well defined interfaces between the
various levels of the hierarchy. Under a traditional off-line planning task decomposition scheme, a large
amount of prior work is devoted to the creation of a vocabulary that is transmitted between levels. Under
this scheme, a received command is decomposed through the application of a pre-computed plan into a
series of activities that will accomplish the given command. Each of these activities is then sent to a lower-
level off-line planner that repeats this process. This scheme bottoms out at a planning level whose output
controls the actual hardware. This form of planning may be viewed as plan refinement; the highest level
planning system creates the framework of the plan to be executed, and this framework is then refined by
adding details and complexity throughout the hierarchy.

3.2.1 Task Decomposition Planning
A detailed example of a task decomposition for on-road driving was presented in Chapter 2. The depicted
vocabulary attempts to define a set of commands that incorporates all of the activities at all levels of detail.
With this planning technique, the high-level planner determines a course of action for the system to follow
from the system’s current state through its goal state. For example, the vehicle will “GoOnRoad-name1”,
then “TurnLeftOntoRoad-name2”, etc. The lower level planning system is then left to compute how the
vehicle will travel on the road, but is no longer free to decide which road to travel on. For this technique to
function properly, the high-level planner must have information over a sufficient extent to compute the
initial complete plan.

Figure 3.2: Example of feature precision for 2D mobile robot application. R1 is coverage region of high-
precision sensor, R2 is coverage region of lower precision sensor, R3 is region of a priori data. The small
filled circles represent a detected feature, and the lines are the location error bars.

Real-time task decomposition
For many real-time off-road planning systems, the world model is realized as an occupancy grid whose
resolution is formed by examining real-world phenomena. In these systems, areas near the robot (region R1
in Figure 3.2) are observed by sensors that are able to provide high precision of feature locations. Further
from the robot (region R2 in Figure 3.2), wide area sensors detect large objects and the corresponding
location precision decreases. Finally (region R3 in Figure 3.2), once the limits of the sensors have been
exceeded, the represented features correspond to the features and precision represented in an a priori
dataset. As the data precision varies with range from the vehicle, so do the storage requirements on the
occupancy grid. Since the entire cell of an occupancy grid is labeled with any particular feature, the cell
should be sized large enough to contain the location error bars, but small enough to preserve the sensor
precision. Therefore, the occupancy grid may be viewed as requiring high precision near the robot with
decreasing precision as the distance to the robot increases. Forming regions of equal precision as shown in
Figure 3.2 can be used to create the basis of a hierarchy.

If this hierarchy is treated as a task decomposition hierarchy, a BG system operating in region R3 will
compute a plan from the vehicle location to a planning horizon that lies in R3. This plan will be based on
low-precision information from region R3 combined with summary data from regions R2 and R1. The R1
and R2 data is summarized to the precision of region R3 in order to reduce the computational burden on the
BG system. A subset of this plan (extending from the vehicle location to a planning horizon in region R2)
will then be refined by the echelon R2 BG which will compute a higher-precision plan that roughly follows
the R3 plan and is based on the higher precision information from region R2 combined with summary data
from region R1. Similarly, the region R1 BG will compute a plan that roughly corresponds to the R2 plan
and extends from the vehicle location to its planning horizon.

(a) (b)

Figure 3.3: Sample high-resolution grid squares that compose a single low-resolution grid.

Of major concern with the task decomposition technique is that data must be summarized. Careful attention
must be paid as to how to accurately represent the data summary. For example, in Figure 3.3 both of the
low-resolution cells depicted contain an identical number of occupied high-resolution cells (shown in
black), however for a robot that that is able to traverse through a single unoccupied high-resolution cell, the
high-level binary summary should be “occupied” for (a) and “free” for (b), or from another viewpoint, cell
(a) will be highly traversable from left-to-right (a straight line path exists) and will be untraversable from
top to bottom while cell (b) is moderately traversable (a path with turns exists) in any direction. If the robot
is two or more cells in diameter, then cell-to-cell boundary conditions also become an issue.

Figure 3.4: Planning region boundaries.

3.2.2 Cooperative Planning

By shifting the focus from a task-decomposition style of interface to a cooperative planning interface, the
need for cell summarization can be totally eliminated. Rather than having each planning system plan from
the vehicle location to its planning horizon (thus requiring summarization of high-precision data), a
cooperative planning system allows each hierarchical echelon to plan in the region that matches its native
precision. This final plan may be seen as a cooperative plan that is stitched together by a series of
boundaries. This boundary is defined as an interface region between two or more planning systems.

Boundaries may be hierarchical as depicted in the left-hand side of Figure 3.4, or between two planning
systems functioning at the same echelon as shown in the right-hand side of the figure. In a hierarchical
system, each planning system will typically have two boundaries; one with its supervisor and one with its
subordinate. In this case, each of the planning systems is responsible for computing the section of the plan
that is between its boundaries.

Graph-based planning
Cooperative planning as defined here relies on the use of a graph-based planning technique such as uniform
cost search (described below). Graph definitions are depicted in Figure 3.5. Graph-based planning relies on
the existence of path segments that are directed from one location (or state) to another in the system’s state
space. These path segments may be thought of as the arcs of a directed planning graph. If it is possible to
have identical bi-directional connections between pairs of states, then the two arcs may be replaced by a
single edge. A graph that contains only edges is referred to as an undirected graph. The end points of these
edges then become the nodes of the graph, and the start point may be referred to as the root node. Any node
that has no successors is called a tip node or leaf node. The act of exploring an edge that connects two
nodes is referred to as expanding that edge. Additionally, the nodes connected to the current node under
consideration are referred to as that node’s spanning set or children and each of these children possess a
back-pointer that names its parent. It is often desirable to assign a positive cost to an arc that represents the
cost of the corresponding action that causes the node transition from parent to child.

Figure 3.5: Graph space definitions.

Once the possible path segments through the space have been defined and the plan graph has been
constructed, a plan is formed by finding a combination of these segments that connects the system’s
starting state to the system’s goal state. This may be accomplished by simply following the back-pointers
from the goal to the plan origin. The path cost is then defined as the sum of the individual arc costs that
constitute the path. The path that has the minimum cost between two nodes is referred to as the optimal cost
path [12].

Graph search provides a set of techniques for finding a path (or optimal path) from the start node to the
goal node. Uniform cost search is an uninformed search strategy developed by Dijkstra in 1959 [9] that
finds an optimal path through a graph with respect to an arbitrary cost function. This algorithm begins by
fully expanding the start node. During the expansion, the cost of the edge connecting the start node to each
of its children is computed and assigned to the child node. Each child is then placed on a list of partially
evaluated nodes known as the open list. The search now moves to the least expensive child from the open
list (denote this node n2), which is removed from the open list and is fully expanded. The costs of each edge
connecting n2 to its children are then computed. For each child, if the cost of the connecting edge plus the

Root echelon
Node
Leaf echelon
Arc

Child

Child

Detail of echelon-echelon
relationships

Planning Graph

Parent echelon
Child echelon
Back pointer
Arc

cost of n2 is less then the child’s current cost (which is initialized to infinity), the child is assigned this cost,
its back-pointer is set to n2, and it is added to the open list. This procedure is now repeated with the
expansion moving to the new lowest cost node. The search terminates when the goal node is removed from
the open list. This search technique will produce a path that is both complete and optimal provided that the
path cost function is non-decreasing.

Implementation
Cooperative planning may be implemented in a two-step approach in a hierarchical real-time graph-based
planning system. In step 1, a “prepare to x” (where x is some activity) command originates at the highest
level of the hierarchy and propagates down to lower levels. In response to this command, the lowest level
planning system uses a graph search technique such as uniform cost search to compute a partial plan graph
that originates at the system’s current state, and has computed cost values for all of the level’s boundary
nodes. These cost values are sent in a status message to the next higher level and placed in this level’s open
list. Placing these nodes in the superior’s open list has the effect of “seeding” the superior’s planning graph
with costs. Instead of starting from a single point (the system’s current state), the graph search now
proceeds from the set of states that were determined by the subordinate. This level then continues the
development of the planning graph until its entire set of boundary nodes have costs associated with them.
This procedure continues until the planning terminates with a cost being assigned to the system’s overall
goal at the highest planning level.

Figure 3.6: Example of multiple planning regions (one inside the black box and the other outside).

Since the boundary region is shared by two or more planning systems, it is possible that a planning level
may find a cheaper way of achieving its subordinate’s shared boundary node than was reported by the
subordinate. If this occurs and optimal planning is desired, the subordinate must incorporate this knowledge
into its partial planning graph which may result in new, lower values being found for some set of boundary
nodes. This may be accomplished by having the superior send an “alter graph” command to the subordinate
along with a list of nodes whose values have been affected.

X

 - Current Location
X - Goal Location
 - Boundary Node

a

b

An example of this is shown in Figure 3.6 which shows an actual exit ramp from a highway. When
planning in isolation, the subordinate located on the north-south running highway will not be able to find
any way to achieve the east-west road that contains the goal X. The only path that lies entirely in its
planning space would require the system to jump off of the bridge or drive off-road. However, the superior
will find a less expensive way of achieving the boundary node ‘b’ that permits access to the goal road
(taking the off-ramp from the boundary node ‘a’ to the boundary node ‘b’) thus updating the subordinate’s
search space and allowing the subordinate to plan a viable path to the goal road. A complete study of the
handshaking necessary for optimal planning with this technique may be found in [6].

Once a path to this goal has been determined, the graph back-pointers from the goal may be followed to
find the boundary node that is part of the plan. A “perform x” command is then sent down the hierarchy
(step 2 of the procedure) where the command contains the boundary node that the subordinate system
should strive to achieve. Through this technique, each planning system is uniquely responsible for planning
in its area of expertise, and a jointly optimal path may be found.

Communication Channels
Each of the BG nodes described in the remainder of this chapter functions as an independent finite state
machine (FSM). Communication between superior and subordinate is supported over two sets of matched
command and status communication channels. The first set of channels is used to communicate commands
to the subordinate and status back to the superior. At a minimum, each node supports commands that allow
for:

• Initialization – places the system in a known initialized state.
• Halt – commands the system to perform an orderly cessation of activity.
• Abort – commands the system to cease activity immediately.
• Shutdown – commands the system to power-down.

In addition to these commands, each node accepts node specific commands that are germane to the node’s
planning level (e.g. drive to goal command for the high-level BG). When a new command is received over
the command channel, execution of the previous command’s FSM is immediately terminated, and
execution of the new command is begun.

At times, it is desirable to alter system parameters without interrupting the currently executing FSM (e.g. it
may be necessary to change the planning cycle time to aid in CPU load balancing). An additional set of
command/status channels known as the configuration/settings channel is provided for this use. These
channels run their own independent FSM that interacts with the primary FSM without destroying its
internal state. Interlocks may be utilized to protect areas of shared data from corruption during sensitive
areas of execution.

3.3 Rule Based High-level BG
The highest level in the control system is called the vehicle level. This level provides control (in some cases
optimal) for the achievement of future goals while factoring in hard and soft constraints on the control
strategy and real-time constraints on performance. In addition, it must operate under challenges such as
dynamic environments, user objectives, and system goals. In this sample system, it operates in an area
about 100 m across with a cycle time of about one second.

Dynamic, or seemingly dynamic environments occur in all but the simplest planning cases. These dynamics
may be caused by newly sensed environmental features that are inconsistent with prior knowledge (e.g.
seemingly dynamic events such as a mobile robot which has sensed information missing from its a priori
map), or by actual events that alter the environment (e.g. moving objects). In either case, these changes
may prove catastrophic for a deliberative system if its pre-computed plan is not altered.

Dynamic user objectives occur when a user changes the way in which a particular behavior is to be
performed after the system has already begun operation. This change may take a form that the system
designer has previously anticipated, or may place new, unexpected requirements on the system. Finally,
dynamic goals occur when the system must not only change the way in which a behavior is performed, but

must also change the final goals of the behavior, and may even need to alter which behavior or set of
behaviors is currently active.

For the vehicle level, the plans must do more than successfully find a path that will move the robot from
point ‘a’ to point ‘b’. The robot must exhibit intelligence in the manner in which it performs this
movement. For example, a robot that is only capable of on-road travel must be able to plan a route that
follows roads, while an all terrain terrestrial rover may need to follow the contour of a particular interesting
rock formation.

To compute these plans, the vehicle level utilizes a graph-based planning algorithm, and the planning
process may be decomposed into the potentially concurrent phases of graph creation and graph search. The
determination of the node spanning sets that are used for graph construction and the evaluation of the arc
cost function that is used for graph search is performed in cooperation with the vehicle level’s world model
process.

3.3.1 World Model
The World Model (WM) is responsible for maintaining a model of the features of the environment and
vehicle self and for converting this information into a form that is usable by BG for the creation and
evaluation of the planning graph. Information from the WM is used in the determination of the spanning
sets of graph nodes and in the determination of the cost of arcs.

The WM is made up of multiple feature layers. Each of these feature layers may be viewed as an expert
system that is capable of providing advice to BG in the areas of node spanning set generation and arc cost
evaluation. The number of actual feature layers is a design decision that is driven by a combination of
feature independence and complexity. The layer design must balance having the layer contain the proper
information to provide valid feature based planning information, while being able to provide this
information in a time frame that is suitable for real-time operation. For example, a layer that is in charge of
determining conformance to traffic laws will also need to contain information on road markings to provide
correct results. However, including obstacle information in the same layer produces additional complexity
without adding benefit to its traffic law conformance decisions. The WM may be further decomposed into a
Knowledge Base (KB) and Plan Simulator (PS) for each layer and a Value Judgment (VJ) module.

3.3.2 Knowledge Base

Each of the layers in the WM contains its own KB that maintains information relevant to the decisions
made by the layer. The KB is responsible for providing the PS with the information necessary to perform
valid simulations of states and state transitions for use in the construction of the arc cost function, and for
providing VJ with the information necessary to construct node spanning sets.

In order to perform these duties, the KB contains an implementation specific knowledge representation
whose specifics are driven by the class of data being represented. Example representations include rule
bases, cell-based scrolling maps, or skeleton-based scrolling maps.

Rule Base
Some forms of knowledge may be compactly represented by a set of rules or equations. This may be seen
in boundary equation representation techniques for Cspace [11,14] and rule bases that govern domain
independent planning [4]. Rules may be used as soft constraints for the evaluation of the validity of state-
to-state transitions (in the arc cost function) and for hard constraints in the incremental expansion of a
planning space (the selection of a node’s spanning set).

Layers that contain rules based on predicate logic have been constructed to work in several different
planning environments including domain independent planning and the solution of the towers of Hanoi

[5]1. In these layers, rules are used in both graph expansion (what states are members of the spanning set of
state x) and graph edge traversal (what cost factors are incurred as a result of this transition).

Hybrid rule-based and cell-based layers have also been designed for both on- and off-road driving
environments [7,13]. Under these environments, a rule-base is used in conjunction with a cell-based
scrolling map that is updated by the sensor processing system. Graph expansion is controlled through the
application of a rule base that is used to determine node spanning sets. The selected nodes are then mapped
into the cell-based scrolling map where graph edge traversal is simulated for the determination of arc cost.
The information available in the cell-based map is also made available for use during rule evaluation. This
provides a hybrid structure that allows for the seamless integration of cost-based and rule-based
information sources.

Cell-based Representation of a Layer
An example of a composite view of a knowledge layer based on cell decomposition is shown in Figure 3.7
for a mobile robot application. This figure shows an a priori layer that contains static knowledge about the
environment.

Figure 3.7: Structure of composite cell-based component of Knowledge Base.

The basic form of the layer is a combination of a regular, n-dimensional grid of cells that represents the
system's discrete state space with regard to the layer's feature classes and a database of specific feature
instantiations. Each cell of the grid contains a representation of the layer’s features that are contained in the
cell, and a link to a relational database containing specific details of each contained feature. The 4D/RCS
architecture strictly governs the resolution and extents of the feature information required by the vehicle
level, thus allowing a limited size grid to be implemented.

In order to operate in this limited size grid, the system’s current state is always maintained at the center of
the grid. As the system’s state changes, the grid is scrolled to maintain its centered position. This scrolling
has the possibly undesirable effect of causing data to be lost off of the edges as the layer scrolls. In order to
prevent this loss of data, KB layers may implement a function that summarizes this data and passes it up to
WM at the next level of the hierarchy (which has a greater spatial extent at lower resolution).

1 The Tower of Hanoi puzzle was invented by the French mathematician Edouard Lucas in 1883. The
starting configuration of the puzzle consists of a number of uniquely sized disks stacked in increasing size
on one of three pegs. The objective is to transfer all of the pegs to another tower while moving only one
disk at a time and never placing a larger disk onto a smaller one.

Skeleton-based Representation of a Layer
Not all information can be easily expressed as cell-based data. In some instances, for example vector data
such as road networks, a skeleton representation may be more appropriate. For this approach, the vector
data is maintained as a sorted list of skeleton vertices. As in the cell-based layer, skeleton-based layers
consist of a representation of the layer’s features that are contained in the vertex, and a link to a relational
database containing specific details of each contained feature. Unlike the cell-based layer, where
connectivity may be assumed (each cell is connected to its neighbors), the skeleton-based layer must also
contain explicit connection information.

Since memory usage is also a concern for skeleton-based layers, the list of vertices is maintained so that the
system’s current state is at the center of the cloud of vertices as judged by some distance criteria. For the
example of a road network, this distance criterion may be a simple Euclidean distance of the geographic
location of the vertex. As the robot moves, vertices that are deemed to be too far from the robot are
disconnected and removed.

Relational Database
Each cell of a cell based layer or vertex of a skeleton based layer contains a link into an object oriented or
relational database for each of its contained features. For example, a cell or vertex that contains the feature
“road” would have a link to a specific road object that contains information about the road (speed limit,
number of lanes, etc.). All cells or vertices that contain a piece of that specific road share this specific road
object. In addition, as shown in Figure 3.7, the road object contains a link to each cell or vertex that
contains the road. This representation allows for the identification of all cells/vertices that contain a specific
feature.

3.3.3 Plan Simulator

A PS resides with each KB. The PS is responsible for determining the validity of potential children in a
node’s spanning set and for determining the consequences of traversing a graph arc. All simulations are
performed with respect to the information contained in an individual KB. The results from all of the PSs are
then combined by the VJ module.

Validity checking of potential children provides a mechanism for reducing the size of a node’s spanning set
and thus, the size of the planning graph. For example, it may be determined that a road driving robot is
capable of occupying a location in an opposing lane of traffic. The potential child would be evaluated by
the KB in charge of rules-of-the-road as not valid. Assuming that this is undesirable, a hard planning
constraint could be implemented by eliminating any children that are judged not valid by this KB. This
would make it impossible for the planning system to plan to go to such a location.

However, in some cases it may be necessary to cross over into opposing traffic. This action could be
allowed, but strongly discouraged, through the arc evaluation process. In this case, VJ would allow the
node to be added as a child, but when the PS evaluates the connecting arc and designates it in violation of
rules-of-the-road, the cost could be made prohibitive. This arc would only be selected for execution only if
no better alternative is available. In addition to simulating node validity, the PS simulates the consequences
of the traversal of each arc. These results are passed onto VJ which translates consequences into cost.

3.3.4 Value Judgment

VJ is responsible for combining the results from the multiple plan simulators into a single response. These
results consist of the children of each node in the planning graph and the cost of each arc traversal. The
results are obtained by applying behavior and planning objective specific rules to the results of the PS
simulations. To date, very simple if-then-else rules have proven sufficient to elicit road driving behavior
from simulated robotic vehicles. It is envisioned that more complex rule engines will be necessary to fully
comply with complex rules-of-the-road and mission objectives.

3.3.5 Planning Engine

The interactions of all of the components of the vehicle level BG are coordinated by a graph search engine.
The current search engine used is a Dijkstra searcher as outlined in the previous section. This search engine
operates in the following loop:

1) The current cheapest node from its open list is sent to all of the PS modules for evaluation. Each
PS examines the state information associated with the node in order to determine the node’s
children. Grid-based layers may simply suggest the nearest neighbors for inclusion, while
skeleton-based layers may perform a visibility graph analysis in order to determine reachable
nodes.

2) A validity check is then performed on all potential children by all of the PS modules. These results
are sent to VJ which collates the results and creates a final spanning set for use by the search
engine.

3) The arc cost of reaching each child must now be computed. Individual PS modules once again
compute simulation results that are passed back to VJ for final analysis. The rules used for
simulating the arc transition may be changed on a planning-cycle-by-planning-cycle basis. In fact,
they may even be tied to individual attributes of a node. For example, the traffic-law conformance
layer may examine the time that an arc will be traversed and the number of vehicle occupants in
order to determine conformance with High Occupancy Vehicle (HOV) rules.

4) VJ combines all of the simulation results and determines a single final cost of each arc. The rules
that govern the cost determination may also be varied on a cycle-by-cycle or arc-by-arc basis.

5) The cost of each child is determined and the children are added to the open list.

The loop then repeats itself until (1) an optimal solution has been found, or (2) a non-optimal solution has
been found and the planning time limit has expired, or (3) no solution has been found and an error must be
returned. If a valid plan is found, then this plan is sent to the executor for execution.

3.4 Cost-based Mid-level BG

The middle level in the control system is called the Autonomous Mobility (AM) level. It performs
cooperative hierarchical planning, and in this example, executes moves within a square ten meters on a side
centered on the vehicle, and has a cycle time of about 0.2 s. At this level, plans are made to move from the
current location of the vehicle to points on the perimeter of the square, commands are received to move
from the current location to some point on the perimeter, and commands are issued to move on an arc or
line from one point of the square to another.

At the AM level, consideration is given to vehicle dynamics, cost-based real-time planning is performed,
and a relative (or local) coordinate system is used.

3.4.1 AM Level World Model

The world is modeled using two grid-based maps, one for obstacles, the other for elevation. The resolution
of the maps has been set at 0.2 m during development of the system, but it is a parameter that may be
changed. RCS theory [1] also provides for symbolic objects such as roads edges and ditches at this level,
but symbolic objects are not yet included. The obstacle map indicates the difficulty of driving over a patch
of ground if it were level. It represents the effects of trees, rocks, lakes, cliffs, fences, holes, land mines,
local bumpiness, other vehicles, etc. The elevation map records the average elevation of each grid square.
The elevation map is used for computing the slope of the ground for use in considering vehicle dynamics.

The maps are expressed in a “local” coordinate system. The distinguishing features of the local coordinate
system are: (1) that any object is located by finding its offset from the vehicle location and adding the offset
to the location of the vehicle, and (2) that the vehicle location is tracked from moment to moment by
adding the offset occurring between moments. In particular, vehicle position is never adjusted by reference
to any device such as the Global Positioning System that provides absolute location. Because location by
adding offsets always drifts over time, the location in absolute coordinates of the origin of the local system
also drifts over time, and the location of objects that were perceived a long time ago is likely to have a large

error. Only those things that were perceived recently are located accurately. The local coordinate system
works well for AM level BG because the vehicle sensory processing system can sense everything inside the
ten meter square in a short time, and things outside the square are not remembered.

3.4.2 Using Vehicle Dynamics

The world model in the AM planner does not provide a level of detail sufficient to support calculation
during planning of dynamic vehicle behavior such as bouncing, sliding, and tipping. Devising and
implementing algorithms capable of accurately calculating vehicle behavior given sufficient input data is
difficult if not impossible. If software were in place to perform the calculations given sufficient data, it is
certain that sensory processing and world modeling would not provide sufficient data at the level of detail
needed by the algorithms. For example, the compactability of every patch of dirt over which the vehicle
might drive would be required. If sufficient data were also available, sufficient time would not be available
since many alternative courses of action are considered during planning, and each would require dynamic
analysis. The AM planner, therefore, considers dynamics qualitatively. The paths it produces are nearly
physically realizable, and the rules it uses to produce the paths are elementary.

In some control systems, the interface between levels provides commands that may be physically
impossible to carry out. For example, an upper level language for controlling a vehicle might include a
command to set the speed to a constant value and a command to travel in a straight line from one point to
another. When successive straight line commands are given going in different directions, the path, in
principle, should have a sharp corner where the two lines intersect. It is physically impossible, however, to
make a sharp corner at constant speed; the acceleration would be infinite. The lower level controller that
receives the commands deals with this by having an implicit path following tolerance, and slowing down at
the corner if necessary to achieve that tolerance.

The AM controller deals with the sharp corner problem by never including one in the paths it generates. All
paths consist of sequences of constant curvature segments (arcs of circles and straight line segments) that
join smoothly end to end.

Paths that are smooth as just described look good, but are still impossible to follow exactly. At each
juncture where constant curvature segments meet, to follow the path exactly, it would be necessary to turn
the steering mechanism instantaneously from one direction to another (or change drive wheel speeds
instantaneously), and that is impossible. The error introduced by this impossibility, however, is much less
than that caused by a sharp corner. The AM planner helps to minimize the error by generating paths in
which only a modest change in the position of the steering mechanism (or in drive wheel speeds) is needed
to go from one path segment to the next.

The content of the command to move along a constant curvature segment was determined with dynamics in
mind. The speed with which to move along each segment is part of the data about the segment provided by
the command, as is the tolerance with which the segment must be followed. The AM planner commands
only modest changes in speed between segments since instantaneous changes are impossible.

Perhaps the most obvious qualitative dynamics requirements of driving are to go slower on tight curves
than on wide curves and to adjust speed on a curve according to how much the curve is banked. The AM
planner observes both of these.

Where the vehicle must go through a gap almost as wide as the vehicle, the vehicle is slowed down. This is
partly because of dynamics (a small error in heading could lead to a large path following error at high
speed, causing a crash), partly because of control (control error is usually less at low speed), and partly
because of safety (a low-speed crash causes less damage).

3.4.3 Path Planning Commands and Methods

The AM mobility BG process may be commanded (1) to plan, or (2) to move the vehicle from where it is
through a series of waypoints (usually only one), or (3) to do both at the same time. A basic principle of the
architecture used in the system described in this chapter is that each controller executes only one command
at a time. It is necessary to have a command to plan and move simultaneously (and not feasible to use two

separate commands) because if a command to plan were given while a plan to move was in progress,
starting work on the plan command would wipe out knowledge of the status of the move, and if the
planning command were not given until the move was completed, it would be impossible to have
continuous motion.

The command to plan means: find the cheapest path from the vehicle’s current position to each of 40 points
on the periphery of the world model square and report the cost of each. Using 40 points allows one point
for each meter of the periphery of the square, which gives one point on the edge of each vehicle level cell
that is adjacent to the square. The periphery of the square is the boundary between levels shown in Figure
3.4. The command to move requires that a plan for the move be made and executed. If only a short time
passes between a plan command and a move command, it might be feasible to use one of the 40 plans
already made, but that requires remembering the 40 plans and keeping track of how much time has elapsed
since the plans were made. Hence, when a move command is received, a new plan is made and its
execution is started.

Except when a goal has been reached, it is anticipated that a plan, which might take several seconds to
execute, will not run to completion. Rather, on the next planning cycle (a fraction of a second after plan
execution starts), the plan will be replaced by a new plan.

The AM planner does not perform its work instantaneously. Therefore, a mechanism needed to be
developed that would allow the vehicle level to know when a plan had been developed to reach a particular
periphery point. Since the cost of reaching a point can never be negative, when given a command to plan,
the AM planner initializes the cost of reaching each of the 40 periphery points to a known, negative value.
This value then serves as a flag indicating that no plan has yet been made. The vehicle level can check the
progress of planning by looking at the flags and, if planning is not complete, decide whether to allow
planning to continue or to issue a move command.

As already described, the AM planner is a grid-based planner. A plan from one point to another is produced
initially as a series of lines from the center of one cell to the center of another cell.

Two quite different approaches to planning a path from one point to another are used: rubber banding and
A*. Rubber banding (described below) is tried first. If rubber banding fails to make a good plan, or if time
permits and more confidence in having an optimal solution is desired, A* is used.

In rubber banding, a path straight from the current location to the goal is constructed and examined to see if
it passes over unacceptably steep slopes or through high-cost areas such as those containing obstacles. If so,
the path is stretched away from them (like a rubber band) into less costly or less steep areas and the cost is
recomputed. The stretch and check cycle is repeated either a fixed number of times or until the cost divided
by the distance from the current location to the goal falls below some threshold. Rubber banding will
provide a good solution quickly if the surface is uniform over the planning area and obstacles are sparse. If
those conditions do not hold, rubber banding is not expected to provide a good solution. Rubber banding
never provides a guarantee of optimality. Rubber banding is illustrated in Figure 3.8.

Figure 3.8: Rubber banding.

A* search [10,17] is a graph-based planning method similar to the Dijkstra method described in Section
3.2. A* extends the Dijkstra method by arranging the list of open nodes according to estimated total cost,
where the estimate for a node is the sum of the cost to get to the node plus an estimate (called the heuristic)
of the cost to get from the node to the goal. As long as the heuristic always provides an underestimate, the
search is guaranteed to find a lowest-cost path to the goal if there is any path. The heuristic used in the AM
planner is the Euclidean distance in meters from the current location to the goal multiplied by the least
possible cost per meter traveled.

To enhance the performance of the A* searcher, the list of open nodes is maintained as a heap [15,16], and
the heuristic is calculated during the search only for those nodes for which it is needed. The graph used by
the AM planner in A* search has one node for each cell. Arcs of the graph go only from each cell to its
eight immediate neighbors. As a result, plans made by A* search consist entirely of short straight line
segments through the center points of cells.

After the path has been generated as a sequence of straight line segments, it is remade as a smooth curve
through those points, having a continuous second derivative at every point (i.e., the curve is C2
continuous), so that it could be followed without instantaneous changes in steering. It is checked that the
cost of the smooth curve is not much different from the cost of the lines. Finally, the smooth curve is
approximated by a smooth path consisting of constant curvature segments. To make it physically possible
to follow the path closely, the constant curvature segments are selected so that only small changes in speed
and curvature occur from one segment to the next. This last approximation may be done using relatively
few segments and with sufficient accuracy that it is not necessary to recheck the cost. The three stages of
path planning are shown in Figure 3.9.

Figure 3.9: Three stages of AM path planning.

To execute a plan, commands to follow the path segments given in the plan are sent to the Primitive (Prim)
level. Each Prim command describes a circular arc or a straight line segment with a width tolerance and a
speed. The Prim controller is expected to keep the vehicle within the given tolerance of the desired path and
to drive the vehicle at the given speed. The Prim controller may adjust the speed to keep the vehicle within
the given tolerance.

3.4.4 Cooperative Planning Issues

Two interesting issues arise from the use of cooperative planning: using the same cost measures at different
levels of planning, and dealing with paths that pass out of the AM planner’s square and then come back in
again. The latter was discussed in Section 3.2.

The vehicle level planner and the AM level planner must assign costs in the same way or cooperative
planning cannot be said to be optimal, and strange effects may occur. For example, if the vehicle level
planner assigned a high cost per distance traveled to driving in streambeds, while the AM planner assigned
a low cost, the vehicle level planner would tend to keep the vehicle away of streambeds outside the AM
planner’s square, but whenever there were a streambed inside the square, the AM planner would tend to
drive into it.

The two planners must use the same costs for the same expense items. Even this is not sufficient, however.
The AM planner assigns costs to some items the vehicle planner does not think about. For example, the
AM planner may assign a cost to moving through a narrow gap between small obstacles that may not
appear at the vehicle planner’s level of resolution. Also, the AM planner may be able to make a more exact
cost calculation than the vehicle level planner since it knows the exact path. The AM planner sees small-
radius turns and can assign costs to them while the vehicle planner may not see small-radius turns. It may
be useful for the vehicle planner to add in an “expected small-radius turn cost” as a sort of overhead charge.
There may be additional items for which the overhead charge method is useful.

3.5 Adaptive Low-Level Behavior Generation

3.5.1 The Primitive (Prim) Level

The Primitive or Prim Level is responsible for planning a series of velocity states given a list of constant-
curvature arc moves with tolerances on width and desired tangential speeds. Prim derives its name from the
robotics notion of primitive moves, e.g., short move segments that make up a pick-and-place operation by
an industrial robot arm. The arc list is represented in the vehicle’s relative coordinate system. These
velocity states are sent to the subordinate Servo Level for tracking. Prim models the vehicle dynamics so
that only feasible velocity states are planned. Dynamics include forces due to accelerations, friction, and
tipping induced by the ground gradient. In general the problem is over constrained. For example, the
desired speed for a small-radius constant-curvature arc move may result in centripetal forces that tip the
vehicle. The velocity constraint is always relaxed in favor of geometric constraints (e.g., the arc radius)
since the path geometry is presumed to be correct in the presence of obstacles. That is, a tight move is not
made wider in order to maintain speed; speed is reduced to maintain tight turning.

Planning is complicated by the unpredictable performance of the vehicle. For example, the vehicle may
have slipped off the nominal circular arc path due to wet conditions. Prim continually monitors the
navigation state from sensors such as a GPS receiver or an Inertial Navigation System (INS) to determine if
the vehicle is within the width tolerance for the arc. If not, Prim plans a move directly toward the arc at
some safe speed in order to prevent collisions with obstacles presumed to lie outside.

Within Prim, arcs are converted to a series of closely-spaced waypoints based on the width tolerance. The
tolerance sets a neighborhood around each point within which the vehicle is free to move toward the next
waypoint. For the next target waypoint, Prim computes the deviation in heading, and sets the vehicle

velocity and angular velocity according to a tunable cutoff angle cθ . Translational speed is reduced

linearly from its desired tangential speed vmax at zero heading deviation to some minimum speed vmin at the
cutoff angle, and clamped to the minimum beyond that. Angular speed is set to zero when there is no
heading deviation, and increases linearly to its maximum at and beyond the cutoff angle. In particular

),/1(max(

0),/min(

0),/max(

minmax

maxmax

maxmax

vvv c

c

c

θθ
θωθθωω
θωθθωω

−=
<−=
≥−−=

where θ is the angular difference, cθ is the cutoff angle, vmax is the desired tangential maximum speed,

and vmin is the minimum achievable speed from the constraint minmin / rv ω= for vehicles with a minimum

turning radius rmin.

Figure 3.10: Trajectories for various values of the cutoff angle cθ . Initially the vehicle is pointed

perpendicular to the goal direction, and rotates in place until its heading lies within the cutoff angle. Note
that for large cutoff angles, the vehicle takes a broad sweeping path toward the goal, which is undesirable.
For small cutoff angles, the path is more closely aligned with the straight-line path to the goal.

For wheelchair-like vehicles that have a zero minimum turning radius, the minimum translational speed can
be zero. Figure 3.10 shows the behavior of such a vehicle when given a single goal point far away in both
distance and heading. The three paths show the track of the vehicle for various values of the cutoff angle.
For heading deviations outside the cutoff angle, the translational speed is zero and the vehicle rotates until
it is pointed toward the goal, at which point the translational speed picks up and moves the vehicle. For
larger cutoff angles, the vehicle is free to move when it is pointed far from the goal, and wide deviations
are seen. As the cutoff angle is made smaller, the vehicle never deviates far from a direct line to the goal,
although the vehicle speeds are smaller. This is shown in Figure 3.11.
s

Figure 3.11: Speed versus time for various values of the cutoff angle. Note that the larger the cutoff angle,
the faster the vehicle can move.

Notice that near the goal, there is erratic motion characterized by limit cycling due to the large change in
heading deviations for small motions. The neighborhood of a target point should be made large enough so
that it encloses any region of limit cycling, or the system should switch to a simpler open-loop following
method near the target.

Figure 3.12: Trajectories for various values of minimum radius, at a small cutoff angle. Note the initial
backing up of the vehicle, and the numerous “parallel parking” maneuvers near the goal, with backups
(negative speeds) shown in Figure 3.13.

For vehicles with non-zero minimum turning radius, the nonholonomic constraint rv ω= may result in
endless maneuvering about the target point. Figure 3.12 shows this behavior for various values of the
minimum turning radius, at a constant (small) cutoff angle. Notice the “parallel parking” maneuvering near
the goal, with backing up evidenced as negative speeds in Figure 3.13.

The exaggerated behavior depicted in the previous figures arises when the Prim Level is given a far-off
target point. In a hierarchical system comprised of the Vehicle, AM and Prim Levels, the target points are
planned to lie within a dynamically feasible envelope around the vehicle's current speed and heading, and
the deviation angle should rarely lie outside the cutoff angle. The slowing and turning evident in the
previous figures will arise only when the vehicle is significantly perturbed from its planned trajectory, for
example due to sliding. In those cases the closed-loop behavior of the Prim Level will ensure that the
vehicle will eventually return to its nominal path.

Figure 3.13: Velocities for various values of the minimum radius for a small cutoff angle. The backing up
is evident as negative speeds.

3.5.2 The Servo Level

The Servo Level is the lowest level of the BG hierarchy, and interfaces directly with the sensors and
actuators that make up the mobility platform. Sensors include those that measure discrete components of
the vehicle itself, such as brake pressure, throttle position and wheel encoders, and those that measure
navigation values such as GPS and INS for absolute and relative vehicle position. Actuators include those
that affect the mobility of the vehicle, such as the steering, brake, throttle, transmission and transfer case
settings.

The Servo Level is responsible for transforming periodic commands that the vehicle achieve some desired
mobility state into actuator outputs that drive the vehicle toward the desired state. For mobility, the desired
state is the velocity of the vehicle at some time in the short-term future. In planning, velocity states are
transformed into actuator states using the inverse Jacobian function J-1 [8]. For example, with Ackerman
(car-like) steering, the speed v and angular speed ω are transformed into a steering angle γ as

)/(tan 1 vLωγ −= where L is the wheelbase length. With dual independent drive wheels, the speeds v

and ω are transformed into individual left and right wheel speeds lω and rω as:

)2/(
1

)2/(
1

Lv
R

Lv
R

r

l

ωω

ωω

+=

−=

In execution, the desired actuator states are compared with measured estimates and error signals are
generated to drive the actuators to track their target values, using for example a proportional-integral-
derivative (PID) control loop. In PID control, actuator driving output is computed from the difference error
e(t) between the commanded setpoint and the actual measurement of the actuator. The output u(t)is the sum
of components due to the error, its time integral and its derivative, as:

∫ ++=
t

o dt

tde
DdeItPetu

)(
)()()(ττ

where P, I, and D are the gain coefficients that determine the amount of influence each term has on the
output. The proportional P gain determines the speed of the response; the integral I gain reduces steady-
state error that may accumulate; and the derivative D gain provides damping. The theory of tuning these
gains for a particular system, and the discretization of the continuous PID equation for use in a digital
computer implementation, are described in detail in [3].

Due to contraints on a vehicle’s minimum turning radius, J-1 may compute infeasible steering angles. For
example, a mobility command with zero translational velocity and some non-zero angular velocity can only
be executed by a vehicle with a zero turning radius, i.e., one that can spin in place. Depending upon system
design, the Servo Level may choose to execute the tightest turn possible, or stop with a failure status. In
either case the superior Prim Level must be prepared to handle deviations between its requested velocity
states and those achieved by the Servo Level.

Even if the Prim Level assures that the Servo Level can always compute feasible actuator states, the vehicle
may drift from its nominal expected path due to slipping. Because the Prim Level is commanding velocities
in order to achieve a position goal, these drifts can accumulate and take the vehicle far from the Prim
Level’s target goals. For this reason, the Prim Level must close its own control loop. This is unlike
trajectory planning for robot manipulators, where open-loop paths can be executed with confidence that the
joint servos can make up for any errors.

3.6 Low-Level Autonomous Mobility Implementation

3.6.1 The NIST Autonomous High Mobility Multipurpose Wheeled Vehicle (HMMWV) Implementation

NIST has carried out work in autonomous vehicle control for a number of years. As part of this effort,
NIST has instrumented an Army Research Lab (ARL) HMMWV as a test-bed for research and
development in sensors, sensory processing, world modeling, and behavior generation for autonomous
driving. This section will describe the present implementation of the low-level vehicle control component.
Figure 3.14 illustrates the present 4D/RCS control hierarchy structure of RCS control nodes that are
involved in the lower level mobility control of the vehicle. These lower level echelons have the
responsibility for generating the vehicle goal trajectories and for accurately controlling the vehicle to
follow these goal trajectories. A number of considerations such as maximum allowed velocities,
accelerations, and jerks both tangential and lateral to the trajectory paths, as well as response characteristics
of the different actuator systems will affect these calculations. This section will explore how the
responsibilities for various levels of these control functions are distributed through the different RCS
echelons; how real-time measurements are fed back into the calculations; and how different auto-tune
capabilities are used.

Only those lower level nodes that directly control the trajectory of the vehicle based on an internal model
representation of the goal paths to be followed will be examined. The 4D/RCS reference architecture
contains a set of RCS echelons to carry out these lower level tasks. These are the PRIM and SERVO
echelons. Due to the complexity of this implementation for autonomous on-road driving, the PRIM echelon
has been expanded to two levels (Elemental Movement and Primitive/Trajectory) and the SERVO echelon
has been expanded to three levels for those control threads that involve servo motor actuators (see Figure
3.14).

The overall on-road driving control is partitioned by the RCS methodology into a hierarchically executed
task decomposition structure. For autonomous on-road driving, the echelons above Elemental Movement
have decided on the route (turn-by-turn directions), have recognized entities relevant to the driving task,
have dealt with driving behaviors such as intersection right-of-way, passing, etc. and have identified the
lane the vehicle is to be driving in. This lane specification is an input to Elemental Movement along with an
Objects-of-Interest Table, which lists nearby objects that have been determined to affect the local vehicle
motion. This table carries a number of parameters developed by the higher echelons that provide offset
distances, speeds, and costs that Elemental Movement uses to adjust the input goal path of the vehicle. The
last set of the operations within Elemental Movement is to process the list of lane segments that identify the
path the vehicle is to follow in order to specify each segment’s speed and acceleration parameters.
Elemental Movement then passes these lane segments and parameters, one lane segment at a time, to the
Primitive/Trajectory echelon. This description will be started with this lane segment processing by
Elemental Movement.

Figure 3.14: The complete HMMWV 4D/RCS controller is shown in the upper left with the lower echelon
nodes enlarged. The reference PRIM RCS echelon is expanded to the Elemental Movement and
Primitive/Trajectory echelons. The reference SERVO RCS echelon is expanded to the three nodes of servo
control shown. The circles with an “S” represent sensor input, the diamonds with an “A” represent
actuators being controlled, and the rectangular boxes represent RCS nodes.

3.6.2 Elemental Movement RCS Echelon

A representational data structure called a lane segment is used to identify the desired vehicle path. Figure
3.15 illustrates the evolution of this concept of lane segments, which are connected constant curvature arcs
that specify the path for the center of the vehicle to follow. Figure 3.15a shows a vehicle on a two lane
undivided road that curves up to a stop sign controlled intersection. Figure 3.15b shows the same road with
all of the lane segments identified. These lane segments represent the centerline vehicle travel path as
defined by the road and possible turning maneuvers at the intersection. This should be the set of all possible
paths for normal driving behavior. Figure 3.15c has reduced this set to only the lane segments that the
example vehicle will follow in driving up to the stopping point at the intersection. The vehicle is presently
on LaneSegment_10, which is a straight-line path. This lane segment data structure is specified by its start
point and end point coordinates in a relative Universal Transverse Mercator (UTM) coordinate system of
Northing and Easting values. If the lane segment is an arc, then the UTM coordinates of the center point of
the arc are included as well as a specification as whether the direction of travel along the arc is clockwise or
counterclockwise.

Figure 3.15: The normal road layout with a vehicle approaching a stop sign is shown in 3.15a. The set of
possible lane segments for this road is shown in 3.15b. Only the lane segments that the vehicle can follow
to the stop are shown in 3.15c. LaneSegment_13 is the straight section and LaneSegment_14 is the right
turn section.

Elemental Movement, after its correction of the position of these lane segments to accommodate the
Objects-of-Interest list, processes these lane segments to calculate the appropriate trajectory control
parameters of speed and acceleration for each. These calculations treat the lane segments as if they lay on a
2D plane. The initial desired speed of travel and allowed vehicle accelerations have been set somewhere
else in the control system and are read into Elemental Movement from the world model. In this example,
the maximum travel speed is set at 15.0 m/s, the maximum allowed lateral acceleration is set at 3 m/s2, the
normal vehicle along-path acceleration is set at 0.7 m/s2 and the acceleration value for the vehicle to use to
get back on path is 0.5 m/s2. These parameters are used to process the lane segments as follows: first, any
lane segments that have stopping requirements (stop sign) are determined, and the maximum speeds are
calculated for all curved lane segments based on the maximum allowed lateral acceleration. Figure 3.16
shows an example of this first step. This step includes determining the exit speed, i.e. the speed the vehicle

should be traveling at the end of each lane segment. This is usually set by some speed requirement of the
next segment. Here it may be seen that the curved arc LaneSegment_11 (with a radius of 12.6 m), when
evaluated using a maximum lateral acceleration of 3.0 m/s2 results in a maximum arc speed of 6.2 m/s,
down from its initial 15.0 m/s value. Since the vehicle should not be going any faster than 6.2 m/s on this
segment, the exit speed of the previous segment (LaneSegment_10) is specified to be 6.2 m/s. This will tell
the trajectory generator that the vehicle has to slow to 6.2 m/s by the point where it is exiting
LaneSegment_10 so it is prepared for LaneSegment_11.

Figure 3.16: After goal lane segments are generated, Elemental Movement first parses them to determine
any stopping conditions, i.e. ExitSpeed goes to 0.0 m/s, and calculates speeds on curves from maximum
allowed lateral acceleration value, e.g. the arc LaneSegment_11 maximum speed is reduced from 15.0 to
6.2 m/s.

After this first pass through the candidate lane segments, the next pass is done from the farthest to the
closest lane segment in order to back out any constraints that will cause a reduction in speed up ahead and
determine what the impact is to closer lane segment parameters. This will, for example, keep the vehicle
from entering a curve too fast so that the lateral acceleration value that is necessary to maintain traction is
exceeded and, as a result, slippage out of the current lane occurs. In this present example, there are two
constraints that back up parameter changes into closer lane segments. The first is the stop at the end of
LaneSegment_13. Elemental Movement starts with this requirement for an exit speed of 0.0 m/s at the end
of LaneSegment_13, determines the path length of the segment (9.5 m), and determines what speed the
vehicle must be going to reach an exit speed of 0.0 m/s over the path distance with the specified

deceleration value (0.7 m/s2). If this initial enter speed (here calculated to be 3.6 m/s) is less than the default
maximum speed (15.0 m/s) then it becomes both the enter speed and the maximum speed specified for this
lane segment. The enter speed (3.6 m/s) for LaneSegment_13 obviously becomes the exit speed (3.6 m/s)
for LaneSegment_12. Now the process is repeated for the LaneSegment_12 and this determines that the
vehicle cannot be going any faster than 6.0 m/s to be able to slow to 3.6 m/s over the path length distance
of 16.7 m making 6.0 m/s the enter speed for LaneSegment_12 and the exit speed for LaneSegment_11.

Figure 3.17: The lane segments are processed from the farthest to the closest to back out constraints and
their effect on nearby lane segments speed. For example, the requirement to stop at the end of
LaneSegment_13 along with a deceleration value of 0.7 m/s2 causes the maximum speed of
LaneSegment_12 to drop from 15.0 to 6.0 m/s.

In a similar manner, the curved LaneSegment_11 forces a decrease in speed to 6.2 m/s which reflects back
to the exit speed for LaneSegment_10. With a path distance of only 25.8 m for LaneSegment_10, it is
determined that the vehicle cannot be going any faster than 8.6 m/s when it enters this segment to be able to
slow in time for the curve (see Figure 3.17). If this were an actual driving situation and the vehicle was
already on LaneSegment_10 with a speed higher than the 8.6 m/s, Elemental Movement would increase the

specified deceleration value for this lane segment to accommodate the path distance and exit speed
requirement. Indeed this is the same behavior people display in a similar situation where they will suddenly
brake harder if they are coming up to a curve faster than appropriate.

The initial preparation of the lane segments by Elemental Movement results in the specified speeds and
accelerations to properly traverse the lane segments. Elemental Movement has carried out all of these
calculations in one control cycle, which on the NIST HMMWV is 2 ms long. Within the same control cycle
it passes the output of the first lane segment along with that lane segment’s derived control parameters
(Figure 3.18) to the Primitive/Trajectory echelon to begin calculating the component vector moves. Each
succeeding cycle, Primitive/Trajectory will calculate the next incremental vector to move the vehicle while
trying to follow the commanded lane segment. When Primitive/Trajectory nears the end of the lane
segment, it issues an advanced status to Elemental Movement so the next lane segment can be sent
coincident with the present executing lane segment just finishing. During the time that Primitive/Trajectory
is calculating these vectors, Elemental Movement is continuously reassessing the lane segments based on
sensor input to see if the position estimate of lane segment or the status of an object-of-interest has resulted
in a change in any of the lane segments. If this is the case, Elemental Movement recalculates the list and
immediately sends the newly corrected lane segment to Primitive/Trajectory. This can occur within any
control cycle, i.e. any change will be reflected in a new trajectory being started within 2 ms.

3.6.3 Primitive/Trajectory RCS Echelon
Primitive/Trajectory has the responsibility of calculating the vehicle trajectory. This is a fairly involved
calculation that breaks the trajectory into a tangential along-path component and a normal back-to-path
component, each controlled by its own parameters of maximum speed and acceleration, which have been
sent by Elemental Movement. The tangential component will be discussed first. The trajectory algorithm
tries to reach the maximum lane segment speed along a tangent-to-path vector using the value of the
specified maximum tangential acceleration. Each control cycle, it also checks to see what the remaining
segment distance is and determines when, if necessary, to start decelerating so that it can reach the
specified exit speed at the segment end point. When it reaches some tolerance value in terms of both
distance to the end point and number of control cycles to the end point, it notifies Elemental Movement of
this fact so that a new lane segment will be commanded coincident with the end of the present one.

ELEMENTAL
Non-Collide
MOVEMENT

PRIMITIVE/
Vehicle

Trajectory

A A

Brake
Amplifier

Throttle
Amplifier

THROTTLE
MOTOR
SERVO

Magnetic
Connect

S

Encoder,
Current

A

STEER
MOTOR
SERVO

S

SPEED
SERVO

23
STEER
SERVO

THROTTLE
MOTOR

MANAGER

BRAKE
MOTOR

MANAGER

BRAKE
MOTOR
SERVO

STEER
MOTOR

MANAGER

SASS S SS

MotorPot,
EnginePot,
IdlePosSw,
AmpFault

TanAccel,
TanSpeed,
VehPitch,
WheelEnc

Encoder,
Current

MotorPot,
AmpFault

Steer
Amplifier

Encoder,
Current

StringPot,
AmpFault

LatAccel,
Heading,

LatTilt

A A

Ignition Starter

ENGINE
CONTROL

S

Ignition.sw
Glow.sw
Amb_Temp
Eng_Temp
Eng_OilPres
Eng_RPM
FuelLevel

Low Level
Sensing
Control

S
Lane
Boundaries,
Obstacles

Figure 3.18: Elemental Movement commands Primitive/Trajectory to execute a single lane segment,
LaneSegment_10. It also sends all of the path parameters necessary to control the speeds and accelerations
during the trajectory generation. These parameters were calculated by Elemental Movement at the end of
its processing cycle.

Simultaneously with these tangential calculations, a back-to-path component is also being calculated. If the
trajectory’s value for the present position of the vehicle is not on the commanded lane segment path, a
second trajectory process calculates an independent trajectory motion in a direction normal to the path. This
is known as a back-to-path trajectory. Elemental Movement has commanded a separate set of parameters of
maximum back-to-path speed and acceleration to control this motion. This trajectory calculation is
attempting to move back to the commanded path, ending with a normal speed of 0.0 m/s at the point when
the path is reached. Each control cycle, this back-to-path component is calculated and is vector summed
with the tangential component to produce a resultant increment motion vector for the vehicle. Figure 3.19
gives a pictorial representation of this trajectory calculation process.

LaneSegment_10

Figure 3.19: Primitive/Trajectory calculates two orthogonal trajectories, one tangential to the path and the
other normal to the path (back-to-path). These two components are then vector summed to produce the next
motion vector for the vehicle.

Primitive/Trajectory calculates a next incremental motion vector each control cycle. At the end of
Primitive/Trajectory’s processing each cycle, it decomposes this vector into an absolute heading direction,
which it commands to the SteerServo node and a magnitude component of speed and acceleration, which it
commands to the SpeedServo node.

3.6.4 Real-time Trajectory Feedback Control
If these lower level nodes (SpeedServo and SteerServo) executed perfectly, then the vehicle would exactly
follow the trajectory path. Since this is not the case, a feedback loop is set up that provides the present
position, speed, acceleration, and heading of the vehicle to use as an error correction to the trajectory
generator. These inputs are read into Primitive/Trajectory at a rate of 20 times each second. If the vector
output command of Primitive/Trajectory was realized by the vehicle instantaneously each cycle, then this
real-time feedback could just be directly input into the trajectory algorithms as the present state of the
vehicle for the next calculation. In reality, it is about 0.3 s before the vehicle reaches the commanded state
of a vector that has been output from Primitive/Trajectory. This means that the trajectory calculations are
about 0.3 s ahead in time of the real state of the vehicle. At 15.0 m/s, the trajectory is calculating positions,
speeds, accelerations, and headings about 5 m in front of the vehicle, therefore the present vehicle’s values
cannot be directly input as error corrections to the trajectory calculations.

In order to properly correct the trajectory calculations, the present vehicle position, speed, and acceleration
must be used to calculate how far the vehicle will travel in 0.3 s. The present heading and wheel steer angle
are then used to define the present arc the vehicle is moving on and lay out the projected distance along this
arc to estimate the projected values to feed into the trajectory calculations to provide this feedback control.

Figure 3.20 illustrates these calculations. This feedback of present vehicle values projected forward in time
to match the time space of the trajectory calculations occurs every 50 ms. For the control cycles between
these updates, the trajectory generator simply assumes the next present starting state is the last vector
calculated by the trajectory algorithms, i.e. it runs open loop.

Figure 3.20: To provide real-time feedback corrections to the trajectory generator, every 50 ms the present
state values of the vehicle are projected forward in time to calculate an estimated present vehicle state in
the time space of the trajectory calculations.

SteerServo RCS Node
SteerServo sits at the top of a chain of three RCS echelons (Figure 3.14) that are involved in converting the
commanded vehicle heading into the control voltage outputs to the steering motor amplifier. The
commands to SteerServo are absolute vehicle heading values that are the pointing angle of the resultant
vector from the trajectory calculations each cycle. SteerServo processes this angle, which is known as the
Cmd_VehHeading_Abs through a number of steps to produce a value for the steer motor actuator that is
connected to the steering wheel in the vehicle. Figure 3.21 illustrates a number of the relevant geometries
used in this operation. Each control cycle, the value for the derived steer motor position is passed down to
Steer(Motor)Manager along with acceleration and maximum speed values for the motor motion control.
These will set the rate of change of the steer angle and overlay a clothoid-type motion on top of the entry
and exits of the constant curvature arcs. For example, when entering an arc from a straight line, the heading
starts changing at the constant rate to follow the arc. The constant change of heading will result in an
approximate fixed steering angle. The movement of the steering wheel to this setting is done at a linear rate
controlled by a trajectory of the steer motor output values calculated by the SteerManager based on the
motor maximum speed and acceleration values sent by SpeedServo. This constant rate of change of the
steering wheel at the entry and exit of arcs imposes a clothoid-like blend at the cost of some positional error
but smoother vehicle motion since the faster the vehicle steering tries to change the larger the jerk felt as
the lateral acceleration would be increasing from zero to the full arc value in a very short time increment.

SteerManager calculates the motor trajectory and, each cycle, sends the next motor position, velocity, and
acceleration to SteerMotorServo. SteerMotorServo executes a velocity feedforward calculation based on
the commanded motor velocity and calculates a position error between the commanded position and a
feedback position from encoder feedback to use in an error correction calculation. These values are
summed to generate the value to send to the steering wheel motor amplifier. This amplifier develops a
velocity loop solution based on a tachometer feedback signal and controls the voltage to a brush dc
servomotor.

This represents the basic data flow from the commanded vehicle heading down through three steering
related RCS echelons to the voltage outputs to the steering wheel motor amplifier. A closer look reveals
that SteerServo is trying to calculate a steering wheel position that will cause the vehicle heading
(measured at center of the vehicle and lying parallel to the long axis of the vehicle) to point in the direction
of the commanded heading. From looking at Figure 3.21 it may be seen that subtracting the present vehicle
heading (VehHeading_Abs) from the commanded heading (Cmd_VehHeading_Abs), produces an angle
(Cmd_VehCenterAngle_VehRel) that represents the required angular change of direction as measured at
the center of the vehicle. Since this vehicle turns by Ackerman steering of the front wheels, a geometric
relationship can be calculated, as seen in the illustration in Figure 3.21, that converts this
Cmd_VehCenterAngle_VehRel into a SteerWheelsAngle_VehRel. This relationship is non-linear and is
accurately approximated by a table lookup. The values for this table have been experimentally obtained by
setting the steering wheel motor to the set of whole integer revolution values and for each setting,
experimentally measuring the resulting traveled arcs of the vehicle and converting these into the
corresponding angles known as the SteerWheelsAngle_VehRel. This table is then accessed with the
calculated value of the SteerWheelsAngle_VehRel and the corresponding steering wheel motor value
retrieved. A new motor position value along with the maximum motor speed and acceleration are sent to
the SteerManager each control cycle.

Again, the relative timing of these calculations is important. As previously noted, the commanded vehicle
heading sent down from Primitive/Trajectory is the value for the vehicle’s heading 0.3 s into the future
whereas VehHeading_Abs is the vehicle’s heading at the present instant. Similarly, as was done in
Primitive/Trajectory, the vehicle’s present speed, acceleration, heading, and steer wheels angle are used to
project the vehicle’s position 0.3 s into the future and determine an estimated heading. From this, a
modified Cmd_VehCenterAngle_VehRel is calculated that should put the vehicle at the correct heading 0.3
s from now.

Once a candidate Cmd_VehCenterAngle_VehRel is determined, several limit checks are performed on it.
First, it is verified that this angle will not exceed the maximum turn angle of the steering wheel lock limit.
Next, using the relationship that the arc radius is equal to the speed along the arc divided by the lateral
acceleration, the vehicle’s present speed and the resulting radius from this Cmd_VehCenterAngle_VehRel
are used to determine if it will cause the vehicle to exceed the maximum allowed lateral acceleration value
specified in the world model. Then, the Cmd_VehCenterAngle_VehRel is transformed to a corresponding
SteerWheelsAngle_VehRel. Next a table look-up is performed to transform to the steer motor position
value and, finally, SteerServo sends this command to the SteerManager to build the steer motor trajectory.

All of the above described steer calculations occur in the same control cycle (the same 2 ms) that Elemental
Movement and Primitive/Trajectory carried out their described operations. Each control cycle, these
calculations repeat from the top to the bottom RCS echelon.

Figure 3.21: Illustration of relevant angles for steering control of the vehicle. SteerServo is commanded
with the Cmd_VehHeading_Abs as the goal angle from the present control cycle calculations.

SpeedServo RCS Node
In parallel with this activity, and in the same control cycle, the SpeedServo subtree of RCS echelons
(Figure 3.14) is processing the commanded speed and acceleration values. The SpeedServo RCS node
determines the necessary engine throttle (motive force) and the brake line pressure (braking force) to
command the ThrottleManager and BrakeManager respectively. ThrottleManager does a feedforward

calculation to estimate the throttle motor position and BrakeManager does a feedforward calculation to
estimate the brake motor position in order to attain these commanded values. Each of these nodes then
calculates the respective motor trajectory and sends the motor position, velocity, and acceleration
commands to the ThrottleMotorServo or the BrakeMotorServo node. Just like the SteerMotorServo, the
ThrottleMotorServo and the BrakeMotorServo execute velocity feedforward loops with a position error
correction function.

In order to compute a desired speed, SpeedServo receives commands of instantaneous speed and
acceleration as well as the maximum speed and the exit speed of the present lane segment each control
cycle. The response of the vehicle to any changes to throttle or brake takes a minimum of 0.3 to 0.4 s to
begin and depending on a number of additional parameters the desired value may not even be realizable.
For example, going up an incline of more than one to two degrees, the vehicle can only attain an
acceleration of 2.0 m/s2 up to a speed of 1.7 m/s after which the acceleration quickly drops to a value less
than 0.5 m/s2, even at full throttle. In general, the acceleration that the vehicle can attain drops as the speed
increases. For the vehicle deceleration situation, allowing the throttle to return to the idle position without
any brake application can cause a deceleration of 0.4 m/s2 or greater at most speeds and on level ground.

The basic approach, as has been seen in the discussion of all of the RCS echelons here, is to develop a
model of the system at the resolution of a particular echelon and to use it to estimate the correct output to
the next subordinate echelon in order to carry out the desired action, namely, a feedforward servo is done
with real-time feedback of the relevant measurement parameters being used to do a small error correction
to achieve the desired goal.

This is an essential component of the RCS approach. Each echelon is performing a servo calculation at
different levels of resolution. There are two basic ways to calculate a servo function that will adjust the
control signal to accomplish the desired goal:

1) the system can wait until it observes an error between its goal action and what it sees/measures in
the real world and use these measurements to calculate a change in the control signal to correct
this error; or

2) the system can have a model of how the controlled system behaves in the world and estimate
from this model what the correct control signal should be for the desired action.

The first method requires an error to calculate a control signal while the second attempts to apply a model-
based correct control signal so no error occurs. The fundamental RCS approach as discussed in Chapter 1 is
to develop behavior generation that is based on an internal world model that is updated by sensor
measurements of the environment. Therefore, the designed system leans heavily in the direction of model-
based or feedforward servo control at all levels.

Consistent with this feedforward approach, SpeedServo works in cooperation with Primitive/Trajectory.
Primitive/Trajectory attempts (because of the model-based feedforward approach) to only send a command
to SpeedServo (or to SteerServo) that it can accomplish within a reasonably short time period, usually
within one to a few control cycles. In a similar manner, SpeedServo attempts to send commands to
ThrottleManager and BrakeManager that are also feasible within a short time span. This requires each node
to base its output calculations on a fairly accurate model with real-time corrections to this model being
made as the environmental situations warrant. A simplified model is currently being used for the
SpeedServo calculations. Detailed, physics-based dynamic models have been built off-line and are being
studied to see how they may be considered for enhancement of this node. Most real-time implementations
of feedforward models have some aspect of table lookup based on key parameters in order to meet the very
fast update requirements of these systems.

A combination of table lookup together with a reasoning function based on evaluations of present
parameters using a knowledge set of relevant rules is used in SpeedServo. This problem has been
partitioned in the following manner. The state of the system is evaluated by a number of rules applied to the
present values of a number of parameters (both command and sensed) to identify the present situation as
one of several particular states, each of which has a corresponding particular feedforward algorithm that
provides the best solution estimate to the correct output action. The system basically determines if it should
be accelerating, maintaining a constant speed, decelerating to a lower speed, decelerating to a stop, or

maintaining a stopped position. These states have been further delineated to identify if there is a transition
into a new situation or this is a continuation of the previously selected situation. This is important because
it affects how the error correction is applied. The error correction is a function of how long the system has
been in this situation along with the size and rate of change of the error. Figure 3.22 shows the overall
process flow for the SpeedServo RCS node and illustrates the basic operations of the sensory processing
and world modeling components in setting up the parameters and carrying out these evaluations. Each of
the RCS nodes described here has an identical process flow.

SENSORY
PROCESSING

WORLD MODELING

VALUE JUDGMENT

KNOWLEDGE

Images

Maps Entities

Sensors ActuatorsWorld

Classification
Estimation
Computation
Grouping
Windowing

Mission (Goal)

internal

external

Events
Planners

Executors

Task
Knowledge

BEHAVIOR
GENERATION

Measures Values for:
-PresentVehAccel
-PresentVehSpeed
-PresentVehPitch
-VehWheelPositions

Creates World States such as:
-VehAcceleratingFasterThanCmd
-VehSlowerThanCmdSpeed
-NewAccelSpeedTransition
-TimeInPresentSituation
-RateOfChangeOfError

Evaluates Situations such as:
-NeedToAccelerate
-NeedToDecelerate
-NeedToMaintainSpeed
-TimeToAdjustDecelValues
-TimeToAdjustSpeedValues

Processing Flow in Each Control Cycle

PLAN STATE-TABLE
Input Conditions Output Commands

 NewAccelSpeedTransition
 NeedToAccelerate

 CalcAccelServoFunction(), InitializeAccelValues()
 w_AcceleratingVehicle
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 SpeedServo | GoFwdAtSpeed

 NewAccelSpeedTransition
 NeedToMaintainStop

 CalcStoppedFunction(), InitializeStopValues()
 w_MaintainingVehicleStopped
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 NewAccelSpeedTransition
 NeedToDecelerate

 CalcDecelServoFunction(), InitializeDecelValues()
 w_DeceleratingVehicle
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 NewAccelSpeedTransition
 NeedToMaintainSpeed

 CalcSpeedServoFunction(), InitializeSpeedValues()
 w_MaintainingVehicleSpeed
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 NewAccelSpeedTransition
 NeedToDecelerateToStop

 CalcStopDecelFunction(), InitializeStopDecelValues()
 w_DeceleratingVehicleToStop
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 w_AcceleratingVehicle
 TimeToAdjustAccelValues

 AdjustAccelValues()
 w_AcceleratingVehicle
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 w_MaintainingVehicleStopped
 TimeToAdjustStoppingValues

 AdjustStoppedValues()
 w_MaintainingVehicleStopped
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 w_DeceleratingVehicle
 TimeToAdjustDecelValues

 AdjustDecelValues()
 w_DeceleratingVehicle
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 w_MaintainingVehicleSpeed
 TimeToAdjustSpeedValues

 AdjustSpeedValues()
 w_MaintainingVehicleSpeed
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

 w_DeceleratingVehicleToStop
 TimeToAdjustStoppingValues

 AdjustStoppingDecelValues()
 w_DeceleratingVehicleToStop
 thm_AdjustEngineThrottlePos
 brm_ApplyBrakeForce

Figure 3.22: Illustration of process flow in the SpeedServo RCS node. Sensory Processing brings in
relevant acceleration, speed, pitch, and wheel position values to the world model. The world model
processes these along with state and command input parameters to evaluate the present situation and
behavior generation selects the most appropriate solution algorithms using rules in a state table format that
transition on the evaluated situations.

State Table Process
Figure 3.23 details a simplified version of the state table used at the SpeedServoNode to select the
appropriate servo function. The values listed in the left hand column of the table represent the conditions or
situations that, if true, result in the execution of the corresponding entry in the right hand column. For
instance, in line 1 the left hand entry requires both the condition called NewAccelSpeedTransition and
NeedToAccelerate to be true for the line to match. The condition NeedToAccelerate results from the world
model evaluation of the input command values from Primitive/Trajectory and the present state of the
vehicle acceleration and speed. If the input command is calling for acceleration and the present state of the
vehicle has not yet reached this value, then the world model processing would set the condition
NeedToAccelerate. If in the previous cycle, this condition state value was evaluated to
NeedToMaintainSpeed and then in this cycle is evaluated to NeedToAccelerate, this would cause the
additional condition state of NewAccelSpeedTransition to also be set indicating that this is the first cycle
that has transitioned to a different accel or speed state, i.e. this is the first cycle that the condition
NeedToAccelerate is true. It is important to detect this first transition to this state so that certain parameters
relative to the integral error correction terms can be initialized. When both of these conditions are evaluated
true, the first line of this state table matches and the entries in the right hand side are executed.

 The right hand table entries of line 1 in this example are:

• CalcAccelServoFunction() – an algorithm which uses the commanded acceleration, present
vehicle speed, and vehicle pitch (indicating road incline) together with a lookup table to estimate
the engine throttle position and the brake line pressure to reach the commanded acceleration.

• InitializeAccelValues() – an algorithm which initializes a number of parameters that begin
tracking the length of time the acceleration algorithm has been executing and that measure the
relative success in reaching the commanded acceleration. These will be input parameters to the
integrating error correction algorithm AdjustAccelValues that will be executed in another line
when a different condition set matches.

• w_AcceleratingVehicle - this sets the value of a world state variable that tracks the active servo
algorithm being calculated by SpeedServo. In this case, this world state value is set to
w_AcceleratingVehicle to indicate that SpeedServo is calculating the algorithms to accelerate the
vehicle.

• thm_AdjustEngineThrottlePos – this sets the output command to the ThrottleManager to
AdjustEngineThrottlePos. The parameters that accompany this command have been calculated in
the CalcAccelServoFunction(). The prefix thm_ is an abbreviation that indicates that the
command is to be sent to the ThrottleManager. This command will be sent to the
ThrottleManager node at the end of the SpeedServo’s processing this cycle. ThrottleManager will
execute this command later in the same 2 millisecond control cycle.

• brm_ApplyBrakeForce – in a similar manner as above, this sets the output command to the
BrakeManager to ApplyBrakeForce. The prefix brm_ is an abbreviation that indicates that the
command is to be sent to the BrakeManager.

Figure 3.23: Illustration of the Plan state table in SpeedServo for the input command GoFwdAtSpeed. This
RCS node receives a number of other commands such as PrepForEngineStart, GoBackwdAtSpeed,
MaintainPark, EstopVehicleMotion, etc. Each of these input commands will have its own plan state table
and provide task context to the sensory processing and world modeling processing to evaluate the situations
relevant to that command.

Continuing the previous example with the speedServo node in the w_AcceleratingVehicle state, the state
table checks each control cycle for the TimeToAdjustAccelValues state to also be true which causes a
match with the left hand input conditions of line 6 and the resultant execution of this line’s right hand
entries. The state TimeToAdjustAccelValues is set by the world model processing after a sufficient delay
since the last servo correction. This causes the integrator within the algorithm AdjustAccelValues() to wait

a sufficient length of time for the system to respond to the last output change before calculating the
magnitude of the next error correction term. After this line matches, it will be a number of cycles before the
world model processing evaluates TimeToAdjustAccelValues as true and causes the next execution of this
algorithm.

ThrottleManager RCS Node
The SpeedServo state table specifies the thm_AdjustEngineThrottlePos as the output command to the
ThrottleManager. The servo algorithm has generated an engine throttle position value for this command.
ThrottleManger receives this command and invokes a Plan state table, AdjustEngineThrottlePos, to
determine the appropriate motor position value in order to set the engine throttle to this commanded
position. Figure 3.24 illustrates the linkage setup for the throttle control. This linkage set is sloppy and
results in considerable backlash, such that the throttle motor has to back off four revolutions to begin
moving the engine throttle (diesel injector pump lever) in the opposite direction.

Figure 3.24: Throttle linkage on HMMWV. Throttle motor drives a linear actuator that pulls on cable
connected to the throttle pedal mechanism which then pulls on a cable connected to the control lever of the
diesel injector pump that controls the amount of fuel to the injectors. There is a potentiometer on the diesel
injector pump lever to provide an absolute position measurement.

Part of the responsibilities of the ThrottleManager is to transform the input commanded engine throttle
position (which is commanded as a percentage of full throttle) to the correct throttle motor position value,
adjusting for nonlinearities and backlash, as well as calculating any required motor trajectory to control the
motion of the throttle motor during any changes. This highlights another set of capabilities that are
designed into these nodes. In many cases, a self-tuning process can be written for the creation of the values
for the lookup tables for the different feedforward algorithms. At this node, the servo that calculates the
correct throttle motor output at each control cycle uses a lookup table that encompasses the travel limits,
non-linearities, and backlash between the throttle motor position and the diesel injector pump lever
position. This table has been automatically generated by the execution of a plan state table
(CalibrateEngineThrottle) that first drives the throttle motor in one direction until the motor amplifier
indicates an increase in current over some threshold (which indicates the limit of travel in that direction)
and records the value of a potentiometer on the injector pump lever, then reverses direction and performs a
similar operation in the opposite direction. This sets the limits of travel of the injector pump lever and
correlates them to motor position values and to percentages of full throttle. Next, the plan state table steps
the throttle motor by fixed small increments (0.1 revolution) from the idle position to the full open throttle
position, recording the values corresponding to calculated percentage values of the injector pump lever.
The plan state table then reverses direction and performs the same process now going from full throttle to
idle. At the end of execution of this plan state table, which takes less than two minutes to execute, the
feedforward lookup table for the engine throttle servo function for the ThrottleManager RCS node has been

created. This is done at the startup of the vehicle each day and accommodates changes in the linkage and
potentiometers automatically as well as being generic across any other vehicle this system is put on.

Similar plan state tables to create self-generated lookup tables are created at the BrakeManager node to
correlate the commanded brake line pressure to the brake motor position value that has a similar linkage
arrangement; and at the ThrottleMotorServo, BrakeMotorServo, and SteerMotorServo for the velocity
feedforward servos at these nodes.

Accurate Vehicle Trajectory Control
The goal of the described lower level RCS echelons is to provide very accurate vehicle trajectory control.
To competently perform autonomous on-road driving, it is necessary to very accurately control the vehicle
to follow the path that the higher echelons in the system have decided to be correct to carry out our goal for
the present state of the world. On-road driving involves holding in-lane maneuvers to 0.2 m accuracies,
especially when negotiating in-lane obstacles such as potholes, debris, bicyclists, jersey barriers etc. The
negotiation of turns at intersections, likewise, sets requirements for very accurate path control. An RCS
solution of multiple layers of RCS echelons, which decompose the task from the high level goal path, down
through layers of feedforward servo echelons to the actuator motor voltage levels that are calculated 500
times each second has been described. The result of this effort is depicted in Figure 3.26 which shows a
performance metric data graph made from a real vehicle driving test. The solid line indicates a set of
constant curvature arcs that were derived from the actual road geometry from a ground truth survey done
on the NIST campus. These were provided to Elemental Movement as the goal set of lane segments along
with a specification of speeds and accelerations. The described lower level mobility RCS echelons then
executed this set of lane segments while a high accuracy differential GPS system (accurate to within 2 cm
of ground truth) recorded the real-time position of the vehicle’s center point. This real-time vehicle path is
shown as the dotted line. The vehicle traveled up to 15 m/s along the straight stretches and slowed to
approximately 6 m/s for the curves at intersections (which had radii of approximately 14 m). Throughout
the entire test run, which was approximately 1.2 km and included four intersection turns, the vehicle
followed the path with less than 0.2 m error (the grid in the Figure is 1.0 m squares).

Figure 3.25: Data run with real vehicle. Solid line is the set of goal lane segments expressed as constant
curvature arcs. Dotted line is the set of differential GPS points identifying the real path of the center of the
vehicle within 2 cm absolute accuracy. Vehicle slowed from 15 m/s to 6 m/s to traverse intersection curve
within the allowed maximum lateral acceleration.

This example shows how the 4D/RCS approach has been used in the development of a number of levels of
task decomposition behavior generation where each echelon has performed the next lower level servo
calculation starting with a real-time trajectory function generating the vehicle’s next speed and steer values
down through servos of speed and steer, down through servos of engine throttle position and braking force
to the servoing of motors on the actuators. All of the echelons have used a feedforward type of model to
estimate correct output values for the present state. This has led to very accurate low level vehicle mobility
control that causes the vehicle to follow the goal paths generated by the higher level echelons. This
capability is essential to competent autonomous on-road driving.

3.6 Conclusion
This chapter has described behavior generation for mobility within the RCS architecture. The first half of
the chapter describes the overall approach through the description of three hierarchical levels. The three
levels share a common set of commands for getting started and stopping, but each level has task commands
specific to that level. A cooperative method of hierarchical planning using search in a graph linked to
geometric space has been presented, along with problems circumvented by that method and issues it raises.

The vehicle level (topmost of the three) acts in a region about 100 m across with a cycle time of about one
second. It uses rule-based planning working with a world model containing multiple feature layers. Plans
are constructed by graph search and evaluated with the help of a plan simulator.

The autonomous mobility level considers a ten-meter square region at about 0.2 s cycle time. It collaborates
with the vehicle level to perform cooperative planning, generating smooth paths consisting of arcs of
circles and straight line segments with speeds and width tolerances. Planning is done both by rubber-
banding and A* graph search.

The prim level plans and executes velocity states for constant curvature path segments of the order of 1 m
long having specified tolerances and speeds. Cycle time is about 0.05 s. The prim level sends mobility state
commands to the servo level, which transforms them into the actuator outputs for the vehicle’s motors,
brakes, etc. that actually generate motion.

The second half of the chapter has presented the details of a working controller for the NIST HMMWV.
The complexities of this system have required additional control echelons to be included in the hierarchy
and an extensive command vocabulary to be defined.

Research is still being conducted in all aspects of the control systems described in this chapter. The
controllers developed in the first half of this chapter have been implemented as an open source 4D/RCS
repository and are available on the web at http://sourceforge.net/projects/moast. This repository is designed
to interface to another open source repository (http://sourceforge.net/projects/usarsim) that contains a high-
fidelity agent simulator. These two repositories form the basis of the annual RoboCup Urban Search and
Rescue Virtual League, with winning teams being required to contribute their control code back to the
community. This is fostering the development of an open community of developers that is enhancing and
elaborating on the vital work that has been presented in this chapter.

References

 1. Albus, J., Huang, H., Messina, E., Murphy, K., Juberts, M., Lacaze, A., Balakirsky, S., Shneier, M.,

Hong, T., Scott, H., Proctor, F., Shackleford, W. P., Michaloski, J. L., Wavering, A., Kramer, T.,
Dagalakis, N., Rippey, W., Stouffer, K., Legowik, S., Bostleman, R., Norcross, R., Jacoff, A., Szabo,
S., Falco, J., Bunch, B., Gilsinn, J., Chang, T., Meystel, A., Barbera, A., Fitzgerald, M., DelGiorno,
M., and Finkelstein, R., "4D/RCS Version 2.0: A Reference Model Architecture for Unmanned
Vehicle Systems," NISTIR 6910, Gaithersburg, MD, 2002.

2. Albus, J. and Meystel, A., Engineering of Mind: An Introduction to the Science of Intelligent Systems,
John Wiley & Sons, Inc. 2001.

3. Astrom, K. and Haggund, T., PID Controllers: Theory, Design, and Tuning, Second ed., Instrument
Society of America 1995.

4. Bacchus, F., "The AIPS '00 Planning Competition," AI Magazine, Vol. 22, No. 3, 2001, pp. 47-56.

5. Balakirsky, S., A Framework for Planning with Incrementally Created Graphs in Attributed Problem
Spaces, IOS Press, Berlin, Germany, 2003.

6. Balakirsky, S. and Herzog, O., "Parallel Planning In Partitioned Problem Spaces," 5th IFAC Symposium
on Intelligent Autonomous Vehicles, IAV 2004, 2004.

7. Balakirsky, S. and Scrapper, C., "Knowledge Representation and Planning For On-road Driving,"
Robotics and Autonomous Systems, Vol. 49, No. 1-2, 2004, pp. 57-66.

8. Craig, J. J., Introduction to Robotics, Addison-Wesley 1986.

9. Dijkstra, E. W., "A note on two problems in connexion with graphs," Numerische Mathematik, Vol. 1,
1959, pp. 269-271.

10. Hart, P. E., Nilsson, N. J., and Raphael, B., "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, Vol. 4, No. 2, 1968,
pp. 100-107.

11. Hwang, Y. K. and Ahuja, N., "Gross Motion Planning - A Survey," ACM Computing Surveys, Vol. 24,
No. 3, 1992, pp. 219-291.

12. Nilsson, N. J., Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, Inc., San
Francisco, 1998.

13. Schlenoff, C., Madhavan, R., and Balakirsky, S., "Representing Dynamic Environments for
Autonomous Navigation," Proceedings IEEE International Conference on Intelligent Robots and
Systems, 2003.

14. Schwartz, J. T. and Sharir, M., "A Survey of Motion Planning and Related Geometric Algorithms,"
Artificial Intelligence, Vol. 37, 1988, pp. 157-169.

15. Sedgewick, R., Algorithms, Addison-Wesley 1983, pp. 130-137.

16. Williams, J. W. J., "Algorithm 232: Heapsort," Communication of the ACM, Vol. 7, 1964, pp. 347-348

17. Winston, P. H., Artificial Intelligence, Second ed., Addison-Wesley Publishing Company, Reading,
Massachusetts, 2001.

 1

Chapter 4

World Modeling and Knowledge Representation

Craig Schlenoff and Elena Messina
National Institute of Standards and Technology (NIST)

{craig.schlenoff,elena.messina}@nist.gov

1. Introduction

A core component of any deliberative control architecture is the knowledge that is represented within the
system and the mechanisms that are present to make the maximum use of that information. Within
4D/RCS, this is referred to as knowledge representation and world modeling, respectively. This chapter
describes some of the knowledge databases and world modeling processes that exist within 4D/RCS, and
describe how they have been used in various implementations.

1.1. World Modeling and the Knowledge Database

As described in Chapter 1, the world modeling (WM)/knowledge database (KD) is one of the four main
components within 4D/RCS. World modeling is a functional process that constructs, maintains, and uses a
world model knowledge database in support of behavior generation and sensory processing processes.

The Knowledge Database consists of data structures and the static and dynamic information that
collectively form a model of the world. The KD is the information needed by the WM to support the BG,
SP, and VJ processes in each node. Knowledge in the knowledge database includes the system’s best
estimate of the current state of the world plus parameters that define how the world state can be expected to
evolve in the future under a variety of circumstances.

4D/RCS is a hierarchical architecture, and as such, supports knowledge representation at different levels of
abstraction. Traditionally, the lowest levels of the architecture primarily contain state variables such as
actuator positions, velocities, and forces, pressure sensor readings, position of switches, gearshift settings,
and inertial sensors for detecting gravitational and locomotion acceleration and rotary motion. The next
higher level of the hierarchy (and above) contains map-based information, with decreasing resolution and
increasing spatial extent as one proceeds higher up the hierarchy. The further up the hierarchy, a
combination of map-based representations and object knowledge bases are used, which contain names and
attributes of environmental features such as road edges, holes, obstacles, ditches, and targets. These maps
represent the shape and location of terrain features and obstacle boundaries. Still higher up the hierarchy is
symbolic information referring to the location of vehicles, targets, landmarks, and local terrain features
such as buildings, roads, woods, fields, streams, fences, ponds, etc. The top levels of the hierarchy
primarily deal with groups of objects, such as groups of people, buildings, or vehicles. These groups are
treated as a single entity, with average characteristics (e.g., speed, location, color) used to describe them.

1.2. Chapter Organization

The 4D/RCS architecture is designed in such a way as to accommodate multiple types of representation
formalisms and provide an elegant way to integrate these formalisms into a common, unifying framework.
Some of these types of knowledge representation are shown in Figure 1. These formalisms range from
iconic to symbolic and from procedural to declarative. Knowledge is captured in formalisms and at levels
of abstraction that are suitable for the way that it is expected to be used. Different knowledge representation
techniques offer different advantages, and 4D/RCS is designed in such a way as to combine the strengths of
all of these techniques into a common unifying architecture in order to exploit the advantages of each. This

 2

chapter elaborates on ongoing efforts in developing and implementing some of these representations.
Section 2 provides an overview of other architectures and describes how they represent and integrate
knowledge. Section 3 describes efforts in developing declarative knowledge bases in 4D/RCS, highlighting
work in the creation of a Road Network Database (RNDB). Section 4 describes efforts in developing
procedural knowledge bases, highlighting work in the creation of an Intelligent Systems Ontology. Section
5 describes efforts in developing world modeling processes, highlighting work in developing processes for
moving object prediction. Section 6 discusses issues pertaining to principles for the choice of
representations, complexity vs. performance, redundancy, how representations affect situation assessment,
and concludes the chapter.

2. Related Work

Several architectural frameworks exist that rely on varying types of underlying knowledge representations.
What is lacking is a widely accepted theoretical framework that can integrate multiple representation
formalisms into a unified whole. One of the earliest frameworks was the ACT architecture [3]. ACT grew
out of research on human memory. Over the years, ACT has evolved into ACT* and more recently, ACT-
R. ACT-R is being used in several research projects in an Advanced Decision Architectures Collaborative
Technology Alliance for the U.S. Army [18]. ACT-R is also being used by thousands of schools across the
country as an algebra tutor – an instructional system that supports learning-by-doing.

Another well-known and widely used architecture is Soar [24,36]. Soar grew out of research on human
problem solving, and has been used for many academic and military research projects in problem solving,
language understanding, computational linguistics, theorem proving, and cognitive modeling. All
knowledge in Soar is represented as productions. Each production represents a retrieval of a piece of

Figure 1: Knowledge Representations in 4D/RCS.

 S3 TentativePlans_Done
 RoadMarchOrganizationInPlace

 S4 sp3_ReadyToConductRouteRecon

 S5 qp_ReadyToOrganizeAA

 NewCommand

 S1 MarchOrganizationDetermined

 S2

 CONDUCT TACTICAL ROAD MARCH TO ASSEMBLY AREA

 S6 qp_ClearOfStartPoint

 S7 mb_tp_ReconToStartPoint_Done

1

2

10

9

8

7

6

5

4

3

 S8 sp3_RouteRecon_Done

 S9 qp_AtReleasePoint

 S4 sp3_PrepareForRouteReconnaissance
 qp_PrepareToOrganizeAssemblyArea

 S5 sp3_ConductRouteReconnaissance

 S6 qp_FollowReconPlatoonToAssemblyArea

 S1 DetermineMarchColumnOrganization:

 S2 all_FormTacticalRoadMarchOrganization

 S3 MakeTentativePlan: Determine_Route,
 _FireSupport, _MovementFactors, _AA

 S7 mb_tp_PrepareForRoadMarch

 S8 PrepareDetailedMovementPlans:

 S9 sp3_EstablishAssemblyAreaSecurity

 S10 qp_ConductAreaReconnaissanceOfAA

State TablesDatabases

LADAR and Color Camera Images

Layered Terrain Maps

Prediction Equations

Ground Truth Cost-based Models

Autonomous Vehicle Ontologies

 3

knowledge from long-term memory. The right side of the production represents knowledge of the actions;
the left side represents the conditions under which it is appropriate to retrieve that knowledge into working
memory.

Like Soar, Prodigy uses search through a problem space to achieve goals cast as first-order expressions
[33]. The Prodigy Description Language is a declarative representation, based on first-order predicate
logic. Thus, in Prodigy, all rules (and more generally knowledge) may be inspected by other rules, allowing
the architecture to reflect on its own knowledge. Utilizing a declarative representation is a key component
of Prodigy's glass box (transparent) design principle.

ICARUS encodes knowledge as reactive skills [47]. ICARUS uses a single type of representation – the
hierarchy of probabilistic concepts – to represent objects, places, plans, and movements. This permits
simple addition and modification of knowledge.

IMPRINT (IMproved Performance Research INtegration Tool) is a task description language designed for
the Army to capture the procedural specification of tactical behavior scenarios [5]. It contains a dynamic,
stochastic, discrete-event network modeling tool designed to help assess the interaction of soldier and
system performance throughout the system lifecycle – from concept and design through field testing and
system upgrades. IMPRINT has been integrated with ACT-R to model military behaviors [4]. IMPRINT
uses an embedded discrete event task network modeling language as its engine. Task-level information is
used to construct networks representing the flow and the performance time and accuracy for operational
and maintenance missions.

EPIC (Executive-Process Interactive Control) is an architecture that models the detailed timing of human
perceptual, cognitive, and motor activity, including the input/output characteristics of the nervous system
connecting the higher level cognitive functions to the external world [22]. Human performance in a task is
simulated by programming the cognitive processor with production rules organized as methods for
accomplishing task goals.

The Polybot architecture [11] is designed to enable various modes of reasoning based on multiple types of
data representations. Polybot is built upon a series of specialist modules that use any algorithm or data
structure in order to perform inferences or actions. Since specialists may need to share knowledge, which
they internally represent in different manners, a common propositional language for communicating
information is part of the Polybot system. Examples of specialists implemented in Polybot include
perception, a reactive motion planner, spatial location (using a cognitive map), causation (which uses
production rules), and object identifier (using neural networks).

4D/RCS is a control system architecture inspired by a theory of cerebellar function [1]. 4D/RCS models
the brain as a hierarchy of goal-directed sensory-interactive intelligent control processes that theoretically
could be implemented by neural nets, finite state automata, cost-guided search, or production rules [2].
4D/RCS is similar to other cognitive architectures in that it represents procedural knowledge in terms of
production rules, and represents declarative knowledge in abstract data structures such as frames, classes,
and semantic nets. 4D/RCS differs from other cognitive architectures in that it also includes signals,
images, and maps in its knowledge database, and maintains a tight real-time coupling between iconic and
symbolic data structures in its world model. 4D/RCS is also different in: a) its focus on task decomposition
as the fundamental organizing principle; b) its level of specificity in the assignment of duties and
responsibilities to agents and units in the behavior generating hierarchy; and c) its emphasis on controlling
real machines in real-world environments.

3. Declarative Knowledge

Declarative knowledge refers to representations of objects and events and how these knowledge and events
are related to other objects and events. It is sometimes described as providing the “what” versus the “how,”
which procedural knowledge contains. It allows one to think and talk about the world. For example,

 4

declarative knowledge may represent a fact such as that Paris is the capital of France. It is often
represented in a format that may be manipulated, decomposed, and analyzed by reasoning engines
independent of its content. Unlike procedural knowledge, it does not describe how to perform a given task
(e.g., how to bake a cake). Instead, it provides the ability to use knowledge in ways that the system designer
did not foresee. Two classes of declarative knowledge captured within 4D/RCS are symbolic knowledge
and metrical knowledge. Both of these are described below.

3.1. Symbolic Knowledge

3.1.1. Background

Symbolic representations provide ways of expressing knowledge and relationships, and of manipulating
knowledge, including the ability to address objects by property. Much early work in robotics was carried
out in the context of Artificial Intelligence (AI) research using symbolic representations [24,37,41]. This
had the result of uncoupling robotics from the geometry and dynamics of the real world, and focusing on
purely symbolic approaches to perception, planning, and reasoning [16]. Probably the best-known
symbolic representation developed in classical AI is frame-based [32]. A frame defines a stereotypical
situation, which is instantiated when appropriate. There are slots to be filled out for the particular
instantiation. For example, there would be a series of frames related to a building, essentially defining what
the robot may be expected to encounter as it travels inside the building. A frame for a room may have
concepts for “floor,” “ceiling,” “right wall,” “left wall,” “far wall,” and so on. The robot would try to find
entities using its vision system to fill in the slots for these concepts.

Tying symbolic knowledge back into the spatial representation provides symbol grounding, thereby solving
the problem inherent to purely symbolic knowledge representations. It also provides the valuable ability to
identify objects from partial observations and then extrapolate facts or future behaviors from the symbolic
knowledge.

3.1.2. Symbolic Knowledge in 4D/RCS

Within 4D/RCS, mainly two types of symbolic representations have been implemented thus far: ontologies
and relational databases. An ontology for driving determines if objects in the environment are potential
obstacles to the autonomous vehicle [42,44]. The system is composed of an ontology of objects
representing “things” that may be encountered in the current environment, in conjunction with rules for
estimating the damage that would be incurred by collisions with the different objects, as a function of the
characteristics of the autonomous vehicle, including the type of vehicle, speed, etc. Automated reasoning is
used to qualitatively estimate collision damage, and this information is fed to the route planner to help it
decide whether to avoid the object.

An example of the second type of symbolic representation is the NIST Road Network Database, which is
described below.

3.1.3. Symbolic Knowledge Highlighted Example: The NIST Road Network Data Base

For an autonomous vehicle to be able to navigate a road network, it must be aware of and must respond
appropriately to any object it encounters. This includes other vehicles, pedestrians, debris, construction,
accidents, emergency vehicles etc. and it also includes the roadway itself. The road network must be
described in such a way that an autonomous vehicle knows where the road lies, rules dictating the traversal
of intersections, lane markings, road barriers, road surface characteristics, and other relevant information.

This section provides detailed information about the Road Network Database being developed at NIST as
part of the Defense Advanced Research Projects Agency (DARPA) Mobile Autonomous Robotics Systems
(MARS) Program. The purpose of the Road Network Database is to provide the data structures necessary to
capture all information necessary about road networks so that a planner or control system on an
autonomous vehicle can plan routes along the roadway at any level of abstraction. At one extreme, the

 5

database should provide structures to represent information so that a low-level planner can develop detailed
trajectories to navigate a vehicle over the span of a few meters. At the other extreme, the database should
provide structures to represent information so that a high-level planner can plan a course across a country.
Each level of planning requires data at different levels of abstraction, and as such, the Road Network
Database must accommodate these requirements.

The fundamental components of the Road Network Database are described below, and shown in Figures
2(a-g):

• Junctions – A junction is a generic term referring to two or more paths of transportation that
come together or diverge, or a controlled point in a roadway. Paths of transportation could be
roadway or non-roadway paths. Examples of junctions are lane splits, forks in the road, merges,
intersections, pedestrian crossings, ferry crossings, railroad crossings. Examples of controlled
points in the roadway are drawbridges, toll plazas, and guard gates. Junctions are an abstract
supertype in the sense that a junction must be one of the types listed above.

• Intersections - Intersections are a type of junction in which two or more separate roads come
together.

• Lane Junctions - A lane junction is a location in a junction in which two or more lanes of traffic
overlap. A lane merge contains a lane junction starting at the point in which the two lanes begin
to come together and end at the point in which the two lanes are completely together as one. A
lane fork contains a lane junction at the point where the lanes begin to fork and ends at the point
where the two lanes are completely separated. An intersection contains a lane junction at all
points in which the lanes from the two or more intersecting roads overlap.

• Road – A road is a stretch of travel lanes in which the name of the travel lanes does not change.
An example is “Main Street” or “Route 95.”

• Road Segment - A road segment is a uni-directional stretch of roadway bounded by intersections.
A road segment is roughly analogous to a “block”. So the uni-directional piece of road bounded
by 1st Street and 2nd Street would be a road segment.

• Road Element - A road element is a uni-directional stretch of roadway bounded by any type of
junction. Unlike road segments, road elements can be bounded by merging lanes, forks in the
road, Junctions include two or more lanes merging together, a fork in the road, a pedestrian
crossing, a toll booth, a draw bridge, an intersection, etc.

• Lane Cluster - A lane cluster is a set of uni-directional lanes (with respect to flow of traffic) in
which no physical attribute of those lanes change over the span of the lane segment. Unlike a road
element, lane clusters are not required to be bounded by junctions. Characteristics of the road that
cannot change include the addition or subtraction of shoulders, the width of the lane, the
separation of lanes to form a median, change in paint striping, and change in lane barriers.

• Lane - A lane is a single pathway of travel that is bounded by explicit or implicit lane marking.
Lanes span the length of a lane cluster in which they are a part of.

• Lane Segment - A lane segment is the most elemental portion of a road network captured by the
database structure. Lane segments can be either straight line or constant curvature arcs. In the
case of a straight line, the location of the lane segment if fully defined by the beginning and end
point of the lane segment. For a constant curvature arc, the lane segment is defined by the
beginning and end of the lane segment and the curvature center point. One or more lane segments
compose a lane.

• Junction Lane Segments - A junction lane segment is a constant curvature path through a
portion of a lane junction. Apart from some subtle differences pertaining to connectivity of these
junction lane segments, they are extremely similar to lane segments as described above.

• Time Varying Attribute Tables – There are a number of tables in the database that address
attributes of the above structures that may vary as a function of time. These attributes include
speed limits on roadways, the average speed on a roadway, the direction of travel on lanes, the
accessibility of a lane (e.g., HOV), and the legal traversibility through intersection (e.g., no right
turn between 3 PM and 6 PM on weekdays). In these tables, the pertinent values for these
attributes are associated with time intervals.

 6

• Lookup Tables – There are a number of lookup tables that include a complete list of all possible
values that certain attributes in the certain data structures may have. Lookup tables are used when
possible values for a given attribute are finite, and there is value in enumerating them in a table.
At the time this chapter was written, there are seven lookup tables in the database:

1. accessibility restrictions on lanes (e.g., HOV-2, HOV-3, cabs only, police only),
2. possible lane barriers on the side of lanes (e.g., jersey barrier, curb, guard rail),
3. lane markings on the side of lanes (e.g., solid yellow line, double solid yellow line, dashed white

line, solid white line),
4. lane types (e.g., traversable, shoulder),
5. road class (e.g., interstate highway, beltway, country road, residential, road),
6. road surface (e.g., asphalt, dirt, pebbles), and
7. special road features (e.g., bridge, tunnel).

Figure 2a: Road Figure 2b: Road Segment Figure 2c: Road Element

Figure 2d: Lane Cluster Figure 2e: Lane Figure 2f: Lane Segment

 Figure 2g: Intersection

 7

As stated earlier, this data structure is designed to accommodate a control system that may contain planners
with various levels of abstraction. This section will provide insight into data structures that will be most
appropriate for planners at different levels. The planners, their descriptions, and the data structures which
best correspond to their level of responsibility are shown in Table 1. More detail about this table can be
found in Chapter 2, Figure 9.

Planner Name Planner Description Appropriate Data Structures
Destination Planner Plans the sequence of route

segments to get to commanded
destination goal.
Outputs commercial trip planner-
like (e.g. MapQuest) directions
Plans on the order of 1 to 2 hrs
into the future
Plans > 10 km distances

Roads
Road Segments
Intersections
Forks (not yet defined)
Merges (not yet defined)

Route Segment Planner Decides on real-time goal lanes
for road segments and for
negotiating intersections.
Deals with intersections, forks,
merges, etc.
Plans on the order of 10 min into
the future
Plans up to 10 km distances

Road Segments
Road Elements
Intersections
Forks (not yet defined)
Merges (not yet defined)

Drive Behavior Planner Develops low-level behaviors for
negotiating intersections and
deciding when to change lanes.
Plans on the order of 100 s into
the future.
Plans up to 500 m distances

Lane Clusters
Lanes
Intersection
Forks (not yet defined)
Merges (not yet defined)

Elemental Maneuver Planner Carries out real-time maneuvers
to slow down, stop, speed up, and
change lateral position.
Plans on the order of 10 s into the
future
Plans up to 50 m distances

Lanes
Lane Segments

Goal Path Trajectory Generator Calculates the lane segment path
dynamic trajectory as a goal path
to carry out commanded move
while controlling for skid and
immediate obstacle response.
Plans on the order of 1 s into the
future
Plans up to 5 m distances

Lane Segments

Table 1: Planner to Data Structure Mapping.

At the time this chapter was written, the database was at Version 1.0, and had been implemented as part of
two planners being developed within NIST (a cost-based and a finite state machine-based planner) within a
simulated environment. In both cases, this database was part of the underlying knowledge representation
that allowed the planners to better understand the environment to enable more appropriate plan generation.
The RNDB has also been implemented in a series of algorithms performing moving object prediction for
on-road driving, which will be further discussed in Section 5.2.

 8

Though a considerable amount of time and effort has been put into the database, there is still quite a bit of
work that has yet to be accomplished. Additional types of junctions must be included, including merges,
forks, pedestrian crossings, and railroad crossings. More information about roads also needs to be included,
such as the overall width of the road, so that obstacles can be better placed on the roads. The database also
needs to continue to be “stress tested” in simulated and real environments to ensure its consistency and
completeness.

3.2. Metrical (Spatial) Knowledge

3.2.1. Background

Metrical knowledge is often spatial in nature and is either in 2D or 3D grids and higher-level geometric
constructs, such as edges and surfaces. The knowledge is tied to a coordinate system and allows for
distance measurements to be computed between the locations within that system. Additional knowledge is
associated with a location. The value of each grid cell may be Boolean data (e.g. indicating whether the
cell is occupied or not) or real number data representing a physical property such as light intensity, color,
altitude, range, or density. Each cell may also contain spatial or temporal gradients of intensity, color,
range, or rate of motion. Cells may also point to specific geometric entities (such as an edge, vertex,
surface, or object) to which its contents belong.

Digital maps are a natural way of modeling the environment for path planning and obstacle avoidance.
Digital terrain maps are referenced to some coordinate frame tied to the ground or earth and hence also
facilitate data fusion be it from multiple sensors or from a priori data. Although commercial digital terrain
maps often have a grid-based implementation (especially for the elevation layer), features are typically
represented as vectors. The underlying database implementation facilitates spatial queries even for
features that are represented by polygons or polylines. In many mobile robots, a grid-based approach is
easier to implement and maintain in real-time. In this case, a map may have multiple layers that represent
different “themes” or attributes at each grid element. For instance, there may be an elevation layer, a road
layer, a hydrology layer, and an obstacle layer as shown in Figure 3. The software can query if there is a
road at grid location (x, y) and similarly query for other attributes at the same (x, y) coordinates. If the
system being implemented is truly three-dimensional, then the queries can be made according to (x, y, z).
This feature is important for accurately capturing features such as road overpasses and subterranean
tunnels.

Figure 3: Multiple Layers.

Composite map
used to drive in
real world

Sensed real-world
used to form map
layers

Elevation

Obstacles

Roads/Parking Areas

Dense Trees

Map layers used to
form composite
planning map

 9

A large number of the implemented mobile robot systems have relied on spatial representations.
Decomposing the space that the robot has to travel into uniform or non-uniform regions is one approach.
Grid-based structures [10,35] are a convenient means of capturing input from the robot’s sensors,
especially if multiple readings from one or more sensors are to be fused. They have the advantage of being
easy to implement and maintain, due to their uniform, array-like structure. A probability or certainty
measure can be assigned to each grid cell indicating the degree of confidence that the cell is really occupied
as opposed to purely open space, resulting in each location being marked as probably occupied, probably
empty, and unknown. This type of representation is also referred to as an evidence grid [30]. Figure 4
shows an example of a grid representation. The robot location is indicated by cells marked with an “R.”
The numbers in the other cells are an indicative of the number of times that an obstacle has been detected
by sensors within that space. The higher the number, the more probable it is that the cell is occupied.

Figure 4: Grid Representation.

Furthermore, it is fairly straightforward to implement path planning and obstacle avoidance algorithms that
use a regular structure, which can be readily translated into a graph that is searched (for instance using
Dijkstra [14] or A* [38]) to find the lowest-cost path – typically based on shortest distance. A node is
placed at the center of each grid location and it can be connected to adjacent cells via arcs that are assigned
costs. The costs may be based on distance traveled between cells and may also incur a penalty based on the
actions that the robot performs and the state the robot is in once it reaches a grid location (e.g., occupying a
grid location that is already occupied). In the most simplistic approach, each cell can be connected to its
nearest 4 or 8 neighbors. More efficient approaches build the graph connecting only empty cells or by
using other techniques such as visibility graphs [39] or Voronoi borders [15]. The grid itself can be
represented more compactly by using adaptive tesselation approaches. These include quadtrees which are
efficient if the environment is not uniformly cluttered or when additional spatial information such as depth
must be captured. [40,51] describes the use of quadtrees as a two and a half dimensional (2.5 D) approach
to capturing the geometry of a lake bed for underwater autonomous vehicles. Multi-resolutional
approaches, such as in [9,40] also improve efficiency by giving the cells closer to the robot higher
resolution than those further away.

Approaches that tessellate space may need to represent more than two (or two and a half) dimensions. For
instance, in cases where a two-dimensional spatial representation is inadequate, the evidence grid approach
has been extended to three dimensions [34]. In many applications, it is insufficient to have the robot plan a
path that only avoids obstacles. Additional constraints, such as non-planar terrain and the robot’s own
kinematics and dynamics often need to be taken into consideration. Considering velocity and acceleration
while generating the robot’s path significantly increases the state space for planning, so it tends to be done
in two stages. Generally, the path planning process produces a coarse set of waypoints, which are then
smoothed by another process that takes into account the robot’s dynamic constraints. However, for
systems with complex dynamics (e.g., legged robots, two-wheeled vehicles [23], soccer playing robots, or
hovercraft [25]), it may be inadequate to ignore dynamics during the obstacle-avoidance planning process,
therefore explicitly modeling the systems’ dynamics may be necessary to guarantee collision-free

 10

trajectories.

Some researchers have successfully demonstrated mobile robot systems that use only the sensor image
(“windshield view”), also known as the iconic representation, to plan within. From [20]: “According to the
model being proposed here, our ability to discriminate inputs depends on our forming ‘iconic
representations’ of them. These are internal analog transforms of the projections of distal objects on our
sensory surfaces.” This may be two-dimensional spatially, as is the case for CCD (Charged Coupled
Device) cameras, or three-dimensional, in the case of range sensors, such as LADARs. Some mobile
robots successfully accomplish their goals by planning based on purely the sensor image view. This is
particularly true for road-following systems, such as those by Dickmanns [13], where road edges are
extracted by sensor processing algorithms and used to plan the vehicle’s steering command in the image
frame.

Grid-based and other spatial representations vary in choice of coordinate systems and in the relationship to
the robot itself. Some implementations use polar coordinates because the sensor data is returned in the
form of distance (to object) and angle, reducing the number of calculations in constructing the map and in
planning motion. The robot is always at the origin of the coordinate system in this case. However, it is
more difficult to maintain a global map as the robot traverses the environment. The majority of
implementations use a Cartesian coordinate system. In some approaches, the map is centered on the robot’s
current location and oriented with respect to the robot. Sensor information is easily placed within the map,
but the entire map must be transformed when the robot changes location or orientation (assuming that
previous information is kept). Some systems maintain the maps in an absolute global reference frame (for
example, based on magnetic north). This facilitates localization with respect to global positioning systems,
registration with a priori maps, and landmark-based navigation, but requires the transformation from the
local sensor frames to the global one.

Other spatial representations are based on the geometric boundaries within the environment [46], such as
planar surfaces [26]. These representations may augment the iconic or grid-based ones and often provide
efficiencies by providing more compact descriptions of an environment, especially for indoor applications
or highly structured environments. Describing a wall as a plane or a line is more efficient storage-wise
versus a set of grid cells. However, additional computations by grouping algorithms that process adjacent
occupied cells or convert individual pixels into higher-level geometric entities are required to achieve this
reduction in memory or disk requirements.

3.2.2. Metrical Knowledge in 4D/RCS

Spatial (metrical) knowledge is an important component of the world model in 4D/RCS and has been
implemented at various levels of the hierarchy for control of mobile vehicles. This section will describe
examples of implementations of such knowledge. In all implementations, there is an emphasis on
supporting

(a) fusion of sensor information from multiple sources though the use of a coordinate-based
representation,

(b) multiple levels of resolution within the hierarchy, and
(c) planning algorithms, which primarily use graph-based approaches.

A diagram showing the canonical definition of knowledge at the various levels of a 4D/RCS control system
for a mobile robot was shown in Figure 4 in Chapter 1. Metrical knowledge is captured in the “windshield”
or sensor views as well as overhead map-based representations. Metrical information travels up and down
the hierarchy. The semantic knowledge, the geometric representation, and the resolution of the data vary
at the different levels.

This section present an example based on an early implementation of the Demo III XUV Program’s world
model [21]. In this system, at the Autonomous Mobility (AM) level, the world model fuses information
from multiple sensors, including navigation sensors, LADAR, and stereo vision within a uniformly-
decomposed occupancy grid. The navigation system provides information about the vehicle’s current
position, orientation, speed, and velocity. This enables the system to localize sensed information within the
coordinate frames. Data from the LADAR sensor includes a range image processed to provide an array in

 11

which each element contains range value (distance in meters from the sensor), position elevation, obstacle
label (whether it meets the criteria to be considered an obstacle or not), and terrain class label (tall grass,
ground, or cover). In some configurations, the Demo III vehicle is equipped with two pairs of stereo
cameras. One provides color imagery, while the other provides infrared (thermal) data. The output from
the stereo processing contains information for each cell, including the cell’s position, elevation (m) and
confidence, terrain roughness and confidence, whether the cell includes an obstacle, and if so, if it is
negative or positive, and the terrain class (tall grass, bush, tree, rut, soil, rock). The inputs from the various
sensors are fused into a grid-based map. This is facilitated by the use of a common, uniform spatial
decomposition. For each planning cycle, a copy of the obstacle map is rotated from a north-oriented into a
vehicle-oriented map and sent to the planner. The resulting world model at the AM level includes a header
that defines, among other things, the configuration of the occupancy map (e.g., the number of grid cells,
and the size of each cell). A typical AM level has an occupancy map of 40 cm (301 by 301) square cells.

Figure 5: Possible Paths From A Hard Right Wheel.

The world model is enriched through the addition of feasible trajectories computed a priori for the Demo
III vehicle. A web of potential path segments that extend out to 50 m is used by the path planner to select
trajectories that can be driven by the vehicle. If there are no obstacles, the vehicle can drive on any
combination of these path segments. There are two types of path segments, straight and curved. Curved
segments extend out to 20 m from the vehicle. Each is a series of clothoid segments that are kinematically
feasible based on the turn rate of the steering wheel. These paths are generated through offline simulations
for different initial speeds and steering wheel positions. Initial steering position is a major factor
influencing the paths the vehicle can travel. Figure 5 shows allowable paths with initial steering wheel
position to the right and at two different velocities. Straight path segments are used from 20 m to 50 m.

The Vehicle level, immediately above Autonomous Mobility, also relies on metrical maps. Instead of
searching within a uniform grid, the Vehicle level creates a graph where each node corresponds to a state
that the vehicle may visit. These nodes are a combination of randomly thrown points and interesting
locations (states) like roads and bridges. An example of such graph can be seen in Figure 6. In this figure,
the vehicle is located at the center of the map. The size of the map is about 500 m on a side, with an

 12

underlying grid composed of 4 m cells. The grid-like background shows the internal representation of the
Vehicle Level WM, and the straight segments are possible actions that move the vehicle from one end of
the segment to the other. The curvy segments represent segments of very high cost as evaluated by the
Value Judgment function at the Vehicle level. The reason for the high cost in this case is that they cross
through walls, fences, or forest. The underlying grid at this level was composed of 15,625 cells while the
graph to be searched for the shown example was only composed of around 2000 nodes, so the
computational advantages are evident. In this case, the path found by the vehicle level planner is shown as
a set of marbles driving NW. The distance between the nodes in the found trajectory is under 50 m,
therefore the subordinate level can find an accurate (and dynamically correct) trajectory within its map, and
avoid obstacles that cannot be seen in the coarse representation of this level. The lighter colored trajectory
represents the path sent by the supervisor level [7].

In the example shown in Figure 6, the Vehicle Level WM receives information from lower levels through
the use of sensor processing and information from higher levels through filters. The actual control and low-
level processing of raw, high-resolution, sensor data is performed at the level subordinate to the vehicle
level (the Autonomous Mobility level). The vehicle level receives the subsystem level's representation, and
performs processing to convert this data into a resolution and form appropriate for the vehicle level. For
example, high-resolution obstacle data will be converted into mobility corridor estimates. Information
received from higher levels includes such items as a priori map information, which may contain terrain and
constructed features such as roads, and mission-specific designated constraints on individual vehicles. This
information is filtered, and the relevant information for this particular vehicle is stored in the Vehicle Level
WM.

Figure 6: Vehicle Level Graph and Planned Paths.

4. Procedural Knowledge

4.1. Background

Procedural knowledge, or know-how, is the knowledge of how to perform tasks. Procedural knowledge is
different from other kinds of knowledge, such as declarative knowledge, in that it can be directly applied to
a task. One limitation of procedural knowledge is its job-dependence. The primary advantages of
procedural knowledge is that 1) heuristic or domain-specific knowledge can be represented, 2) extended
logical inferences, such as default reasoning, is facilitated, 3) side effects of actions may be modeled, and
4) the representation often provides faster usage in a performance system. The primary disadvantages are 1)

 13

representations are often not complete – not all cases may be represented, 2) the representations are often
not consistent – not all deductions may be correct, and 3) modularity is sacrificed – changes in the
knowledge base migh have far-reaching effects. Productions are a common means of representing
procedural knowledge.

4.2. Procedural Knowledge in 4D/RCS

Within 4D/RCS, procedural knowledge is primarily used for planning and control purposes. Two primary
planning approaches are implemented, each representing procedural knowledge differently: Finite State
Machines (FSM) and cost-based paradigms. In both cases, the application and domain-specific tasks and
commands are first defined through a rigorous domain analysis process. The control hierarchy is designed
by detailing the responsibilities of each control node, including inputs from the higher-level supervisor and
outputs (as commands) to its subordinate nodes.

In the FSM approach, as described in Chapter 2, each of these command decompositions at each node will
be represented in the form of a state-table of ordered production rules. The sequence of simpler output
commands required to accomplish the input command and the named situations (branching conditions) that
transition the state-table to the next output command are the primary knowledge represented in this
approach. Each node therefore contains labeled representations of the states and transitions, which is
beneficial in terms of making the reasoning of the system explicit [8]. FSM’s have the advantage of
making the decision criteria and logic obvious to a human reading the code. However, they require the
programmers to consider and handle all possible situations ahead of time, which is often not realistic for
robots operating in complex situations and environments.

The cost-based approach combines a graph-based search technique with a set of knowledge modules that
simulate the effects of alternative actions and provide input to a unified cost model [6]. Different feature
layers are discretized. Examples of feature layers are elevation, road networks, and vegetation. The
planner at a given level sends candidate trajectories to simulators that compute the cost of state transitions
for each of the relevant feature layers. For instance, a proposed path may take the vehicle from an on-road
location to off-road. The cost associated with this is dependent on the context of the situation – if going
off-road avoids a pedestrian on the road (which would be noted by another feature layer, possibly the
obstacle one) this is an acceptable cost. Similarly, the cost/benefit of running a red light would be
substantially different for a casual driver than it would be for a police vehicle responding to an emergency.
Ontologies and other knowledge bases support the generation of cost models during execution. Whereas
this cost-based approach is more general than the FSM, it also more challenging in terms of defining the
appropriate costs for each action, especially since they will be combined. This is a good candidate for the
application of learning to develop the cost models. In general, graph-based representations can result in
an explosion of data (nodes and arcs connecting the nodes) and hence can have very poor performance
characteristics when the graph is being searched. This is a concern especially for real-time systems, such as
mobile robots. When a robot plans its motions, it must be able to react within an appropriate amount of
time to obstacles or events. However, there are several techniques to mitigate these concerns, some of
which were noted earlier in this chapter. Other means of mitigating performance issues include reusing
parts of the already-processed graph (e.g., Dynamic A*) [49] and using sparse representations that include
only relevant features, such as the extrema of an obstacle instead of a uniform grid of the environment [6].

Building off of the knowledge gathered in the FSM approach, an ontology was developed. This ontology,
named the Intelligent Systems Ontology, is the highlighted example of procedural knowledge and is
discussed below.

4.3. Procedural Knowledge Highlighted Example: The Intelligent Systems (IS) Ontology

The level of automation in ground combat vehicles being developed for the Army’s objective force is
greatly increasing over the Army’s legacy force. This automation is taking many forms in emerging
ground vehicles; varying from operator decision aides to fully autonomous unmanned systems. The
development of these intelligent systems requires a thorough understanding of all of the intelligent behavior

 14

that needs to be exhibited by the system so that designers can allocate functionality to humans and/or
machines. Traditional system specification techniques focus heavily on the functional description of the
major systems of a vehicle and implicitly assume that a well-trained crew would operate these systems in a
manner to accomplish the tactical mission assigned to the vehicle. In order to allocate some or all of these
intelligent behaviors to machines in future ground vehicles, it is necessary to be able to identify and
describe these intelligent behaviors.

The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) has funded
DCS Corporation and NIST to explore approaches to model the ground vehicle domain with explicit
representation of intelligent behavior. This exploration has included the analysis of modeling languages
(i.e., UML, DAML, OWL) as well as reference architectures. A major component of this effort has been
the development of an IS Ontology.

NIST and DCS Corporation have taken the view that an IS can be viewed as a multi-agent system, where
agents can represent components within the vehicle (e.g., a propulsion system, a lethality system, etc). In
addition, an Intelligent Ground Vehicle (IGV), as a whole, can serve as a single agent within a troop,
platoon, or section, where multiple IGVs are present. In order for a group of agents to work together to
accomplish a common goal, they must be able to clearly and unambiguously communicate with each other
without the fear of loss of information or misinterpretation. The IGV Ontology has been used to specify a
common lexicon and semantics to address this challenge.

4.3.1. The Scenario

This effort uses knowledge derived from the task analysis of scenarios of a light cavalry troop’s execution
of a Conduct Tactical Road March to Assembly Area mission. In particular, the part of this mission that
focuses on the route reconnaissance component by the Scout Platoon has been analyzed. This is done
through scenarios that are examined at more and more detailed levels starting at the Troop Commander
Level, which will perform a number of planning activities to better identify the priority information items
of the route, to define the march column organization, and to specify the formation and movement
technique. The troop commander will then dispatch a scout platoon to conduct a route reconnaissance.
The scout platoon leader will do finer level planning, organizing the platoon’s sections of vehicles and
assigning commands to each section leader to do reconnaissance of different areas along the route while
maintaining security. Each section leader will evaluate the environment to provide detailed tactical goal
paths for each of his vehicles, coordinating their movement by the use of detailed motion commands to
control points along with security overwatch commands. Each vehicle, in turn, performs detailed sensory
processing to carry out careful analysis of the terrain in context of the mission, security, stealth, and
traversability. Each vehicle then decides its optimal real-time path. If some aspect, such as a water
obstacle, constrains the vehicle from following the general goal path laid out by the section leader, the
vehicle does reconnaissance, moves to a secure point, and reports to the section leader. If the constraint
affects the operation of the entire section (e.g. the water obstacle stretches across the entire area that the
section is assigned), then the section leader coordinates his vehicles to do reconnaissance and to take up
secure positions. The section leader then reports to the platoon leader.

These scenarios provide a rich set of knowledge of organizational structure, activities, commands, rules,
status, sensory processing, objects and world states to be recognized, adaptation to events, and procedures
required for successful execution.

4.3.2. The IS Ontology

4.3.2.1. Ontology Language

The IS Ontology uses that OWL-S upper ontology [50] as the underlying representation to document
4D/RCS in a more open XML (eXtensible Markup Language) format. OWL-S is a service ontology, which
supplies a core set of markup language constructs for describing the properties and capabilities of services
in an unambiguous, computer-interpretable format. OWL-S, which is being developed by the Semantic

 15

Web Services arm of the DARPA Agent Markup Language (DAML) program, is based on the OWL [19].
OWL is an extension to XML and RDF (Resource Description Framework) schema that defines terms
commonly used in creating a model of an object or process. OWL is a World Wide Wide Consortium
(W3C) recommendation, which is analogous to an international standard in other standards bodies.

Figure 7: OWL-S Ontology Structure.

OWL-S is structured to provide three types of knowledge about a service (Figure 7), each characterized by
the question it answers:

• What does the service require of the user(s), or other agents, and provide for them? The answer to this

question is given in the “profile”. Thus, the class SERVICE presents a SERVICEPROFILE.
• How does it work? The answer to this question is given in the “model”. Thus, the class SERVICE is

describedBy a SERVICEMODEL.
• How is it used? The answer to this question is given in the “grounding”. Thus, the class SERVICE

supports a SERVICEGROUNDING.

Later in this chapter, it is shown how the OWL-S concepts have been used to model a tactical behavior for
an intelligent ground vehicle.

4.3.2.2. Tools
Before the ontology can be built, a decision has to be made as to which tool (or set of tools) should be used
to enter, capture, and visualize the ontology. This work uses Protégé [45], which is an ontology editor, a
knowledge-base editor, as well as an open-source, Java tool that provides an extensible architecture for the
creation of customized knowledge-based applications. Protégé was chosen due to its strong user
community, its ability to support the OWL language, its ease of use (as determined by previous
experience), and its ability to be extended with plug-ins such as visualization tools (discussed below).

4.3.2.3. Using OWL-S to Model the Scenario
Both the 4D/RCS methodology and the OWL-S upper ontology are based on the concept of agents, service
that the agents can perform, and procedures that the agents follow to perform the services. As such, there is
a very clean mapping between the information that comes out of the 4D/RCS methodology and the OWL-S
upper ontology. This section describes that mapping.

The first step involved setting up the agent hierarchy. Figure 8 shows an agent hierarchy for a light cavalry
troop. A detailed description of this hierarchy is outside the scope of this chapter. All of these agents are
modeled in OWL-S as subclasses of the IGV Agent class, which is a subclass of the ServiceResource class
defined in the OWL-S upper ontology. Also specified in the constraints for each class is whom each agent
can send external service requests to and who they can receive them from.

 16

Figure 8: Agent Hierarchy.

The next step involved setting up the services and processes. Any activity that can be called by another
agent is considered a service in OWL-S. Any activity that the agent performs internally that cannot be
externally requested is called a process. As such, “Conduct A Tactical Road March to an Assembly Area”
is modeled as a service that is provided by a Troop agent (and can be called by a Squadron agent). The
Troop agent can call services provided by other agents. In this example, a service called “Conduct Route
Reconnaissance” is defined and associated with the Scout Platoon agent.

Process models in OWL-S are used to capture the steps that must be accomplished to carry out the service,
and the ordering constraints on those steps. Each step can be performed internally by the agent or could

Figure 9: Namespaces.

S er vic e
Troo p

Com m and er
A gent

S er vic e
P latoon
Lead er
A gent

S ervic e
S ec t ion

Lead
A gent

S ervic e
V ehic le

Com m and er
A gent

S ervic e
M obility
S y s tem
A gent

S ervic e
P ropuls io n
S ubs y s tem

A gent

S ervice
P latoon
Lead er
A gent

S er vic e
P latoon
Lead er
A gent

S ervic e
S ec t ion

Lead
A gent

S ervic e
S ec tion

Lead
A gent

S er vic e
V ehic le

Com m and er
A gent

S er vic e
V ehic le

Com m and er
A gent

S ervic e
S ur vi va bility

S y s tem
A gent

S ervic e
S urveil lanc e

S y s tem
A gent

S ervic e
Loc aliz at ion
S ubs y s tem

A gent
S ervic e

A ux iliary
S ubs y s tem

A gent

E ngine
Com p one nt

E x ternal S ervic e Re ques t by a proces s

S ervic e
Lethality
S y s tem
A gent

S er vic e
A utom oti ve
S ubs y s tem

A gent

S ervic e
S uppo rt
S y s tem
A gent

S er vic e
Na vigat io n
S ubs y s tem

A gent

A V ehic le m anned by a S ec t ion
leader would c ontain eac h

O f thes e elem ents

S ervic e
E ngine

Controlle r
A gent

S ervic e
S teer

Contr olle r
A gent

S er vic e
T rans fer/ XFe r

Contr olle r
A gent

S ervic e
P ark B rake
Controlle r

A gent
S ervice

S peed
Controlle r

A gent

S er vic e
Troo p

Com m and er
A gent

S er vic e
Troo p

Com m and er
A gent

S er vic e
P latoon
Lead er
A gent

S er vic e
P latoon
Lead er
A gent

S ervic e
S ec t ion

Lead
A gent

S ervic e
S ec t ion

Lead
A gent

S ervic e
V ehic le

Com m and er
A gent

S ervic e
V ehic le

Com m and er
A gent

S ervic e
M obility
S y s tem
A gent

S ervic e
M obility
S y s tem
A gent

S ervic e
P ropuls io n
S ubs y s tem

A gent
S ervic e

P ropuls io n
S ubs y s tem

A gent

S ervice
P latoon
Lead er
A gent

S ervice
P latoon
Lead er
A gent

S er vic e
P latoon
Lead er
A gent

S er vic e
P latoon
Lead er
A gent

S ervic e
S ec t ion

Lead
A gent

S ervic e
S ec t ion

Lead
A gent

S ervic e
S ec tion

Lead
A gent

S ervic e
S ec tion

Lead
A gent

S er vic e
V ehic le

Com m and er
A gent

S er vic e
V ehic le

Com m and er
A gent

S er vic e
V ehic le

Com m and er
A gent

S er vic e
V ehic le

Com m and er
A gent

S ervic e
S ur vi va bility

S y s tem
A gent

S ervic e
S ur vi va bility

S y s tem
A gent

S ervic e
S urveil lanc e

S y s tem
A gent

S ervic e
S urveil lanc e

S y s tem
A gent

S ervic e
Loc aliz at ion
S ubs y s tem

A gent
S ervic e

Loc aliz at ion
S ubs y s tem

A gent
S ervic e

A ux iliary
S ubs y s tem

A gent
S ervic e

A ux iliary
S ubs y s tem

A gent

E ngine
Com p one nt

E x ternal S ervic e Re ques t by a proces s

S ervic e
Lethality
S y s tem
A gent

S ervic e
Lethality
S y s tem
A gent

S er vic e
A utom oti ve
S ubs y s tem

A gent
S er vic e

A utom oti ve
S ubs y s tem

A gent

S ervic e
S uppo rt
S y s tem
A gent

S ervic e
S uppo rt
S y s tem
A gent

S er vic e
Na vigat io n
S ubs y s tem

A gent
S er vic e

Na vigat io n
S ubs y s tem

A gent

A V ehic le m anned by a S ec t ion
leader would c ontain eac h

O f thes e elem ents

A V ehic le m anned by a S ec t ion
leader would c ontain eac h

O f thes e elem ents

S ervic e
E ngine

Controlle r
A gent

S ervic e
E ngine

Controlle r
A gent

S ervic e
S teer

Contr olle r
A gent

S ervic e
S teer

Contr olle r
A gent

S er vic e
T rans fer/ XFe r

Contr olle r
A gent

S er vic e
T rans fer/ XFe r

Contr olle r
A gent

S ervic e
P ark B rake
Controlle r

A gent
S ervic e

P ark B rake
Controlle r

A gent
S ervice

S peed
Controlle r

A gent
S ervice

S peed
Controlle r

A gent

 www.dcscorp.com/igv/
basic.owl

www.dcscorp.com/igv/
behavior.owl

http://www.daml.org/
services/owl-s/1.0/

service.owl

www.dcscorp.com/igv
militaryequipment.owl

www.dcscorp.com/igv/
militaryconcepts,owl

www.dcscorp.com/igv/
environment.owl

www.dcscorp.com/igv/
trpldr_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
trpldr_trm.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
pltldr_mgv.owl

Model of a Troop Leader Intelligent Vehicle

www.dcscorp.com/igv/
bncdr_c2v.owl

www.dcscorp.com/igv/
basic.owl

www.dcscorp.com/igv/
behavior.owl

http://www.daml.org/
services/owl-s/1.0/

service.owl

www.dcscorp.com/igv
militaryequipment.owl

www.dcscorp.com/igv/
militaryconcepts,owl

www.dcscorp.com/igv/
environment.owl

www.dcscorp.com/igv/
trpldr_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
trpldr_trm.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
trpldr_trm.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
pltldr_mgv.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
TrpLdr_TRM_c2v.owl

www.dcscorp.com/igv/
pltldr_mgv.owl

Model of a Troop Leader Intelligent Vehicle

www.dcscorp.com/igv/
bncdr_c2v.owl

 17

involve making an external service request (a service call) to another agent. OWL-S provides a number of
control constructs that allow one to model just about any type of process flow imaginable. Control
constructs provided in OWL-S have been sufficient to model all the behaviors explored to date.

Environmental entities and their attributes are a primary output of the 4D/RCS methodology. These include
other vehicles, bridges, vegetation, roads, water bodies; anything that is important to perceive in the
environment relative to task that is being performed. An environment ontology in OWL-S has been built
from the bottom up (i.e., including only entities that prove to be important based on the output of the RCS
methodology). Environmental ontologies have started to be explored to see what could be leveraged.

4.3.2.4. Organizing the Knowledge
Due to the sheer size of the ontology, namespaces have been used to organize the knowledge in the
ontology. A namespace is a tag prefixed to the name of the class or instance that separates the knowledge in
the ontology into “pieces,” where each piece represents a group of like concepts. Numerous namespaces
can be imported into a single ontology and a single namespace can be reused in multiple ontologies. The
contents of namespaces are often stored in separate files.

For this effort, five high-level namespaces have been identified that build off of the concepts presented in
OWL-S (shown in Figure 9), namely:

• Basic – data structures to capture abstract, highly reusable concepts (e.g., location, spatial relations,

time)
• Behavior – data structures which help to describe services, agents, and conditions (e.g., and-conditions,

or-conditions, external service requests)
• Military Concepts – data structures to capture common concepts within military procedures (e.g.,

assembly area, control points, troops)
• Environment – data structures to capture environmental concepts (e.g, water bodies, shrubs, weather

conditions)
• Military Equipment – data structures to capture information about the equipment that the military uses

(e.g., communication devices, weapons, measuring devices)

In addition, separate namespaces have been defined for every agents’ services and processes in every
tactical behavior, as shown at the bottom of Figure 9. For example, in the “Conduct a Tactical Road March
to an Assembly Area” tactical behavior, services and corresponding process models have been defined for
most of the agents shown in Figure 8. As such, namespaces such as Troop
ConductTacticalRoadMarchToAA, Platoon-ConductTacticalRoadMarchToAA, and so on have been
defined.

4.3.2.5. Visualization of the Ontology
As mentioned earlier, one of the reasons Protégé was chosen was due to its ability to be extended using
“plug-ins”. A plug-in is a piece of code that performs a given functionality that can be incorporated into
Protégé. A visualization tool was developed based upon the open source GraphViz program [17] that
allows us to graph OWL-S models. A snapshot of the visualization tool, shown in Figure 10, shows process
flow and data flow.

 18

4.3.2.6. Status and Future Work
At this time this chapter was written, service models were developed for the following agents: troop,
platoon, section, vehicles, mobility, propulsion, engine controller, engine, surveillance, and sensor
subsystem (as shown in Figure 8). All of the service models were focused solely on the scenario described
in Section 4.3.1. Only one strand of this scenario has been implemented (e.g., one service in each level of
the hierarchy was elaborated, although there were almost always many services that each agent may have to
perform to accomplish the overall goal of “Conducting a Tactical Road March to An Assembly Area”).
Also, this one scenario represents one of hundreds, if not thousands, of tactical behaviors that an army
soldier is expected to be able to perform. It is clear that, as the details of this scenario are further modeled
and more scenarios are explored, the size of the ontology will grow to be very large. At the time this
document was written, 489 classes, 213 properties (attributes), and 2674 instances were modeled.

Through the development of this ontology, it has become apparent that the applications of a neutral and
well-defined representation and tactical behaviors are far-reaching above and beyond that of controlling
autonomous vehicles. Some of the potential communities that have been identified include:
• Material Acquisition Community: Documenting behavioral requirements for manned, aided, and

unmanned systems; and analyzing the completeness/consistency of requirements and predicting the
performance of systems developed to meet those requirements.

• Vendor Community: Unambiguously interpreting behavioral requirements; and rapid development of
simulation/prototypes to evaluate design alternatives.

• Training Community: Availability of machine-readable sources of tactical knowledge for automatic
generation of training materials and training scenarios

5. World Modeling Processes

5.1. Background

The WM process performs four basic functions:

1) Maintenance and updating of information in the Knowledge Database (KD),

Figure 10: OWL-S Visualization Tool.

 19

2) Prediction (The WM process generates short term predictions of expected sensory observations
that enable SP processes to perform correlation and predictive filtering),

3) Response to queries for information required by other processes, and
4) Simulation (The WM process performs simulations in response to “What If?” queries in order to

support the planning functions of the BG processes) .

5.2. World Modeling Processes in 4D/RCS

As mentioned in Section 1, world modeling processes construct, maintain, and use a world model
knowledge database in support of behavior generation and sensory processing. Within 4D/RCS, there are
three primary efforts that are developing world modeling processes, the first two of which focuses on world
model maintenance and updating while the third focuses on making predictions. The first is exploring
sensor registration, dealing with registration of 3D LADAR data for unmanned ground and aerial vehicles
[28,29]. The second, which is recent and unpublished work, is exploring grouping of pixels into objects to
allow one to determine if what a sensor system is currently seeing anything similar to what the system saw
before (i.e., establishing correspondence). The third is the PRIDE (PRediction In Dynamic Environments)
framework, which predicts the location of moving objects in the environment. This is the highlighted
example discussed below.

5.3. World Modeling Processes Highlighted Example: The PRIDE Framework

Many believe that the DEMO III XUV effort represented the state of the art in autonomous off-road driving
[48]. This effort sought to develop and demonstrate new and evolving autonomous vehicle technology,
emphasizing perception, navigation, intelligent system architecture, and planning. It should be noted that
the DEMO-III XUV was tested only in highly static environments. It was not tested in on-road driving
situations, which include pedestrians and oncoming traffic.

There have been experiments performed with autonomous vehicles during on-road navigation. Perhaps the
most successful was that of Prof. Dr. Ernst Dickmanns [13] as part of the European Prometheus project in
which the autonomous vehicle performed a trip from Munich to Odense (>1600 km) at a maximum
velocity of 180 km/h. Although the vehicle was able to identify and track other moving vehicles in the
environment, it could only make basic predictions of where those vehicles were expected to be at points in
the future, considering the vehicle’s current velocity and acceleration.

What is missing from all of these experiments is a level of situation awareness of how other vehicles in the
environment are expected to behave considering the situation in which they find themselves. To date, the
authors are not aware of any autonomous vehicle efforts that account for this information when performing
path planning. To address this need, a framework, called PRIDE (PRediction in Dynamic Environments)
was developed that provides an autonomous vehicle’s planning system with information that it needs to
perform path planning in the presence of moving objects [43]. The following section describes the “high-
level” cost-based probabilistic prediction algorithms in detail.

5.3.1. The PRIDE Framework

As discussed in Chapter 1, the 4D/RCS architecture supports multiple behavior generation (BG) systems
working cooperatively to compute a final plan for the autonomous system. The spatial and temporal
resolution of the individual BG systems along with the amount of time allowed for each BG system to
compute a solution are specified by the level of the architecture where it resides. In addition to multiple BG
systems, multiple world models are supported with each world model’s content being tailored to the
systems that it supports (in this case the BG system). As such, it is necessary for the future location of
moving objects to be determined differently (at different scales and resolutions) at the different levels of the
architecture.

 20

Fig. 11. The Situation.

To support this requirement, NIST has developed the PRIDE (PRediction In Dynamic Environments)
framework. The underlying concept is based upon a multi-resolutional, hierarchical approach that
incorporates multiple prediction algorithms into a single, unifying framework. This framework supports the
prediction of the future location of moving objects at various levels of resolution, thus providing prediction
information at the frequency and level of abstraction necessary for planners at different levels within the
hierarchy. To date, two prediction approaches have been applied to this framework.

At the lower levels, estimation theoretic short-term predictions is used via an extended Kalman filter-based
algorithm using sensor data to predict the future location of moving objects with an associated confidence
measure [27]. At the higher levels of the framework, moving object prediction needs to occur at a much
lower frequency and a greater level of inaccuracy is tolerable. At these levels, moving objects are identified
as far as the sensors can detect, and a determination is made as to which objects should be classified as
“objects of interest". In this context, an object of interest is an object that has a possibility of affecting the
path in the planning time horizon. Once objects of interest are identified, a moving object prediction
approach based on situation recognition and probabilistic prediction algorithms is used to predict where
object will be at various time steps into the future. Situation recognition is performed using spatio-temporal
reasoning and pattern matching with an a priori database of situations that are expected to be seen in the
environment. This is discussed below.

The algorithms are used to predict the future location of moving objects in the environment at larger time
planning horizons on the order of tens of seconds into the future with plan steps at about one second
intervals. During the explanation of the algorithm, the following scenario will be used (Figure 11). This
scenario is composed of three vehicles, two of which (A and B) are in lane L1 and moving to the right, and
the third (C) is in lane L2 and moving to the left. In this scenario, D is a static object and is located in L1.
Figure 12 graphically shows the overall process flow.

 21

Fig. 12. The Moving Object Prediction Process.

The steps within the algorithm are:

1. For each vehicle on the road (α), the algorithm gets the current position and velocity of the vehicle
by querying external programs/sensors (β).

2. For each set of possible future actions (δ), the algorithm creates a set of next possible positions
and assigns an overall cost to each action based upon the cost incurred by performing the action
and the cost incurred based upon the vehicle’s proximity to static objects. An underlying cost
model is developed to represent these costs.

3. Based upon the costs determined in Step 2, the algorithm computes the probability for each action
the vehicle may perform (ε). At this step in the scenario, the possible actions/probabilities for the
three vehicles are shown in Figures 13a-c:

Fig. 13a: A-Vehicle Actions-Probabilities

Fig. 13b. B-Vehicle Actions-Probabilities

Fig. 13c. C-Vehicle Actions-Probabilities

where the size of each dot represents the relative probability with respect to the others.

4. Predicted Vehicle Trajectories (PVT) (ξ) are built for each vehicle which will be used to evaluate
the possibility of collision with other vehicles in the environment. PVTs are a vector that indicates
the possible paths that a vehicle will take within a predetermined number of time steps into the
future.

5. For each pair of PVTs (η), the algorithm checks if a possible collision will occur (where PVTs
intersect) and assigns a cost if collision is expected.

In the scenario, for the vehicles A and C, Figure 14 shows two PVTs that cross, indicating that a
collision is possible.

Fig. 14. Possible Collision between A and C

 22

6. In this step, the probabilities of the individual actions (θ) are recalculated, incorporating the risk of

collision with other moving objects, as shown in Figures 15a-c.

Fig. 15a. A-Vehicle Final Probability

Fig. 15b. B-Vehicle Final Probability

Fig. 15c. C-Vehicle Final Probability

At the end of the main loop, the future positions with the highest probabilities for each vehicle represent the
most likely location of where the vehicles will be in the future. More information about the cost-based
probabilistic prediction algorithms can be found in [43].

5.3.2. Experimental Results

The situation-based probabilistic prediction approach has been implemented in the AutoSim simulation
package developed by Advanced Technology Research Corporation. AutoSim is a high-fidelity simulation
tool which models details about road networks, including individual lanes, lane markings, intersections,
legal intersection traversibility, etc. Using this package, typical traffic situations (e.g., multiple cars
negotiating around obstacles in the roadway, bi-directional opposing traffic, etc.) have been simulated and
predictions as to the future location of individual vehicles on the roadway have been made based upon the
prediction of where other vehicles are expected to be (Figure 16).

At the point this chapter was written, numerous driving situations have been simulated using eleven costs to
determine the probabilities of one action over another. In all driving situations, there were anywhere from
one to three vehicles and obstacles placed at different random locations on the roadway. In all cases, there
were no “road blocks”, meaning that there was always at least one lane on the roadway that would allow a
vehicle to pass. The initial velocity of the vehicles varied from being at rest to 30 m/s. Costs were incurred
based on: 1) proximity to other objects in the environment as a function of the necessary stopping distance,
2) two costs associated with exceeding or going below the speed limit by a given threshold, 3) changing
lanes, 4) not being in the rightmost lane, 5) five costs associated with acceleration profiles (constant
velocity, slowly accelerating and decelerating, rapidly accelerating or decelerating), and 6) changing lanes
where double yellow lines in the road exist. Using these costs, predictions up to ten seconds into the future
at a rate of five predictions per second were achieved.

 23

In the experiments, it was interesting to see how the vehicles performed when the “action sequences” were
varied with respect to time. The action sequence is the amount of time that it would take the vehicle to
perform a driving maneuver (e.g., changing lanes). For most of these experiments, a passing maneuver was
used as the action sequence to be evaluated. When this time was set to a longer duration (e.g., 7 s), the
vehicle was very slow to respond to unexpected events (e.g., a vehicle pulling into its lane quickly), which
cause, in some cases, near collisions. Conversely, when the time for the action sequence was set to a
shorter time (e.g., 2 s), the vehicle became jerky and could not make up its mind. For example, it would
start a lane change and then quickly return to the original lane. Four seconds appears to be a good middle-
ground to create realistic traffic patterns. The existence of these realistic traffic patterns is important to be
able to truly assess the performance of autonomous vehicles in on-road driving scenarios.

Future work will create different action sequence timeframes for different types of driving maneuvers.
The introduction of action sequences into the prediction algorithms have resulted in dramatic increases in
performance with respect to time. Before the concept of action sequences was introduced, predictions up to
5 s into the future for two vehicles at a rate of two predictions per second were possible. Once actions
sequences were introduced (along with the rules which state which action sequences are valid and invalid),
predictions up to 10 s into the future with two vehicles at a rate of 10 predictions per second were possible.

The purpose of these algorithms is to work in real time. The experimental results show that after seven
seconds in the future, the algorithms become jerky and lose their real time functionality on a Pentium 4
CPU machine with a 1.8 GHz CPU and 512 MB of memory.

In addition, recent efforts have demonstrated the ability to use the results of the short-term prediction
algorithms to strengthen/weaken the estimates of the long-term prediction algorithms. Based upon previous
experiments, short-term prediction algorithms perform best when predicting on the order of a few seconds
into the future and that the longer-term prediction algorithms are best at predicting on the order of several
seconds into the future. Thus, there are opportunities for leveraging the predictions when both prediction
algorithms provide valuable estimates during these times.

Fig. 16. Two Vehicles passing obstacles.

6. Discussion and Conclusion

The principles of how to choose one representation over another is never an easy problem and this chapter
does not claim to provide all of the answers. However, using 4D/RCS helps to make this decision a little
easier. As mentioned throughout the chapter, 4D/RCS is based on multi-representational approaches. There
may be redundancy in the data/information due to the multiple representations. The intent is to have the
right representation available for the various calculations and decision making processes. No one type of
knowledge representation is adequate for all purposes. Davis [12] argues that representation and reasoning

 24

at the symbolic level are inextricably intertwined, and that different reasoning mechanisms, such as rules
and frames, have different natural representations that must be integrated in a representation architecture to
achieve the advantages of multiple approaches to reasoning.

Redundancy in information usually involves extra effort in maintaining the integrity of the knowledge base,
but 4D/RCS helps to address this through the tight coupling of different forms of information into higher
level knowledge. For example, points cluster into lines which cluster into surfaces which cluster into
objects. This tight coupling helps to ensure the integrity of the knowledge base, even when the same type of
information is represented in different forms.

Often, multiple types of representation are used when performing a single behavior. Geometric knowledge
may be used to probabilistically recognize a vehicle on the road while symbolic information might
strengthen or weaken the probabilities based on known physical and behavioral characteristics of a vehicle.
Topological and symbolic information may also be used to track the vehicle, based on the knowledge that
vehicles tend to follow roadways, stop at some intersections, etc. The introduction of spatial data – often
grid-based – integrated with symbolic data and parametric data in a multi-resolution hierarchical world
model, enables the real time control of complex systems interacting with the real world, including the
ability to deal with dynamic relationships of objects in space and time. This provides the ability for a
moving vehicle to sense and correctly respond to unexpected obstacles and events. This is the essence of
intelligent control.

Another important consideration of knowledge representation is complexity versus real utility. The more
complex the representation, the more complete it (usually) is, but the longer it may take to access the
knowledge within it. 4D/RCS addresses this challenge through its hierarchical nature and through its agent
architecture. Agents are represented at a defined level with 4D/RCS and have a bounded set of knowledge
and responsibility. The level of abstraction of knowledge that is captured and available to the agent is a
function of the level in the hierarchy in which it resides. This bounded set of knowledge and responsibility
ensures that the agent is not over inundated with information, but also ensures that enough information is
necessary for it to accomplish its tasks. However, this does not imply that the complexity of the system
stays consistent independent of the number of hierarchical levels and agents are added. Maximov and
Meystel [31] show that when the number of hierarchical levels grow, complexity initially falls, and then
starts growing again.

A third consideration is ensuring the representational choices allow for well-performing situation
assessment. Similar to the previous consideration, 4D/RCS facilitates this through the use of multiple
representations, information redundancy among the representations, and multiple levels of abstraction to
ensure the scope/scale of the information aligns with the level of situation awareness that is desired.
Another important aspect that allows for accurate situation assessment is the constant updating of
knowledge. Sensor information is constantly fed into the world model to ensure it is as up-to-date as
possible. This sensor knowledge, through world model processes, is constantly being analyzed and
abstracted to achieve a higher level of situation assessment within the world model. These world model
processes ensure that the most up-to-date information is always available to the behavior generation
engines so the best possible decisions can be made.

4D/RCS architecture provides an excellent framework in which to integrate multiple knowledge
representation approaches to build cognitive models and intelligent systems that significantly advance the
level of intelligence that can be achieved. This chapter described how 4D/RCS supports multiple types of
representations, ranging from iconic to symbolic and from declarative to procedural, and provided brief
examples of how each of these representations are used in the context of autonomous driving. Also shown
was how all of these knowledge representation formalisms fit into the node structure present at each level
of the 4D/RCS hierarchy.

The efforts described in this chapter only begin to touch on all of the knowledge that is necessary to enable
truly intelligent control, as compared to the knowledge that a human possesses when making decision.
Much more work needs to go into the area of situational awareness, which focuses on extracting and
reasoning about pertinent information about the environment to get a higher level picture of what is

 25

actually occurring and what can be inferred from it. This is a challenging problem, and one that will be a
focus of this research effort in the future.

References

 1. Albus, J., "A Theory of Cerebellar Function," Mathematical Biosciences, Vol. 10, 1971, pp. 25-61.
 2. Albus, J. S., Brain, Behavior, and Robotics, McGraw-Hill 1981.
 3. Anderson, J., The Architecture of Cognition, Lawrence Erlbaum Associates, Mahwah, N.J., 1983.
 4. Archer, R., Lebriere, C., Warwick, W., and Schunk, D., "Integration of Task Network and

Cognition Models to Support System Design," Proceedings of the Collaborative Technology
Alliances Conference: 2003 Advanced Decision Architectures, College Park, MD, 2003.

 5. Archer, S. and Adkins, R., "IMPRINT User's Guide," 1999.
 6. Balakirsky, S., A Framework for Planning with Incrementally Created Graphs in Attributed

Problem Spaces, IOS Press, Berlin, 2003.
 7. Balakirsky, S. and Lacaze, A., "World Modeling and Behavior Generation for Autonomous Ground

vehicle," Proceedings of the 2000 IEEE International Conference on Robotics & Automation, 2000,
pp. 1201-1206.

 8. Barbera, T., Albus, J., Messina, E., Schlenoff, C., and Horst, J., "How Task Analysis Can Be Used
to Derive and Organize the Knowledge For the Control of Autonomous Vehicles," Robotics and
Autonomous Systems Journal: Special Issue on the 2004 AAAI Knowledge Representation and
Ontologies for Autonomous Systems Spring Symposium, Vol. 49, No. 1-2, 2004, pp. 67-78.

 9. Behnke, S., "Local Multi-Resolution Path Planning," RoboCup-2003: Robot Soccer World Cup VII,
edited by B. Browning, D. Polani, A. Bonarini, and K. Yoshida Springer, 2004.

 10. Borenstein, J. and Koren, Y., "Real Time Obstacle Avoidance for Fast Mobile Robots in Cluttered
Environments," Proceedings, 1990 IEEE ICRA, Cincinnati, OH, 1990.

 11. Cassimatis, N., Trafton, M., Bugajska, M., and Schultz, A., "Integrating Cognition, Perception And
Action through Mental Simulation in Robots," Robotics and Autonomous Systems, Vol. 49, No. 1-2,
2004, pp. 13-23.

 12. Davis, R., "What is in a Knowledge Representation?," AI Magazine, 1993.
 13. Dickmanns, E. D., "A General Dynamic Vision Architecture for UGV and UAV," Journal of

Applied Intelligence, Vol. 2, 1992, pp. 251.
 14. Dijkstra, E. W., "A note on two problems in connection with graphs," Numerische Mathematik, Vol.

1, 1959, pp. 269-271.
 15. Dunlaing, C. O. and Yap, C. K., "A "retraction" method for planning the motion of a disc," Journal

of Algorithms, Vol. 6, 1986, pp. 104-111.
 16. Etherington, D., "What Does Knowledge Representation Have to Say to Artificial Intelligence?,"

Proceesings ate the AAAI, 1997.
 17. Gansner, E. and North, S., "An Open Graph Visualization System and Its Applications," Software -

Practice and Experience, Vol. 00, No. S1, 1999, pp. 1-5.
 18. Gonzalez, C., "ACT-R Implementation of an Instance-Based Decision Making Theory,"

Proceedings of the Collaborative Technology Alliance Conference: 2003 Advanced Decision
Architectures, College Park, MD, 2003.

 19. Harmelen, F. and McGuiness, D., "OWL Web Ontology Language Overview," W3C web site:
http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2004.

 20. Harnad, S., "The Symbol Grounding Problem," Physica, Vol. 42, 1990, pp. 335-346.
 21. Hong, T., Balakirsky, S., Messina, E., Chang, T., and Shneier, M., "A Hierarchical World Model for

an Autonomous Scout Vehicle," Proceedings of SPIE's 16th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Controls, 2002, pp. 343-354.

 22. Kieras, D. and Meyer, D. E., "An overview of the EPIC architecture for cognition and performance
with application to human-computer interaction," Human-Computer Interaction, Vol. 12, 1997, pp.
391-438.

 23. Kobilarov, M. and Sukhatme, G., "Time optimal path planning on outdoor terrains for mobile robots
under dynamic constraints," Technical Report CRES-04-009 USC, 2004.

 24. Laird, J. E., Newell, A., and Rosenbloom, P. S., "SOAR: An Architecture for General Intelligence,"
Artificial Intelligence, Vol. 33, 1987, pp. 1-64.

 26

 25. LaValle, S. M. and Kuffner, J. J., "Randomized kinodynamic planning," 1999 IEEE International
Conference on Robotics and Automation, Volume 1, 1999, pp. 473-479.

 26. Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., and Thrun, S., "Using EM to learn 3D models
with mobile robots," Proceedings of the International Conference on Machine Learning (ICML),
2001.

 27. Madhavan R. and Schlenoff, C., "The Effect of Process Models on Short-term Prediction of Moving
Objects for Autonomous Driving," International Journal of Control, Automation and Systems, Vol.
3, 2005, pp. 509-523.

 28. Madhavan, R. and Messina, E., "Performance Evaluation of Temporal Range Registration for
Unmanned Vehicle Navigation," Proceedings of the 2004 Performance Metrics for Intelligent
Systems (PerMIS) Workshop, Gaithersburg, MD, 2004.

 29. Madhavan, R. and Messina, E., "Iterative Registration of 3D LADAR Data for Autonomous
Navigation," Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 2003,
pp. 186-191.

 30. Martin, M. C. and Moravec, H., "Robot Evidence Grids," Tech Report CMU-RI-TR-96-06, Robotics
Institute, Carnegie Mellon University, 1996.

 31. Maximov, Y. and Meystel, A., "Optimum Architectures for Multiresolutional Control," Proceedings
of the IEEE Conference on Aerospace Systems, Westlake Village, CA, 2003.

 32. Minsky, M., "A Framework for Representing Knowledge," MIT-AI Laboratory Memo 306, 1974.
 33. Minton, S. N., "Quantitative results concerning the utility of explanation-based learning," Artificial

Intelligence, Vol. 42, 1990, pp. 363-391.
 34. Moravec, H. and Martin, M. C., "Robot navigation by 3D spatial evidence grids," CMU Mobile

Robot Laboratory Internal Report, 1994.
 35. Moravec, H. P. and Elfes, A., "High Resolution Maps from Wide Angle Sonar," Proceedings of the

1985 IEEE ICRA, St. Louis, MO, 1985.
 36. Newell, A. and Simon, H., Human Problem Solving, Prentice-Hill, Englewood Cliffs, 1972.
 37. Newell, A. and Simon, H., GPS; A Program that Simulates Human Thought, McGraw-Hill 1963.
 38. Nilsson, N. J., Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, Inc., San

Francisco, 1998.
 39. Nilsson, N. J., "A mobile automaton: An application of artificial intelligence techniques.,"

Proceedings of the 1st International Joint Conference on Artificial Intelligence, Washington DC,
1969, pp. 509-520.

 40. Oskard, D., Hong, T., and Shaffer, C., "Real-Time Algorithms and Data Structures for Underwater
Mapping," Proceedings of the SPIE Advances in Intelligent Robotics Systems Conference, Boston,
MA, 1988.

 41. Pearson, J. D., Huffman, S. B., Willis, M. B., Laird, J. E., and Jones, R. M., "A Symbolic Solution
to Intelligent Real-Time Control," Robotics and Autonomous Systems, Vol. 11, 1993, pp. 279-291.

 42. Provine, R., Uschold, M., Smith, S., Balakirsky, S., and Schlenoff, C., "Ontology-based Methods
for Enhancing Autonomous Vehicle Path Planning," Robotics and Autonomous Systems Journal:
Special Issue on the 2004 AAAI Knowledge Representation and Ontologies for Autonomous Systems
Spring Symposium, Vol. 49, No. 1-2, 2004, pp. 123-133.

 43. Schlenoff, C., Ajot, J., and Madhavan, R., "PRIDE: A Framework for Performance Evaluation of
Intelligent Vehicles in Dynamic, On-Road Environments," Proceedings of the Performance Metrics
for Intelligent Systems (PerMIS) 2004 Workshop, 2004.

 44. Schlenoff, C., Balakirsky, S., Uschold, M., Provine, R., and Smith, S., "Using Ontologies to Aid in
Navigation Planning in Autonomous Vehicles," Knowledge Engineering Review, Vol. 18, No. 3,
2004, pp. 243-255.

 45. Schlenoff, C., Washington, R., and Barbera, T., "Experiences in Developing an Intelligent Ground
Vehicle (IGV) Ontology in Protege," Proceedings of the 7th International Protege Conference,
Bethesda, MD, 2004.

 46. Schwartz, J. T. and Sharir, M., "A Survey of Motion Planning and Related Geometric Algorithms,"
Artificial Intelligence, Vol. 37, 1988, pp. 157-169.

 47. Shapiro, D. and Langley, P., "Controlling physical agents through reactive logic programming,"
Proceedings of the Third International Conference on Autonomous Agents 386-387, ACM Press,
Seattle, 1999.

 27

 48. Shoemaker, C. and Bornstein, J. A., "Overview of the Demo III UGV Program," Proceedings of the
SPIE Robotic and Semi-Robotic Ground Vehicle Technology Conference, Vol. 3366, 1998, pp. 202-
211.

 49. Stentz, A., "Optimal and Efficient Path Planning for Partially-Known Environments," Proceedings
of the IEEE International Conference on Robotics and Automation, 1994, pp. 3310-3317.

 50. The OWL Services Coalition, "OWL-S 1.0 Release," http://www.daml.org/services/owl-s/1.0/owl-
s.pdf, 2003.

 51. Yahja, A., Stentz, A., Singh, S., and Brumitt, B. L., "Framed-Quadtree Path Planning for Mobile
Robots Operating in Sparse Environments," Proceedings 1998 IEEE International Conference on
Robotics and Automation, Vol. 1, 1998, pp. 650-655.

Chapter 5

Sensory Processing

Michael Shneier, Tsai Hong, Tommy Chang, and Mike Foedisch
National Institute of Standards and Technology (NIST)

{michael.shneier,tsai.hong,tommy.chang,mike.foedisch}@nist.gov

5.1. Introduction

Sensory processing (SP) provides information about the world that enables a robot to interact with its
environment and react to events or changes that influence its task. The goal of SP is to build and maintain
the internal representation of the world (World Model) that the behavior generation components of the
robot can use to plan and execute actions that modify the world or the robot’s position in the world. Since
the world in general is not static, the SP algorithms must update the internal model rapidly enough to allow
changes, such as the positions of moving objects, to be represented accurately. This places constraints on
the sensors that can be used and on the processing that can be applied.

This chapter will address the sensory processing aspects of the 4D/RCS architecture as applied to
autonomous mobile robots. It will cover the use of multiple sensors to build up a description of the
environment around the vehicle and discuss the algorithms needed to interpret the sensory data. The
chapter is organized as follows.

Section 5.2 covers sensors, sensor registration, and sensor fusion. Sensors in use include monocular and
stereo color cameras and scanning and imaging LADARs. These sensors have to be registered so that data
from the sensors can be combined. Registration involves accurately locating the sensors relative to each
other and time- and position-stamping the outputs of each sensor so that the motion of the vehicle can be
taken into account. Registration can also be carried out using a single sensor, whose output at different
times can be combined if the positions of the sensor at successive times are known. Sensor fusion allows a
richer description of the world and is particularly useful in associating range information with data from a
monocular color camera, which would otherwise be difficult to locate in space because of its two-
dimensional nature.

Obstacle detection is described in Section 5.3 and an algorithm is described for finding obstacles in range
data. Obstacle features are described separately because obstacles are geometric entities detected using
range information rather than color- or feature-based entities extracted from conventional imagery.
Obstacles are features that lie above the ground or correspond to holes in the ground. They need to be
detected well before the vehicle reaches them. It is necessary to know the true size of an obstacle so that it
can be avoided; hence a three-dimensional analysis is required. This can be obtained from LADAR or
stereo sensors, while a color camera may provide the best data to identify the obstacle.

Section 5.4 comprises the bulk of the chapter and describes a range of feature detection methods for
specific features of interest. To build a rich description of the world, a variety of features need to be
recognized. These include roads, road signs, water, other vehicles, pedestrians, etc. Special purpose
processing is needed for each of these features, which must not only be detected, but tracked while they are
within the immediate vicinity of the robotic vehicle.

Section 5.5 discusses learning and provides an algorithm for learning the traversability of terrain based on
its appearance in color images.

Performance evaluation of SP algorithms is the subject of Section 5.6. Sensory processing plays a critical
part in keeping the vehicle operating safely. Evaluating the performance of the SP algorithms provides a
way to ensure that they work correctly and robustly enough in the real world. Performance evaluation
involves testing the algorithms in realistic scenarios and quantitatively measuring how well they meet their
specifications. Finally, the chapter ends with a brief conclusion.

World modeling and knowledge representation are presented in more depth in Chapter 4, but a basic
overview is provided here as a basis for understanding the sensory processing, feature extraction, and
tracking processes. The world model contains a representation of the current state of the world surrounding
the vehicle and is updated continually by the sensors. A modified occupancy grid representation is used,
with the vehicle centered on the grid, and the grid tied to the world. The world model thus scrolls under the
vehicle as the vehicle moves about in the world. The world model is the system’s internal representation of
the external world. It acts as a bridge between SP and behavior generation by providing a central repository
for storing sensory data in a unified representation and decouples the real-time sensory updates from the
rest of the system. The world model process has two primary functions:

1. To create a knowledge database (map) and keep it current and consistent. In this role, it updates

existing data in accordance with inputs from the sensors, and deletes information no longer believed to
be representative of the world. It also assigns (multiple) confidence factors to all map data and adjusts
these factors as new data are sensed. The types of information included in the map are state variables
(e.g., time, position, orientation), system parameters (e.g., coordinate transforms, sensor to vehicle
offsets, etc.), and lists or classes of sensed objects. The world model process also provides functions to
update and fuse data and to manage the map (e.g. scrolling and grouping objects.)

2. To generate predictions of expected sensory input based on the current state of the world and
estimated future states of the world. For the Demo III off-road autonomous driving application
described in Chapter 10, very little a priori information is available to support path planning between
the vehicle’s position and a final goal position. The world model therefore constructs and maintains all
the information necessary for intelligent path planning.

5.2. Sensors, Sensor Registration, and Sensor Fusion

Ideally, sensors would provide omni-directional views updated in real time with registered range and color
information. In practice, this is not feasible, and a variety of compromises are made. While it is possible to
make use only of cameras for both range (stereo) and color information, typical systems make use of
LADAR sensors as well as cameras because LADARs can directly measure range. The fields of view of the
sensors are usually limited, but sensors can often be actively pointed at areas of interest.

LADAR sensors include line-scan units, such as the SICK, which puts out a single plane of laser light
spanning 100°-180° that can be mechanically scanned over a scene to build a range map. Range can be
found to all points that intersect with the line based on time of flight of the light pulses. As described in
Chapter 7, newer LADAR sensors directly image a scene without scanning, giving range data as well as
color in a single instant [1]. Range resolution varies from a few millimeters to several centimeters, and
measurable range varies from less than 10 m to more than 800 m, depending on the sensor used.

Modern cameras for computer vision applications can deliver 1024x768 images at 30 Hz (with Bayer filter-
based color). This provides ample resolution for object recognition or for stereo-based range computation.
With multiple sensors mounted on a robot, the issue arises of how to relate the information from each one
to the others. This requires sensor registration, in which the relative positions and fields of view of the
sensors are calibrated. The position and orientation of each sensor is measured. The sensors are represented
in a common coordinate system (usually that of the robot). The fields of view can then be computed and
overlaps used for sensor fusion. Registration of 3D LADAR both from UGVs and UAVs is discussed in

Chapter 6. This chapter describes the registration of a camera with a LADAR system and gives examples of
how data fused from multiple sensors can be helpful in feature detection.

5.3. Obstacle Detection

A mobile robot needs to locate and characterize obstacles that prevent it from reaching its goal. Obstacles
are of two kinds, those that stick up out of the ground (positive obstacles), and those that lie below the
ground (negative obstacles). The robot needs to know where the obstacles are located and how big they are
so that it can plan a path around them.

Finding obstacles in three-dimensional point clouds resulting from LADAR or stereo processing involves
first determining the ground plane. In man-made environments or where the ground is reasonably flat, a
surface can be fitted to points believed to be on the ground (e.g., points close to the vehicle, which is
assumed to be on the ground). This surface can then be used as a reference against which points can be
measured. Those that project above or below the surface by a large enough distance are considered to be
obstacles. Where the ground is not flat, an alternative algorithm must be used: One such algorithm is
described below for detecting obstacles in range images where the ground is not constrained to lie in a
plane.

Obstacles are defined as objects that project more than some distance d above or below the ground. Positive
obstacles are detected in the range images, while negative obstacles are detected in the world model map.

The positive obstacle detection algorithm works column by column in the range image [2]. The algorithm
starts with a point, g, known to be on the ground. An initial ground value is assigned at the location where
the front wheels of the vehicle touch the ground, known from INS and GPS sensors. Given point g, the
algorithm processes upwards from the bottom pixel in the column to the top pixel, as follows:

1. Let ip be the thi pixel in the column, where pixel 0 is at the bottom of column. Let iii zyx ,, be the

Cartesian coordinates of ip . Let g be the last known ground pixel in the column, initially obtained from

the vehicle’s position sensors. Compute the slope between the ground point, g, and the next pixel kp .

Pixel kp is labeled a positive obstacle if

()
() () () ()α2

222

2

sin≥
−+−+−

−

gkgkgk

gk

zzyyxx

zz

where α is a predefined constant representing the maximum allowed slope. The value of ()α2sin is

constant, and is pre-computed for efficiency.

2. Pixel kp may fail the above test but still be a positive obstacle. This is because the slope test is a

function of distance. The obstacle can be far from the current ground point due either to occlusion or to
the resolution of the sensor which degrades as a function of distance. To resolve this ambiguity, the

height of the obstacle is required to be greater than a constant, H. i.e., .Hzz gk <−

3. If kp is not an obstacle, it is assumed to be ground and replaces g as the current ground pixel. The

process iterates up the column with each pixel being compared to the closest ground pixel.

4. If kp is an obstacle, g is unchanged, and is compared with pixels …,, 1+kk pp as above, until another

ground pixel is found. When this occurs, point g is set to the new ground pixel value and the process
continues from Step 1.

In Figure 1, pixel 0 corresponds to the bottom of the vehicle wheel. Pixels 1, 2, 3, 8 and 9 are ground
pixels. Pixel 4, 5, 6 and 7 are positive obstacles because they either satisfy step 1 or step2 or both. The
direction vectors shown on the bottom of Figure 1 indicates the vectors in which the slopes are determined.
In a way, the algorithm is analogous to flooding; pixels 1, 2, 3, 8 and 9 are flooded because they have
shallow slopes.

The results of the positive obstacle detection are shown in Figure 2. The figure on the left is a LADAR
scene of a wall obstructed by a truck on the far right. The objects in the foreground are low poles. The
figure on the right shows in red the objects detected as positive obstacles in this scene.

The negative obstacle detection algorithm maintains its own high-resolution ground map centered on the
vehicle. This ground map contains all the projected ground pixels detected by the positive obstacle
detection module. The algorithm first identifies the pixels in the range image that potentially correspond to
a negative obstacle (see algorithm details below). Based on the accumulated ground information in the
ground map, the algorithm determines more precisely the dimension of the negative obstacle. Thresholds
for depth and width are used to reject negative obstacles that are too small in dimension. For efficiency, the
algorithm detects only the borders of negative obstacles. Steps 1 through 4 describe the algorithm in detail
(Figure 3).

1. Let kp be a ground point, and let w and d be the approximate width and depth of the negative obstacle.

That is, gk xxw −= and .kg zzd −= Let
kpproj be the map location corresponding to the

projection of kp onto the ground map. Let mind be the minimum depth for an obstacle, and minw the

minimum width smaller than the vehicle wheel diameter.

2. If both mindd < and minww < are true, then
kpproj is marked as ground.

3. If
kpproj is within a neighborhood corresponding to the area along the line of sight from the closest

ground point on the map, then kp is not labeled as a negative obstacle, but
kpproj is marked as a ground

1 2 3

4
5

6
7

8 9

2 3

4
5

6
7

8
9

0

10

Figure 1. Positive obstacle detection.

Figure 2. Raw LADAR image and detected positive obstacles.

cell.

4. When both minww ≥ and mindd ≥ are true and no ground map cell exists within the

neighborhood, kp is labeled a negative obstacle, but
kpproj is not marked as a ground cell.

border negative obstacles

Current Ladar

Ground map

g

p
k

X

Z

Figure 3. Negative obstacle border detection.

Figure 3 graphically describes this process. Circles represent points in the ground map. The triangular
points represent current LADAR hits. The points enclosed in squares fulfill the requirements described in
Step 4 above and are labeled as negative obstacle borders.

5.4. Feature Detection

Feature detection involves searching the image for regions that match a given criterion. Different features
usually require separate searches using different algorithms and perhaps different sensors. How roads, road
signs, curbs, and water features are detected is described briefly.

5.4.1. Road Detection
Neural Networks (NNs) are used for road detection by learning to differentiate the color distribution of
road areas from other areas in the image. The basic approach consists of two steps: the NN training step
and the road detection step.

Figure 4. Overview of the NN training step.

Figure 4 gives an overview of the NN training step. First, feature data are extracted from areas of the
image defined by filters (windows assumed to be entirely on the road or entirely off it). Then, a NN is
trained on the feature data using the filter type as classification label. As introduced in [3], an
“independent” color histogram consisting of 8 bins per channel is used [4]. This color histogram is
computed for a 7x7-pixel window around each measuring point in the image. Measuring points form a
sparse raster, for example by selecting every third point in the image (see the distribution of sample points
in Figure 6). Additionally, the normalized x and y position values of the current point of consideration are
included in the set of features, which results in a feature vector of 26 values.

The camera used as the sensor for detecting roads is positioned at the driver’s viewpoint. The algorithm
takes advantage of the fact that the road usually covers a trapezoidal area, which is centered in the lower
part of the image.

Figure 5. Example of three windows covering road area and another three covering non-road area.

Based on the estimated road location in the image, feature vectors are collected from pre-defined windows,
which cover either road (road windows) or non-road areas (non-road windows). Feature vectors extracted
from the windows are automatically labeled as either road or non-road depending on the type of the
window. The example in Figure 5 shows three windows placed in the road area of the image and three
windows in non-road areas.

The implementation uses a C++ based Neural Network library [5]. The NN receives 26 inputs (24 RGB
histogram bins plus x and y coordinates) and consists of three layers. The first two layers contain four
neurons each. The last layer is composed of one neuron, which generates the output. The NN employs
back propagation learning [6].

For the road detection step the input image is overlaid on a raster of measuring points for which feature
vectors are extracted. Each feature vector is processed by the NN, which was trained in the previous step.
The resulting value is interpreted as either the road class or non-road class.

Figure 6. Sample result.

Figure 6 depicts a sample result where the area classified as road is drawn with white dots and the area
classified as non-road is shown with black dots. The road detection accuracy has been enhanced by
applying two post processing steps. First, noise is reduced by erosion and dilation methods. Second, only
the largest detected region as the road area in the image is selected.

Initially, the road detection system relied on a NN trained only at the beginning of the course. Although the
results were reasonable immediately after training the network, it was difficult to classify accurately using
the same network when the environment and the road changed (e.g. due to changes in lighting) [7]. In
order to solve this problem, continuous updates of the NN were added. For this purpose, new feature data
are constantly collected from the feature extraction windows [8]. The re-training of the network takes
about 600 ms. New feature data are collected for about one second, which enables the NN to be replaced
roughly every two seconds.

Two enhancements to the basic approach have been developed. They integrate continuous learning into the
road detection system. The approaches differ in how the positioning of feature extraction windows is
handled. The first approach, called fixed windowing, follows the basic approach described above, and adds
the updates of the NN every two seconds.

The windows are placed in the same fixed positions as in the previous approach, which causes problems in
certain traffic situations. Figure 7 is a camera view when the vehicle is turning a corner. In this situation,
some windows violate our assumption. One of the road windows is placed completely in the non-road area,
and one of the non-road windows covers both road and non-road content. When extracting feature data in
this situation, the NN learns using partially incorrect information. To overcome this problem, the dynamic
windowing approach was developed, in which the positions of the road windows automatically adjust to the
current road shape.

Figure 7. Example of windows violating the assumptions due to a change in the curvature of the road.

Figure 8. Approach for positioning dynamic windows.

The algorithm for the placement of dynamic road windows is as follows:

The three non-road windows stay at their fixed positions as before. On the other hand, instead of using
three fixed road windows, four road windows are used. One window (the reference window) is placed at a
fixed position in the lower center of the image. The other three windows dynamically move from the
reference window’s location in pre-defined directions.

When the road detection system is started, all windows are placed in the image as depicted in Figure 8
(left). From these locations, feature vectors are extracted and used for the initial NN training. Because the
initial road classification result is based on the features extracted from the small area in the lower center of
the image, the detected road area will appear as a mountain shape located around the reference window as
shown Figure 8 (right).

Based on this initial road detection results, automatic placement of the three dynamic windows starts. Each
window moves from the reference window’s location in a pre-defined direction; one window moves
upward, another window moves up and left and the third window moves up and right. The windows move
in their pre-defined direction as long as they fully contain an area that was previously classified as road.
From these new locations, feature vectors are collected and used to update the neural network. This process
lets the detected road area grow until it fully covers the actual road area in the image.

5.4.1.1. Results

In order to analyze the performance of our road detection systems, the results of the fixed windowing and
dynamic windowing methods were compared with the results of the basic approach. Each algorithm’s
performance is compared with manually annotated frames of video files. This allows computation of false
positive and false negative ratios. False positives refer to non-road areas in the image that are classified by
the system as road, while false negatives refer to road areas classified as non-road. The sum of both false
positives and false negatives is used as an overall classification error calculated for each frame of the video
sequence. After the error is calculated for each frame, the minimum and maximum classification error
throughout the whole video sequence is determined and the average error is calculated. While the overall
classification error per frame allows the performance of several algorithms to be compared on the same
frame, the overall performance of each algorithm can be analyzed by comparing the minimum, maximum
and average classification errors.

Abrupt Shadow Situation

Figure 9 shows the results for a situation in which shadows appear on the road. Two algorithms, the
dynamic windows approach (dwa) and the basic approach (ba), handled the situation less accurately than
the fixed windows approach (fwa).

0

0.05

0.1

0.15

0.2

0.25

0.3

C
la

ss
ifi

ca
tio

n
E

rr
or

RDADynamicWindowRTL RDAFixedW indowRTL RDAInitialTraining

Figure 9. Classification error for abrupt shadow situation.

The reason for the bad performance of ba is that there was no shadow in the beginning of the course and
therefore the NN was never trained on a shadowed road. Likewise, the reason for dwa’s performance is
that it cannot adapt to non-smooth changes. In contrast, the fixed road windows of fwa eventually (see
arrow in Figure 10) covered the shadow area and allowed the NN to be trained on it.

Figure 10. Abrupt shadow example for dwa (left), fwa (center) and ba (right).

Curvy Course Situation

Figure 11 shows the results for the situation of a curvy course. Both dwa and ba handled the situation

more accurately than fwa did.

0

0.05

0.1

0.15

0.2

0.25

0.3

C
la

ss
ifi

ca
tio

n
E

rr
or

RDADynamicWindowRTL RDAFixedWindowRTL RDAInitialTraining

Figure 11. Classification error for a curvy course situation.

As the curvy road’s appearance on the image differs from the road structure on which the location of the
fixed windows was based, some of the windows violate the assumption that these windows will be either
only over road areas or only over background areas. The contradictory feature data finally distort the NN
(see center in Figure 12).

Figure 12. Curvy course example for dwa (left), fwa (center) and ba (right).

Based on the results of these two examples it can be seen that each approach, dwa and fwa has different
advantages and disadvantages depending on the situation. Next, the algorithms are compared in terms of
their minimum, maximum and average classification error.

Straight Road

Figure 13 is a collection of snapshots of the video sequence showing basically a straight road. Most of the
course appears similar, but some abrupt shadows occur during the course.

Figure 13. Sample frames of the straight road example.

Figure 14 shows that fwa outperforms the other two algorithms. Both dwa and ba show a high maximum
error, which is due to an abrupt shadow situation described earlier.

0.00

5.00

10.00

15.00

20.00

25.00

C
la

ss
if
ic

at
io

n
E

rr
o
r

(i
n
 %

)

Min 0.52 0.36 0.62

Avg 2.90 2.41 2.67

Max 19.90 7.95 16.62

RDADynamicWindowRTL RDAFixedWindowRTL RDAInitialTraining

Figure 14. Classification errors of dwa (left), fwa (center) and ba (right) for the straight road example.

Shadow Road

Figure 15 is a collection of snapshots of a video sequence showing a simple road with shadow throughout
the whole course.

Figure 15. Sample frames of the shadow road example.

Compared to the classification errors of ba (see Figure 16), both of the new approaches show a slightly
lower average classification error. However, the best average performance is given by dwa and the
lowest maximum error by fwa. The examples show for a variety of road types that at least one of the
new algorithms performs better (at least) on average. The evaluation of the algorithms shows that the
static structure approach is better for sudden changes (like shadows) if the current road type complies

with the static windows’ position. The dynamic approach, however, is better for smooth changes of the
road’s appearance as well as arbitrary road shapes. It can be concluded that the placement of feature
extraction windows is the key for performance improvement. Therefore, a tight coupling of road
detection and road recognition is suggested through a knowledge-based approach to road detection.
Knowledge about the type of road in geometrical and topological terms would help to extract sample
data for the adaptation purpose in a more informed and certain way. The knowledge of the exact
location of the road in the image would prevent the extraction of erroneous sample data. This
knowledge-based approach is being pursued in ongoing road detection work (see also [5], [6]).

0.00

5.00

10.00

15.00

20.00

25.00

C
la

ss
if
ic

at
io

n
 E

rr
o
r

(i
n
 %

)

Min 1.40 1.56 1.35

Avg 4.44 4.87 5.18

Max 15.17 10.44 13.71

RDADynamicWindowRTL RDAFixedWindowRTL RDAInitialTraining

Figure 16: Classification errors of dwa (left), fwa (center) and ba (right) for the shadow road example.

5.4.2. Road Following Using Color Models

A new algorithm has been developed that segments road from background using color models [9]. The
algorithm can be best compared with the SCARF[10] and UNSCARF[11] algorithms. Data are collected
from a video camera mounted on a moving vehicle. In each frame, color models of the road and
background are constructed through a scheme that makes a similar assumption about the shape and location
of the road as the NN method (5.4.1), i.e., that the region in front of the vehicle is road. The color models
are used to calculate the probability that each pixel in a frame is a member of the road class. Temporal
fusion of these road probabilities helps to stabilize the models, resulting in a probability map that can be
thresholded to determine areas of road and nonroad (Figure 17).

Road Region
Histogrammed

Road Color
Model Updated

Background
Histogrammed using

Temporal Fusion

Background Color
Model Updated

Road Probabilities
Calculated

Temporal Fusion
Updated

Road Region
Histogrammed

Road Color
Model Updated

Background
Histogrammed using

Temporal Fusion

Background Color
Model Updated

Road Probabilities
Calculated

Temporal Fusion
Updated

Figure 17. The system architecture after initialization.

The algorithm needs a method to represent the color distributions seen in road and background. For this
color histograms are used. It was found that 30x30 histograms of normalized red (R) and green (G) gave

the best results. Normalized R and G are fairly robust to changes in illumination, while at the same time
being fast to calculate. Normalized R and G are calculated as R / (R + G + B) and G / (R + G + B).
Separate models are created for road and background. The major difference between the models is that for
the road model, multiple color distributions are constructed, whereas the background is represented with a
single color distribution model. Modeling the road with multiple color distributions helps to increase
robustness. It allows the algorithm to adapt to non-homogeneous roads, shadows, illumination changes,
and any other condition that causes spatial change in appearance. Having multiple color distributions
allows the algorithm to learn and remember previously seen road conditions.

 (a) (b)

Figure 18. (a) The box area is used to construct the initial road model. (b) The histogram of colors in the
box.

A color distribution model for the road is implemented as a set of histograms created over time. A color
distribution model starts off with a single histogram. New histograms may be added to update the color
distribution model until a maximum number has been reached. At this point the oldest histogram is
removed to make room for the new. This is a form of temporal integration carried out on color
distributions, done in order to increase robustness, stability, and accuracy. While multiple histograms are
constructed for the road, a single background histogram is constructed from frame to frame. The
background color distribution model is a summation of a number of previous background histograms. If
temporal fusion contains mistakes, a summation of previous results reduces their impact. The number of
histograms in each color model controls how quickly the algorithm adapts to new data.

The first task is to model the road from just the region of the image assumed to be road (the box in Figure
18a). In the first frame, the region is histogrammed and used to create an initial color distribution model.
Subsequent frames are processed as follows. At each frame, the region assumed to be road is
histogrammed. The algorithm then can either update an existing color distribution model or create a new
distribution. If the new histogram is too different from all existing distributions (determined by a
threshold), a new color model is created. Otherwise, the histogram is used to update the model that is most
similar.

Construction of the background model is simpler. The background is assumed to be where the road is not.
To construct the background model, the algorithm looks at the previous segmentation result to determine
areas of road and nonroad. The algorithm then randomly samples the nonroad areas to construct a color
histogram, which is used to update the background color distribution model. Given the road and
background models, the image must be segmented into road and background regions. This is done by
computing, for each pixel, the probability that it belongs to each model. The pixel is then assigned to the
most probable model. As there are multiple road models, multiple road probabilities are calculated at each
pixel. The largest road probability is selected as the road probability for that pixel. The next step takes
road probabilities from multiple frames and fuses them. The end result is a final probability map that is
more consistent than individual probability maps constructed from single frames. The probability map is
thresholded and regions that overlap the box are taken as road.

5.4.2.1. Algorithm Evaluation

For the evaluation of the color modeling algorithm, two sequences of images of roads were used. The first
sequence is a video of the vehicle traversing a paved but unmarked road with fairly gentle curves (Figure
19 left). There is vegetation right up to the edge of the road in most places. The second sequence shows a
similar road with more curves and with strong shadows that greatly change the appearance of the road
(Figure 19 right). The first sequence contained 784 processed frames. The second contained 782 processed
frames.

Figure 19. Left: frame from sequence 1. Right: frame from sequence 2 showing ground truth overlay.

As for the NN methods, statistics were gathered on the false positives, false negatives, and the sum of the
two errors for each sequence separately (Figure 20). While these numbers give an overall impression of the
performance of the algorithm, they don’t by themselves capture the significance of the errors. In the graph
for sequence1 in Figure 20, the false negative errors peak around frame 525 and stay relatively high
through the end of the sequence. The images in Figure 21 show that this is due to the failure of the
algorithm to detect the far part of the road as it goes around a bend. This could be because the road color
changes as it gets further away from the vehicle, although this is not apparent from the images. Road colors
might change smoothly towards the horizon, and a color model created close to the vehicle might therefore
not cover the appearance of the road in the distance. Having more than one window as in the NN methods
above would help overcome this problem.

It is also possible that the errors are a result of the temporal fusion step in the algorithm. Errors caused by
temporal fusion are discussed further below. Looking at the lower graph of Figure 20, there is a peak in the
false positive values around frame 375. As can be seen from the images in Figure 22, the errors occur at the
edges of the road, at points where the road starts to curve. These are partly caused by temporal fusion and
partly by the difference in road edge as judged by the human and as determined by the algorithm. These
errors are largely insignificant for driving. If the locations of the errors in the images are along the edges of
the road rather than in the middle, the practical value of the algorithm is much higher. The color model
algorithm performs well in this way, as determined by visual evaluation of the errors overlaid on the video
frames.

Classification Error for CM on Sequence 1

0

0.05

0.1

0.15

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

frames

cl
as

si
fi

ca
ti

o
n

 e
rr

o
r

false positives false negatives overall

Classification Error for CM on Sequence 2

0

0.05

0.1

0.15

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

frames

cl
as

si
fi

ca
ti

o
n

 e
rr

o
r

false positives false negatives overall

Figure 20. Error graphs for the Color Model Algorithm on the two sequences

Figure 21. Frames 400, 525, and 775 from Sequence 1 showing the false negative areas in red and the false
positive areas in green.

Figure 22. Left: Frame 350 in Sequence 2, just before the peak. Middle: Frame 375, at the middle of the
peak. Right: Frame 450, at the end of the peak. False positives are shown in green, false negatives in red.

There is a delay caused by temporal fusion across frames, which gives rise to a small delay in updating the
model. Motion of the vehicle during this time causes the mask for the road created in one frame to be
applied to a later image, taken after the vehicle has moved slightly. The effect caused by left/right motion
of the vehicle can cause errors at the edges of the image and gets worse with distance (Figure 23, left). It
could be compensated for by monitoring the vehicle’s motion and adjusting the temporal fusion parameters.
A more difficult case arises when the vehicle passes a shadow, which hasn’t yet been recognized as road.
Behind the shadow some road will also be misclassified as non-road due to the temporal fusion delay
(Figure 23, middle). The same effect occurs when the vehicle passes an intersection (Figure 23, right). A
possible way to overcome this problem would be to project the temporal fusion buffer onto a flat plane in
front of the vehicle and shift it towards the vehicle by an amount determined by the vehicle’s motion. This
would reduce the effect.

Figure 23. Left: Effects on road edge of temporal fusion. Middle: False negative after a shadow that has not
yet been learned as road. Right: Similar error when the vehicle approaches an intersection.

5.4.3. Road Signs
For on-road driving, road signs provide useful information about the state of the road and legal driving
actions. There has been a lot of research on road sign detection, much of which identifies candidate road
sign regions using color and pruning them using shape criteria [12-23]. Piccioli et al. [12] used color and a
priori information to limit the possible locations of signs in the image. They then extracted edges and
looked for circular or triangular regions before applying a cross-correlation technique for recognizing the
signs. In [13], a redness measure was used to locate stop, yield, and “do not enter” signs. This step was
followed by edge detection and shape analysis to identify the sign. Escalera et al., [14], also started with
color matching, which they followed with corner detection in which they looked for corners in specific
relationships that correspond to triangular, rectangular, or circular signs. Classification made use of a neural
network. In their approach to detecting stop signs, Yuille and his colleagues [15] corrected for the color of
the ambient illumination, located the boundaries of the signs and mapped the sign into a frontoparallel
position before reading the sign.

Huang and Hsu [16] used shape and color in a wide angle view to locate signs as circular or triangular
shapes. They then controlled the camera to point at candidate sign locations for a closer view which was
used to identify the sign based on matching pursuit filters. Another paper that describes actively controlling
the camera for sign detection is [17]. Again, the researchers started with color and shape (from edges).
They predicted the location of the sign and pointed the camera for a closer view. Signs were recognized and
their contents read by template matching.

A decision tree method was used in [18] to detect and recognize signs without using color. Detection was
based on shape using local orientations of image edges and hierarchical templates. The results were sent to
a decision tree which either labeled the regions by sign type or rejected them. A method to detect speed
limit signs is given in [19]. It was based on first using color to locate candidate signs, followed by a multi-
resolution application of templates that looked for circular regions. Finally, the numbers were read to
recognize the signs.

A very different approach is taken by Fleischer et al., [20], who used a model-based, top down approach.
Predictions were made of locations in which signs could appear and shape, size, and color were used to
specify edge models for the signs in the 3D world. Signs that were found were tracked through subsequent
images using a Kalman filter.

Shaposhnikov et al., [24], made use of color segmentation using the CIECAM97 color appearance model.
They then used histograms of oriented edge elements to determine the shape of the sign followed by
location of the center of the sign. Signs were described by a set of descriptors which were matched with
stored models to recognize the signs. Hsien and Chen [22] quantized colors in Hue, Saturation, Value
(HSV) space and located candidate signs by projecting regions that could be signs onto the horizontal and
vertical axes. Extracted sign regions were matched with templates using a Markov model, and the match
with highest rank was regarded as the recognition result.

An impressive study focusing on sign detection in cluttered environments is that of Fang et al. [23]. Neural
networks were used to locate regions that could be the center of signs. Both color (hue) and shape features
were used. Candidate signs were tracked through time using a Kalman filter and signs were verified by a
set of rules concerning the colors and shapes of the regions.

The approach described here uses color and shape to locate signs [25]. Recognition uses template matching,
and signs are tracked over time. The method has the advantages of being fast and easily modified to
recognize new classes of signs. The algorithm operates on a video stream taken from a camera on the roof
of a test vehicle. Because the images are interlaced and the vehicle is moving, there is significant blur
between fields in the images. To minimize this, images are subsampled and only every second line and
column (one field) are used. Signs are detected in a multistage process, starting with segmentation based on
color. Because of variation in the ambient illumination, it is not possible to search for regions with specific
red, green, and blue values. To get around this problem, ratios of RGB colors are used, tailored to different
classes of signs (warning, regulatory, informational, etc.). Several other authors suggested using the HSV
color space instead of RGB (e.g., [22], [12]), but ratios of RGB colors worked better in this application and
did not require color space conversion. For (orange) warning signs, a constraint for each pixel is that the
red (r), green (g) and blue (b) values conform to the following.

warnwarnwarn bgbrgr γβα >>> /&/&/

For predominantly red signs (stop, yield, no entry), the requirement is that

redredred bgbrgr γβα >>> /&/&/

where α, β, and γ are constants. These constants are determined by sampling the red, green, and blue values
of images of typical signs. The precise values of the constants are not critical for sign detection. For
additional classes of sign, such as guiding signs on highways (green with white letters) a similar set of
constraints would be defined, making it very easy to increase the range of signs recognized by the
algorithm. This has been done for street name signs with good results.

The constraints are applied pixel by pixel to the image, which results in a binary image with 1’s where
pixels are candidates for belonging to a sign. The different classes of signs can all be combined into a
single binary image, or each class can have its own binary image. In the latter case, more control is possible
in the processing that follows this step. In this work, all classes of traffic signs were combined into a single
binary image, but road name signs were treated separately.

Following the creation of the binary images, morphological erosion was performed to get rid of single
pixels and two or three dilations are done to join parts of signs that may have become separated due to the
presence of writing or ideograms on the signs. Figure 24 shows a scene taken from a video camera and the
corresponding binary image for a warning sign (orange). The sign outline is clearly visible in the binary
image. The sign outline was also used as a mask in the sign recognition stage.

The next step was to find connected components in the binary images and identify blobs that are likely to
be signs. Properties of each component were computed, including the centroid, area, and bounding box.

They were used in a set of rules that accepted or rejected each blob as a sign candidate. The rules required
the area of the blob to be greater than a minimum and less than a maximum, the height to width ratio to be
in a specified range, and the centroid to be in a restricted part of the image where signs could be expected
to appear. The ratio of the area of the blob to the area of the bounding box was restricted to prevent blobs
that are too thin from being accepted. Blobs that conformed to the rules were considered to be candidate
signs and were tracked from image to image. If a blob was seen in three successive frames, it was
confirmed as a candidate and went on to the recognition phase of the algorithm.

Recognition was achieved by template matching. A preprocessing step was first applied to each candidate
sign. It masked out the background surrounding the sign which would otherwise interfere with the template
matching. The results of the sign detection phase were used, since that step had already constructed a mask
for the sign (Figure 24). Using this mask resulted in good segmentation of the sign region from the
background (Figure 25). The masked candidate signs were scaled to a standard size (48x48 pixels) and
compared with stored signs of the same size. The stored sign templates were taken from video sequences
similar to those being recognized. Because there was a lot of variation in sign appearance, several stored
templates were needed for each canonical sign.

Figure 25. Candidate signs before and after background masking.

 (a) (b)

Figure 24. (a) shows a frame from the video with a detected sign. (b) shows the binary map for warning
signs, with the shape of the sign clearly visible. The other blobs in the image are rejected as signs
because they are either too small, are of the wrong shape, or are in a region where signs are not
expected.

5.4.3.1. Results

The algorithm was tested on video sequences recorded with a camera mounted on the roof of a vehicle
driving on suburban roads at normal driving speeds. The results reported here are for a total of 23,637
frames containing 92 warning and stop signs. Figure 26 shows examples of recognized signs. Table 1
shows the results for three individual runs and the combined totals. As can be seen, the sign detection phase
misses very few signs, but at the cost of substantial false detections. In the first data set, this is due to a
single vehicle that was in front of the test vehicle in most of the frames.

The sign detection algorithm was sensitive to the brake lights of the vehicle, and almost all the false
detections are related to this feature. The second data set was acquired in early spring, when the forsythia
bushes were in flower. The color of the flowers is very close to that of warning signs, and the bulk of false
detections were due to this coincidental color match. All of the false detections are rejected by the
recognition phase. The false recognitions in the tables resulted when a correctly-detected sign was
incorrectly recognized. The penalty for the extra detections is that the recognition process has to be run on
each of them. This slows down the processing, although the algorithm still ran at over 20 frames per second
on a 1.6 MHz Intel Pentium Mobile processor. This was fast enough to interact with the control system in
real time.

Run No.

Frames
No.
Signs

No.
Detected

No.
Recognized

False
Detections

False
Recognitions

1 10, 924 39 33 29 19 1
2 9, 439 45 43 38 34 5
3 3, 274 8 5 5 0 0
1, 2, 3 23, 637 92 81 72 53 6

Table 1 Performance of sign detection and recognition.

Figure 26. Examples of recognized road signs.

5.4.4. Curb Detection
Curbs are detected using a line-scan LADAR. The sensor is mounted on the bumper of the vehicle looking
down at an angle to the road. The beam sweeps across the road and records a profile of the road surface.
Curbs appear as regions that are higher than the road and that rise steeply. They are detected using the
obstacle detection algorithm described in Section 5.3 and are the first obstacles detected when scanning
outwards from directly in front of the vehicle in both directions. In Figure 27, the green section corresponds
to road surface, the red to obstacles, and the yellow to high obstacles.

Curbs (or more accurately, road edges) can also be detected as the boundaries of the road surface detected
as described in Section 5.4.1. Having two ways of detecting these features gives added confidence and
makes the algorithms more robust.

5.4.5. Water (Puddle) Detection
Puddles are a particular problem for off-road mobile vehicles because they are hard to detect, they often
mimic other features, and they may pose a serious hazard to the vehicle. It was also found that puddles
appear as smooth, level surfaces that the motion planning system would very much like to traverse.

Finding puddles relies on sensor fusion of LADAR and color images. Puddles are tracked over time using
predictions from the world model. The search for puddles begins in the LADAR domain (Figure 28).
Advantage is taken of the fact that laser beams hitting a puddle at an oblique angle are reflected away from
the sensor, and result in no data being returned. Such points show up as voids in the LADAR images, but
are not the only sources of missing data. Other sources include negative obstacles (holes, ditches),
occlusions, and out-of-range responses.

Figure 27. A sample line scan showing the road surface and the curbs.

The puddle detection algorithm thus looks for voids in the data, and then scans a region surrounding them.
Because a puddle must lie on the ground surface, a requirement is that there be ground points adjacent to
the puddle and that the ground points on either side of the puddle (along a row of the image) have similar
elevation. Since most of a puddle region is void, linear interpolation is used between the ground points on
either side of the puddle to estimate the position of the puddle in the world model map. For every detected
puddle point in the laser image, the puddle confidence is increased by a predefined constant, which depends
on the reliability of the sensor. In experiments it was found that using laser alone was not sufficient to

uniquely identify a puddle. It was decided to look in the color image for supporting evidence to reduce
false positives. When a puddle is detected in the laser data (with sufficient confidence in the map), a
window is placed about the potential puddle region, and projected into the color image. In the color
domain, the system tries to determine if the region has a similar color to what is above it. Often, this will be
the sky, so a blue color will mean a puddle. At other times, however, the puddle may reflect trees, grass, or
clouds. The algorithm searches for a match, but may fail if the puddle is reflecting something not in the
image. When the puddle is verified, the puddle points then project into the map. The confidence of puddle
in the map is increased by a predefined value that depends on the robustness of the color classification
algorithms.

5.4.5.1. Projection
Since the sensors are mounted on a mobile platform, and the sensors themselves move, projections are not
fixed, but must be computed each time they are needed. There are two kinds of projections: The LADAR
data are projected into the world model, and points identified as puddles are projected into the color image
space. Each sensor is at a known base position on the vehicle, and has a known sensor coordinate system
(Figure 29). The vehicle is moving, however, and the world model maintains its representation in world
coordinates, fixed on the ground. Thus, all coordinates must be converted from sensor to vehicle and from
vehicle to world. Some of the sensors also move relative to their base position. The LADAR, for instance,
rotates about its horizontal axis (tilts). This must be factored into the transformation. Finally, the sensors
sample at different times, so a correction must be made for their relative positions in space when mapping
between images.

detection

Projection

Verification

Figure 28. Bottom: Puddle detected in LADAR image. Middle: Window of attention projected into color
image. Top: Verification.

The LADAR to world model coordinate transformation includes the LADAR-to-vehicle (including
LADAR tilt angle) and vehicle-to-world-model transformations. A data point in the LADAR image can be
transformed to the world model by the equation:

Where []1www ZYX and []1lll ZYX are coordinates of a datum point in world model

coordinates and LADAR coordinates respectively. w
vH and v

lH represent 4x4 transformation matrices

from the vehicle to the world model and the LADAR to the vehicle.

The back projection from the world model to the color camera image includes world-model-to-vehicle,
vehicle-to-camera and camera-to-image transformations.

Let f be the focal length of the camera. Then the projected image position is

Prediction

Prediction is used to focus attention on regions that have previously been identified as interesting. It
facilitates tracking, enables confidences in features to be updated, and allows information found in one
sensor to influence processing in another. Prediction is mediated in the system by the world model. Since a
grid representation fixed to the world is used, it is straightforward to project regions in the world model into
each of the sensor coordinate systems. Currently, predictions are only made of where a feature is expected
to occur, not what it may look like.

In the case of puddles, prediction plays an important role in LADAR processing. As the vehicle approaches
a puddle, the angle at which a LADAR ray hits the water gets steeper, and at some point, the sensor starts
to record a return from the puddle. Without knowing that the region had already been identified as a
puddle, the sensor would start to indicate that the region was traversable and smooth, which would make it

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗∗=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11
l

l

l

v
l

w
v

w

w

w

Z

Y

X

HH
Z

Y

X

c

ci

Z

Y

f

Y
=

c

ci

Z

X

f

X
=

Vehicle Coordinates

Color Coordinates

LADAR
Coordinates

World Coordinates

vehicle

Figure 29. Coordinate systems on the mobile robot.

a preferred location for the planner. Marking a region as already identified prevents this behavior. Note that
puddles are unusual in that most features have their confidences increased by multiple views, whereas
using the LADAR sensor to view puddles over time reduces their confidence. The behavior of the LADAR
sensor in the neighborhood of other features that produce voids, such as holes and occlusions, is very
different from that around puddles. This enables a distinction to be made over time that could not be made
from a single view. Prediction ensures that corresponding features are tracked and labels remain consistent.

5.5. Learning

In the real world, robots cannot be expected to know everything they may encounter while carrying out
their tasks. Thus, they must be able to adapt to new situations, and learn how to operate within a changing
environment. To do so, they need a way to store pertinent information about the environment, recall the
information at appropriate times, and reliably match stored information to newly-sensed data. They also
must be able to modify the stored information to account for systematic changes in the environment. This
section describes an approach to learning traversability based both on examples and on experience [26]. A
fast learning algorithm is introduced that requires no training data to learn associations between appearance
and traversability, and a histogram-based representation of models is described that provides a well-defined
way of comparing the models and matching them with sensed data. The models are composed of color and
texture features that do not rely on range data. This enables them to be used to classify regions for which no
range data are available. The models are learned from data selected to be close together in space, making it
more likely that they are from the same physical region. The learning module extends the 4D/RCS
architecture by including learning of entities both in the maps kept by the World Model and as symbolically
represented objects.

Note that the road detection and road following algorithms described in Sections 5.4.1 and 5.4.2 use
learning to adapt to changes in the appearance of roads over time. In the neural network algorithms, the
weights in the network are learned, while in the color model algorithm, new models replace old ones as the
road appearance changes.

In order to apply the algorithm below, the vehicle must have at least a color camera, a range sensor that can
measure range over an area (e.g., a stereo system) and an inertial navigation system that provides an
estimate of the vehicle’s position in space. The two vehicles for which the approach was developed have
these sensors. NIST operates a High Mobility Multipurpose Wheeled Vehicle (HMMWV) that has several
color cameras, including one mounted on top of an area-scanning ladar. The vehicle used for the Defense
Advanced Research Project Agency’s (DARPA) LAGR program (Learning Applied to Ground Robots) has
twin color stereo systems (see Figure 30). Both of these platforms provide range and color information to
the vehicle. Each vehicle also has navigation sensors that provide position estimates.

Figure 30. The DARPA LAGR vehicle, showing the sensors and actuators.

GPS Antenna

Dual stereo cameras

Computers, IMU
inside

Infrared sensors

Casters

Drive wheels

Bumper

The problem faced by a robot of finding a path to a goal point is a feedback control problem. The sensed
feedback information comes from the cameras, GPS, and other sensors. The actuators are the drive motors
on the wheels. The on-board computer implements the feedback controller that drives the vehicle position
(part of the state) to the goal position. It is for this reason that there are similarities between learning
methods for robots and the field of adaptive control (sometimes called learning control). The closest
relationships are to the area of “on-line approximation based feedback control” [27], and in particular the
“indirect adaptive control strategy” where a parameterized nonlinear map is adjusted to represent the
process (environment) and then control decisions are based on that map. Moreover, extended notions of
adaptive control use learned models for planning and route selection by marrying ideas in adaptive and
“model predictive control” [28]. Indeed, the map-based strategy here is an excellent example of how
successful such approaches can be.

The notions of learning described here arose in the field of psychology. First, the most basic low levels of
learning, represented by the notions of “habituation” and “sensitization” [29], are embedded in the
algorithms. If the robot learns via multiple sensor inputs that an area is traversable, then it has been
habituated to that input (it has learned to ignore information and go ahead and travel in a direction).
Correspondingly, if the robot has learned that some sensory inputs correspond to a lack of traversability,
then if such situations are encountered again the robot is sensitized and hence may not make the same
attempts to travel through non-traversable areas as it did in the past. Such learning in the form of
habituation and sensitization sets the foundation for the elements of “classical and operant conditioning”
[29] that occur in the robot. Cell update strategies correspond to learning strategies where via repeated
sensory inputs the system can learn to associate sensed features with a lack of traversability or good
traversability so that the basics of classical conditioning are present. Indeed, the robot can exhibit the
property of “blocking” since in learning it can initially use some sensed information to determine
traversability, and then later when there are other learning opportunities, it will at times ignore new sensory
information (model updates) since it is confident that for instance more sensory verification of the model is
not needed. With respect to the “behaviorist” approach to operant conditioning, if the robot senses some
scene and it has learned that certain features are associated with rewards (getting closer to the goal by
making forward progress), it will try to apply the same actions that were successful before, leading to the
“Thorndike’s effect” similar to what occurs in a “Skinner box” [29]. And, such opportunities for
conditioning can occur during a single attempt by the robot to find a goal point via storage, updating, and
later use of information in our maps as the robot travels. Moreover, the learned maps can be used between
trials so that on successive attempts the robot learns how to direct its behavior to succeed even faster;
hence, a basic property of “speed-up” in the rate of reward acquisition seen experimentally in rats in mazes
[29] can also be exhibited by the system. Finally, note that the use of maps is quite similar to the idea that
animals and humans build (learn) and use “cognitive maps” of their environment for planning spatial
movement ([30], [31], [32]).

5.5.1. The Algorithm

The algorithm analyzes range data to identify regions corresponding to ground and to obstacles. This
information is used with color data to construct models of the appearance of the regions. The models
include an estimate of the cost of traversing the regions. The models are then used to segment and classify
regions in the color images. Associating regions with models enables traversability costs to be assigned to
areas where there is no range data and thus no directly measurable obstacles. As the vehicle traverses the
terrain, more direct information is gathered to refine the traversability costs. This includes noting which
regions are actually traversed and adjusting the traversability of the associated models. It also involves
adjusting the traversability of regions where the vehicle’s mechanical bumper is triggered, and where the
wheels slip or the engine has to strain to move the vehicle.

5.5.1.1. Building the Models

First, a local occupancy map is built, consisting of a grid of cells, each of which represents a fixed square
region in the world projected onto a nominal ground plane.

An array of 201x201 cells is used, each of size 0.2 m square, giving a map of size 40 m on a side. The map
is always oriented with one axis pointing north and the other east. The map scrolls under the vehicle as the
vehicle moves. The model-building algorithm takes as input a color image, the associated and registered
range data (x, y, z points) from a ranging sensor or from stereo, and the labels (GROUND and
OBSTACLE) computed by the obstacle-detection algorithm of Section 5.3. It builds models by segmenting
the color image into regions with uniform properties. When a data set becomes available for processing, the
map is scrolled so that the vehicle occupies the center cell of the map. Each point is processed as follows.

1. If the point is not labeled as GROUND or OBSTACLE, it is skipped (Other labels can be treated
without significant changes to the algorithm). Points that do not have associated range values are
also skipped.

Points that pass step 1 are projected into the map using the known x, y, and z values and the pose
of the vehicle. If a point projects outside the map it is skipped. Each cell receives all points that
fall within the square region in the world determined by the location of the cell, regardless of the
height of the point above the ground. The cell to which the point projects accumulates information
that summarizes the characteristics of all points seen by this cell. This includes color, texture,
intensity, and contrast properties of the projected points, as well as the number of OBSTACLE
and GROUND points that have projected into the cell.

Color is represented by ratios R/G, R/B, and G/B rather than directly using R, G, and B. This
provides a small amount of protection from the color of ambient illumination. Each color ratio is
represented by an 8-bin histogram, representing values from 0 to 255. The values are stored in a
normalized form, meaning that they can be viewed as probabilities of the occurrence of each ratio.
Texture and contrast are computed using Local Binary Patterns (LBP) [33]. These patterns
represent the relationships between pixels in a 3x3 neighborhood in the image, and their values
range from 0 to 255. Similarly to the color ratios, the texture measure is represented by a
histogram with 8 bins, also normalized. Contrast is represented by a single number ranging from 0
to 1, and intensity as another 8-bin histogram.

2. When a cell accumulates enough points it is ready to be considered as a model. In order to build a
model, a minimum percentage (currently 95%) of the points projected into a cell must have the
same label. If a cell is the first to accumulate enough points, its values are simply copied to
instantiate the first model. Models have exactly the same structure as cells, so this is trivial. If
there are already defined models, the cell must first be matched to the existing models to see if it
can be merged or if a new model must be created.
Matching is done by computing a score, Dist, as a weighted sum of the elements of the model, m,

and the cell c. That is,),(),(mcfwmcDist ii∑= where if is either a measure of the

similarity of two histograms or, in the case of contrast, is the absolute value of the difference of

the two contrast values, cmcontrast contrastcontrastf −= . The histograms are always stored

normalized by the number of points. Various measures hf of the similarity of two histograms

(discrete probability density functions) can be used, such as a Chi Squared test or Kullback-
Liebler divergence. After trying these (and others) it was found that a sum of squared difference
measure worked almost as well and is cheaper to compute. Thus, for each model histogram

mh and the corresponding cell histogram ch ,

()∑
=

−=
8

1

2

i
cimih hhf

Cells that are similar enough are merged into existing models; otherwise, new models are
constructed. If the number of models exceeds a limit, merging of the most similar models is
forced. Merging is a straightforward summation of histograms, each normalized by its number of

points. The merged contrast measure is computed as the weighted average of the two contrasts
being merged. Figure 31 shows the histograms representing three different models.

3. At this stage, there is a set of models whose appearance in the color images is distinct. Our interest

is not so much in the appearance of the models, but in the traversability of the regions associated
with them. Traversability is computed using three types of information. First, when a point is
projected into a cell, it brings with it a label, either GROUND or OBSTACLE. Each cell
accumulates a count of the number of GROUND and OBSTACLE points that have been projected
into it. Second, the vehicle itself occupies a region of space that maps into some neighborhood of
cells. These cells and their associated models are given an increased traversability weight because
the vehicle is traversing them. Third, if the bumper on the vehicle is triggered, the cell that
corresponds to the bumper location (and its model, if any) is given a decreased traversability
weight. Cells and models that don't have known traversability from bumper hits or from being
traversed are given traversability values computed as numOBSTACLE / (numOBSTACLE +
numGROUND). The traversability can be further modified by observing when the wheels on the
vehicle slip or the engine has to work harder to traverse a cell.

4. When all the points in the input data have been processed, the occupancy map is sent to the World

Model (WM) as follows: First, only cells that have values that have changed are sent. If a cell does
not have an associated model, its local traversability measure is sent. If it does have a model, the
traversability computed from the model is sent. This means that information learned in one
region is propagated to other, similar regions. Note that the WM has no knowledge of the local
models, and receives only traversability information rather than region identity. Each time new
data come in, the process is repeated.

R/G R/ B G/B LBP

R/G R/ B G/B LBP

R/G R/ B G/B LBP

Figure 31. The histograms representing three different models. Models include other elements,
such as contrast and traversability.

5. Periodically, a sweep is made of all the models. Each model is compared to all the others. If two

models are similar enough, they are merged and the number of models is reduced accordingly.

5.5.1.2. Classifying scenes

The next step is to use the models to classify entire scenes. Here only color information is available, with
the traversability being inferred from that stored in the models. The assumption is that regions that look
similar will have similar traversability. The approach is to pass a window over the image and to compute
the color and texture measures at each window location. The matching between the windows and the
models operates exactly as it does when a cell is matched to a model in the learning stage. Windows do not
have to be large, however. They can be as small as a single pixel and the matching will still determine the
closest model, although with low confidence. In the implementation the window size is a parameter,
typically set to 16x16. If the best match has an acceptable score, the window is labeled with the matching
model. If not, the window is not classified. Windows that match with models inherit the traversability
measure associated with the model. In this way large portions of the image are classified.

Sending the results to the World Model requires a 3D location to be associated with each point. For the part
of the image used for model creation, only points that have associated range values are processed, so the
problem does not arise. For the rest of the image the approach is based on two assumptions. One is that the
ground is flat, i.e., that the pose of the vehicle defines a plane through the wheels. This allows windows that
match with models that are created from ground points to be mapped to 3D locations. The second
assumption is that all obstacles are normal to the ground plane. This allows obstacle windows to be
projected into the ground plane and thus to acquire 3D locations.

Figure 32(a) shows an image taken during the learning process. The pixels contributing to the learning are
shown in red for obstacle points and green for ground points. Figure 32(b) shows an image to be labeled
with traversability values. Figure 32(c) shows the labeled image using the models built from previous
traverses of similar terrain.

(a) (b) (c)
Figure 32. (a) An image from the model learning sequence. The green regions have been determined to be
ground from the stereo data and are used to construct ground models. The red regions are used to construct
obstacle models. (b) An image to be classified. (c) The classified image, using the previously-generated
models. Yellow regions are classified as ground, while magenta regions are obstacles.

5.6. Performance Evaluation

Chapter 9 covers performance evaluation of intelligent systems as a whole. Here the evaluation of SP
algorithms is discussed. Historically, performance evaluation has not been commonly practiced in the
perception community. Periodically, efforts are made to persuade researchers to provide performance
evaluations that can be substantiated, but only a few take up this challenge. As a result, performance
evaluation is ad hoc in general and quite frequently completely absent from research papers.

In Europe, a number of formal programs have been developed that address performance evaluation of
vision algorithms. Of these, ECVnet, an association of European vision researchers, had a subcommittee on
Benchmarking and Performance Measures [34], although it now appears to be defunct. The German
Association for Pattern Recognition (DAGM) established a Working Group on "Quality Evaluation of
Pattern Recognition Algorithms", but it, too appears inactive [35]. The International Association for Pattern
Recognition has a Technical Committee on Benchmarking & Software, which organizes performance
competitions comparing algorithms for particular applications, such as fingerprint identification and
document analysis [36]. There have also been a number of workshops on performance characterization and
benchmarking of vision systems.

There are a number of publications that address how to evaluate the performance of vision algorithms, and
a few examples of careful evaluations of particular algorithms or classes of algorithms. Approaches to
performance evaluation can be classified into the following general categories, recognizing that more than
one approach may be used in an evaluation:
Comparative Here an algorithm may be compared with others that attempt to address the same image-
processing task, or its performance may be compared to “ground truth,” or perhaps to human performance
[37-42].
Analytic The theory behind the algorithm is examined to try to determine the limits to its operation. The
computational complexity may be derived, or theoretical optimality may be determined under certain
constraints. Frequently, the approach makes use of simplified input data to make the analysis feasible [43-
46].
Performance The way the algorithm actually performs on test data is measured and execution times with
different parameters may be reported [47-49].
Appropriateness to Task The algorithm is shown in the context of a particular application, and the
constraints of the task are used to justify the selection of the particular algorithm. The performance of the
task as a whole is taken as the evaluation of the algorithm [50,51].

Other, more informal measures include generality and acceptance. Perhaps the only real performance
evaluation measure in common use is longevity. Algorithms that are accepted widely and implemented by
many people for different applications can be considered good performers.

A large number of papers report excellent performance of their algorithms, based on small data sets. The
success of the FERET program [42] was the inspiration for producing a large database of ground truth for
the domain of mobile robotics. In this domain, sensors are mounted on board the moving vehicle, and the
algorithms are constrained to run in real time (i.e., fast enough to provide data to control the vehicle). A
rigid and reliable methodology has been developed for producing three different kinds of large databases of
sensor data with ground truth. One method involves collecting ground truth data using a highly accurate
Riegl (Riegl LMS Z210) LADAR sensor mounted on our instrumented HMMWV. The LADAR can
characterize large areas of terrain and is registered with cameras that provide color information for each
LADAR point. The position and time at which each sample is collected is recorded with an INS and GPS
accurate to a few centimeters. Another set of data was obtained through a high-resolution aerial survey of
the grounds of the NIST and surrounding area. The survey includes annotations providing labels for all the
features. Lastly, an interactive method has been developed that reduces the amount of hand-labeling of
features in image sequences to efficiently generate a large database of ground truth data. The performance
evaluation of the road following algorithms used this last method of gathering ground truth.

The data sets are used to evaluate performance of algorithms objectively by comparing the output of the
algorithms to the expected result derived from the ground truth. Given a large number of ground truth data
sets from different environments, statistical evaluations are possible as well as the robust assessment of
performance of algorithms. In the following, it is assumed that all sensors used to collect data and produce
ground truth have been calibrated and necessary parameters such as the optical center of a device or the
focal plane are known.

First to be discussed is the method for creating ground truth databases for sequences of color image data. It
involves a human user, who annotates the data to supply the ground truth. Manually annotating sensor data

with ground truth is costly and time consuming. To minimize this effort, a semi-automatic ground truth
application has been developed that reduces cost and time by requiring only occasional annotation. The
user annotates the first image of a sequence by outlining and naming regions of interest (e.g., highway
signs, vehicles). The computer then tracks the annotated regions through successive images, and the user
observes how well each region is recognized and outlined by the computer. When the annotations start to
diverge from the desired regions, the user intervenes and re-identifies the regions, retaining the same
names. When new regions appear that the user wants to track, the same process of stopping the computer,
annotating the regions, and restarting the tracking is followed. The annotation application can be used to
outline regions with curved or polygonal lines, and several tracking algorithms can be used, depending on
the objects in the images. The output of this process consists of the names, shapes and position coordinates
of the targets in each image, stored in a relational database.

Figure 33 shows the starting frame of a sequence of color images. It shows road edges that were selected by
a user constructing the ground truth. Figure 34 shows the results of automatic tracking. The tracking to this
point is acceptable, and no user interaction is required. Figure 35 shows the situation when the automatic
tracking is starting to drift. At this point, the user stops the tracking, resets the annotation, and lets the
tracker continue (Figure 36).

Figure 33. The first frame of a sequence. The user
has drawn the features to be tracked.

Figure 34. The computer tracks the features through
a sequence of images.

Figure 35. In this frame, the automatic tracker has
drifted enough to require human intervention.

Figure 36. The user re-initializes the features and
automatic tracking continues.

The second method provides data for evaluating range sensors. It makes use of the high-resolution Riegl
LADAR to construct a map of a region. The map can then be used for evaluating range sensors that have
significantly lower resolution than the Riegl. A 5 cm x 5 cm spatial resolution grid is used to construct the
ground truth map, but maps can be constructed at different resolutions (finer or coarser). This method has
been used to gather ground truth for off-road terrain such as that shown in Figure 37.

Figure 37. An image mosaic used to provide color information for the high-resolution LADAR scanner.

Evaluating other range sensors involves mapping their data into the high-resolution map. The residual of
the Riegl data and the other sensor data provides a measure of the performance of the sensor (relative to the
Riegl). It is important to note that in order to map data from the sensor under test onto the Riegl data, the
positions and orientations of the sensors must be known accurately. The current map resolution of 5 cm x 5
cm corresponds to a spatial tolerance of 5 cm. This method of constructing a map of a region can also
measure how much information each successive LADAR image adds about the world. The ground truth
maps can also be used to evaluate similar maps constructed with stereo algorithms [52].

Figure 38. Range data from the Riegl LADAR. Color is used to represent elevation.

Figure 39. The sub-region seen by the GDRS
LADAR, taken from the same position. Elevation is
again represented by color.

Figure 40. The result of overlaying the GDRS
LADAR data on the Riegl data. The difference in
measurement of the scene can clearly be seen.

Figure 38 shows the result of scanning the region in Figure 37 with the Riegl LADAR. Figure 39 shows the
sub-region scanned with a different LADAR (GDRS). In Figure 40 the two scans are overlaid. The white
region shows the mismatch due to the lower resolution and coarse range quantization of the GDRS
LADAR with a small component due to registration error.

The third method of performance evaluation involves constructing a ground truth database of color and
range images based on a high-resolution aerial survey combined with data from calibrated ground sensors
such as cameras and LADARs. A survey of the NIST campus (234 hectares, or 578 acres) was
commissioned, as well as of part of the surrounding urban area. The area includes roads, parking lots,
traffic signs, buildings, trees, streams, fences, etc., as well as off-road terrain. All of these features were
recorded and entered into a database of features and terrain elevation. Ground truth for each sensor can then
be extracted from the database based on position and sensor model.

In order to produce the ground truth database from a sensor or set of sensors, each sensor is mounted on the
NIST HMMWV or other calibrated vehicle with an accurate position sensor, or a tripod or other stationary
mount whose position can be obtained accurately. If the sensors are to be used in real time autonomous
driving, the vehicle is driven over the NIST grounds, preferably over the kind of terrain on which the
sensors will be used and data is collected with associated time and position stamps [53].

A high resolution INS/GPS navigation sensor coupled with a differential GPS base station and post-
processing of the position data enables determining the location of the NIST vehicle with an accuracy of
about 4 cm in position and a few thousandths of a degree in orientation. The location of each sensor on the
vehicle can also be precisely measured using the techniques described in [53]. This enables sensor data to
be transformed into the vehicle coordinate system, or into the coordinates of the aerial survey of the NIST
campus. The labels of sensed data can then be obtained from the ground truth.

With this procedure, a large ground truth database can be produced easily. Given a dataset captured in this
way, one can borrow the evaluation procedure from the FERET program [42] to quantitatively evaluate the
performance of sensor-processing algorithms such as segmentation, classification, and recognition
algorithms. These algorithms produce labeled regions in an image. The regions can be assigned labels from
the ground truth by projection into the a priori data (Figure 41-Figure 43). It then becomes a simple matter
to determine the percentage of false positive and false negative labels of each algorithm and the correctness
of the detected positions and shapes of the objects.

The ground truth data are also an excellent resource for verifying the accuracy of a LADAR sensor by
taking samples from locations that contain surfaces or objects of known sizes, distances, and orientations.
The response of the algorithm is then compared with the ground truth position, which is extracted from the
database of prior knowledge based on the known position of the sensor and its field of view. Obviously, all
measurements are limited by the accuracy of the a priori data and the accuracy with which the position and
orientation of the sensor can be established with respect to the a priori data. A sample-by-sample
measurement can be made, giving the range resolution and field of view of the sensor. Alternatively,
feature-based measurements can be made, giving the accuracy with which the sensor can capture surfaces
of different shapes and slopes. More detailed studies, such as trying to determine which part of the field of
view of a single sample (e.g., laser beam) gives rise to the measured response, can also be made, but
methods customized to the sensor are more reliable.

Three methods of producing and using ground truth data have been presented and applied to electro-optical
and range sensors primarily used for autonomous mobile robots. The methods all rely on ground truth and
are dependent on the accuracy with which it is represented and registered with the test samples. By careful
measurement of the positions and orientations of the sensors at the time samples are taken, a good match
with the ground truth can be established and quantitative measures of performance for sensors and SP
algorithms can be made.

Figure 41. Feature map illustrating the a priori knowledge. The rectangle corresponds to the field of view
of the LADAR sensor. Features included in the field of view are trees, roads, and part of a building.

Figure 42. A LADAR image taken when the NIST
HMMWV was at the location shown in Figure 41.
The location in the real world is based on GPS and
inertial information, which is also used to define the
query sent to the a priori knowledge base.

Figure 43. The predicted image generated by
projecting the LADAR field of view into the a
priori knowledge map. It is easy to label the
LADAR image given the predictions in this image.

Trees Building

Road

Trees

Road

Building

5.7. Conclusions

Most of the algorithms described in this chapter have related more to on-road driving than off-road driving,
although our work is evenly divided between on-road and off-road applications. It has been found that
driving on roads, particularly urban roads rather than highways, is significantly more challenging than
driving cross country, although both present major problems for sensory processing. There are a number of
rules that a vehicle driving on the road has to follow that complicate the sensory processing requirements
and put constraints on the time available to carry out the sensory processing algorithms. These include the
need to be aware of lane structure, road signs that modify vehicle behavior, pedestrians and other vehicles,
and rules of the road that dictate when actions like turning are legal. All of these activities require real-time
input from the control system and from sensors. Sensor input must be processed fast enough to ensure that
the vehicle can operate at the same speeds as other traffic on the road. This is in contrast to off-road driving
in which the main issues are determining traversability of the terrain, determining and maintaining the
location of the vehicle in the world, and perhaps searching for features that are tactically important to a
mission.

Current and future work is directed towards solving specific problems to enhance the capabilities of the
sensory system in constrained environments. Two major thrusts are the emphasis on model-based methods
and the incorporation of learning and adaptation into the algorithms. A third thrust is aimed at making the
best use of multiple sensors, including newly developed range sensors such as those discussed in Chapter 7.

Models are being incorporated into the road detection and tracking algorithms. The models for the roads are
derived from the NIST Road Network Database described in Chapter 4. The top-down information
obtained from the road network is used to guide the bottom-up processing of sensor data. The left side of
Figure 44 depicts the steps (low-level image processing, segmentation, classification) of a classical bottom-
up approach for a recognition system. The segmentation step of the proposed system uses a trainable
classifier to segment the image. The trainability allows the continuous update of the separation function
between road and non-road areas in the image according to the current environment. After segmentation,
another classifier is applied, which will recognize the type and structure of the road. In our case of a
model-based approach, this classifier tries to fit models from a database of known road types to the
segmentation results (in Figure 44 the road type “Straight Road” was recognized).

Low Level IP

001010101
010101010

Segmentation

Trainable
Classifier

Model-based
Classifier

Road
Classes

DB

Update
Classifier

R
oad D

etection / C
lassification

F
eedback

Input Image

Straight Road

Low Level IP

001010101
010101010

Segmentation

Trainable
Classifier

Model-based
Classifier

Road
Classes

DB

Update
Classifier

R
oad D

etection / C
lassification

F
eedback

Input Image

Straight Road

Figure 44. Model-based sensor processing.

The resulting structural and topological description of the current road will then be used to control the
update of the trainable classifier used for segmentation. This feedback in terms of symbolic knowledge
about the road structure allows an informed extraction of training samples, which describe road or non-road
areas.

As was described in Section 5.5, learning is being applied to road following and off-road traversability
analysis. In both cases, models are learned from experience and are then used to predict future appearance
of similar features. Learning the traversability of regions makes use of both range and color information.
As the vehicle traverses the terrain, more direct information is gathered to refine the traversability costs.
This includes noting which regions are actually traversed and adjusting the traversability of the associated
models. It also involves adjusting the traversability of regions where the vehicle’s mechanical bumper is
triggered, and where the wheels slip or the engine has to strain to move the vehicle.

Work on incorporating new sensors is focused on ways of using existing sensors in ways that emulate the
capabilities expected to be available in the near to middle future. For example, high resolution sensors such
as the Riegl described in Section 5.6 take a very long time to scan a scene, but provide data that is similar
to that expected to be available from some of the new LADARs discussed in Chapter 7. Possible
applications of such high resolution sensors are being explored using stop-action techniques in which a
sequence of data sets is acquired from the slow sensor, and objects in the world are moved known amounts
between each acquisition. This gives insight into the required resolutions and update rates for different
types of environment. One environment that is being explored in detail using this approach is detection of
pedestrians from a moving vehicle.

This chapter has provided an overview of some of the algorithms used by the SP module of the 4D/RCS
architecture for the domain of autonomous mobile robots, and specifically for the Demo III program. All of
the algorithms run in near real time, fast enough to update the WM several times a second. This is just a
snapshot of the system. Over time, the SP hierarchy is being built up and the interactions between the SP
and WM components of the architecture are being implemented.

 References

 [1] W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, and J. Gorman, "Performance Analysis of Next-

Generation LADAR for Manufacturing, Construction, and Mobility," National Institute of Standards
and Technology, NISTIR 7117, May, 2004.

 [2] T. Chang, T. Hong, S. Legowik, and M. Abrams, "Concealment and Obstacle Detection for
Autonomous Driving," Proceedings of the Robotics & Applications Conference, Santa Barbara, CA,
1999, pp. 147-152.

 [3] C. Rasmussen, "Combining Laser Range, Color, and Texture Cues for Autonomous Road
Following," Proceedings of the IEEE International Conference on Robotics and Automation, 2002,
pp. 4320-4325.

 [4] M. J. Swain and D. H. Ballard, "Color Indexing," International Journal of Computer Vision, vol. 7,
no. 1, 1991, pp. 11-32.

 [5] A. Schmidt, "A Modular Neural Network Architecture with Additional Generalization Abilities for
High Dimensional Input Vectors." Master's thesis, Manchester Metropolitan University, 1996.

 [6] B. D. Ripley and N. L. Hjort, Pattern Recognition and Neural Networks New York, NY: Cambridge
University Press , 1995.

 [7] M. Foedisch and A. Takeuchi, "Adaptive Real-Time Road Detection Using Neural Networks,"
Proceedings of the International IEEE Conference on Intelligent Transportation Systems, 2004, pp
167-172.

 [8] M. Foedisch and A. Takeuchi, "Adaptive Road Detection through Continuous Environment
Learning," Proceedings of the Applied Imagery Pattern Recognition Workshop, 2004, pp 16-21.

 [9] Ceryen Tan, Tsai Hong, Michael Shneier, and Tommy Chang, "Color Model-Based Real-Time
Learning for Road Following," Proceedings of the IEEE Intelligent Transportation Systems
Conference (Submitted), 2006.

 [10] J. D. Crisman and C. Thorpe, "SCARF: A Color Vision System that Tracks Roads and
Intersections," IEEE Transactions on Robotics and Automation, vol. 9, no. 1, Feb.1993, pp. 49-58.

 [11] J. D. Crisman and C. Thorpe, "UNSCARF- A Color Vision System for the Detection of
Unstructured Roads," Proceedings of the IEEE International Conference on Robotics and
Automation, 1991, pp. 2496-2501.

 [12] G. Piccioli, E. De Micheli, P. Parodi, and M. Campani, "A Robust Method for Road Sign Detection
and Recognition," Image and Vision Computing, vol. 14, no. 3, 1996, pp. 209-223.

 [13] L. Estevez and N. Kehtarnavaz, "A Real-Time Histographic Approach to Road Sign Recognition,"
Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, 1996, pp. 95-
100.

 [14] A. de la Escalera, L. e. Moreno, M. A. Salichs, and J. M. Armingol, "Road Traffic Sign Detection
and Classification," IEEE Transactions Industrial Electronics, vol. 44, no. 6, 1997, pp. 848-859.

 [15] A. L. Yuille, D. Snow, and M. Nitzberg, "Signfinder: Using Color to Detect, Localize and Identify
Informational Signs," International Conference on Computer Vision (ICCV98), 1998, pp. 628-633.

 [16] Chung-Lin Huang and Shih-Hung Hsu, "Road Sign Interpretation using Matching Pursuit Method,"
IEEE International Conference on Pattern Recognition (ICPR2000), 2000, pp. 1329-1333.

 [17] Jun Miura, Kanda Tsuyoshi, and Yoshiaki Shirai, "An Active Vision System for Real-Time Traffic
Sign Recognition," IEEE Conference on Intelligent Transportation Systems, 2000, pp. 52-57.

 [18] Pavel Paclik and Jana Novovicova, "Road Sign Classification Without Color Information,"
Proceedings of the 6th Conference of Advanced School of Imaging and Computing, 2000, pp. 84-90.

 [19] Lukas Sekanina and Jim Torresen, "Detection of Norwegian Speed Limit Signs," Proceedings of the
16th European Simulation Multiconference (ESM-2002), 2002, pp. 337-340.

 [20] K Fleischer, H.-H. Nagel, and T. M. Rath, "3D-Model-Based-Vision for Innercity Driving Scenes,"
IEEE Intelligent Vehicles Symposium (IV'2002), 2002, pp. 477-482.

 [21] Lubov N. Shaposhnikov, Alexander V. Podladchikova, Natalia Golovan, A. Shevtsova, Kunbin
Hong, and Xiaohong Gao, "Road Sign Recognition by Single Positioning of Space-Variant Sensor
Window," Proc. 15th International Conference on Vision Interface, 2002, pp. 213-217.

 [22] Jung-Chieh Hsien and Shu-Yuan Chen, "Road Sign Detection and Recognition Using Markov
Model," 14th Workshop on OOTA, 2003, pp. 529-536.

 [23] C.-Y. Fang, S.-W. Chen, and C.-S. Fuh, "Road-Sign Detection and Tracking," IEEE Transactions on
Vehicular Technology, vol. 52, no. 5, 2003, pp. 1329-1341.

 [24] Lubov N. Shaposhnikov, Alexander V. Podladchikova, Natalia Golovan, A. Shevtsova, Kunbin
Hong, and Xiaohong Gao, "Road SIgn Recognition by Single Positioning of Space-Variant Sensor
Window," Proc. 15th International Conference on Vision Interface, 2002, pp. 213-217.

 [25] M. Shneier, "Road Sign Detection and Recognition," SPIE Defense and Security Symposium, 2006.

 [26] Shneier.M., T. Chang, T. Hong, and W. Shackleford, "Learning Traversability Models for
Autonomous Mobile Vehicles," Autonomous Robots (submitted), 2006,

 [27] J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and
Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques New York: John
Wiley and Sons, 2002.

 [28] K. M. Passino, Biomimicry for Optimization, Control, and Automation London: Springer-Verlag,
2005.

 [29] M. Domjan, The Principles of Learning and Behavior, 4 ed. New York: Brooks/Cole Pub., 1998.

 [30] T. R. Halliday and P. J. B. Slater, Animal Behavior, Volume 1: Causes and Effects New York: W. H.
Freeman and Company, 1983.

 [31] W. Schultz, P. Dayan, and P. R. Montague, "A Neural Substrate of Prediction and Reward," Science,
vol. 275 1997, pp. 1593-1599.

 [32] P. Gray, Psychology, 3 ed. New York: Worth Publishers, 1999.

 [33] T. Ojala, M. Pietikنinen, and D. Harwood, "A Comparative Study of Texture Measures with
Classification Based on Feature Distributions," Pattern Recognition, vol. 29 1996, pp. 51-59.

 [34] Courtney, P. Benchmarking and Performance Evaluation . http://www-
prima.inrialpes.fr/ECVNet/benchmarking.html . 3-25-1998.

 [35] Faber, A. Quality Characteristics of Pattern Recognition Algorithms.
http://www.dagm.de/DAGM/ag/wg.html . 1998.

 [36] Lucas, S. IAPR TC-5 Benchmarking and Software. http://algoval.essex.ac.uk/tc5/Introduction.html .
2003.

 [37] Bowyer K., C. Kranenburg, and S. Dougherty, "Edge Detector Evaluation Using Empirical ROC
Curves," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1999, pp. 354-359.

 [38] T. B. Nguyen and D. Zhou, "Contextual and Non-Contextual Performance Evaluation of Edge
Detectors," Pattern Recognition Letters, vol. 21 2000, pp. 805-816.

 [39] L. Matthies, T. Litwin, K. Owens, K Murphy, D. Coombs, J. Gilsinn, T. Hong, S. Legowik, M.
Nashman, and B. Yoshimi, "Performance Evaluation of UGV Obstacle Detection with CCD/FLIR
Stereo Vision and LADAR," IEEE Workshop on Perception for Mobile Agents, 1998.

 [40] J. A. Shufelt, "Performance Evaluation and Analysis of Monocular Building Extraction from Aerial
Imagery," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 21, no. 4, 1999, pp.
311-326.

 [41] Wiedemannm C., Heipke, C., Mayer, M., and Jamet, O., "Empirical Evaluation of Automatically
Extracted Road Axes," Empirical Evaluation Techniques in Computer Vision 1998, pp. 172-187.

 [42] P. J. Phillips, H. Moon, S. A. Rizvu, and P. Rauss, "The FERET Evaluation Methodology for Face-
Recognition Algorithms," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 22,
no. 10, 2000, pp. 1090-1104.

 [43] K. Cho, P. Meer, and J. Cabrera, "Performance Assessment Through Bootstrap," IEEE Transaction
on Pattern Analysis and Machine Intelligence, vol. 19, no. 11, 1997, pp. 1185-1198.

 [44] P. Courtney, N. Thacker, and A. F. Clark, "Algorithmic Modelling for Performance Evaluation,"
Machine Vision and Applications, vol. 9, no. 5-6, 1997, pp. 219-228.

 [45] N. Kiryati, H. Kنlviنinen, and S. Alaoutinen, "Randomized or Probabilistic Hough Transform:
Unified Performance Evaluation," Pattern Recognition Letters, vol. 21, no. 13-14, 2000, pp. 1157-
1164.

 [46] R. Haralick, "Propagating Covariance In Computer Vision," Proceedings of the ECCV Workshop on
Performance Characteristics of Vision Algorithms, 1996, pp. 1-12.

 [47] E. E. Pissaloux, "Toward an Image Segmentation Benchmark for Evaluation of Vision Systems,"
Journal of Electronic Imaging, vol. 10, no. 1, 2001, pp. 203-212.

 [48] J. Min, M. W. Powell, and Bowyer K., "Automated Performance Evaluation of Range Image
Segmentation," Fifth IEEE Workshop on Applications of Computer Vision, 2000, pp. 163-168.

 [49] S. C Coutre, M. W. Evens, and S. G. Armato II, "Performance Evaluation of Image Registration,"
Proceedings of the 22nd Annual EMBS International Conference, 2000, pp. 3140-3143.

 [50] M. C. Shin, D. Goldgof, and K. W. Bowyer, "Objective Comparison Methodology of Edge
Detection Algorithms Using a Structure From Motion Task," Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 1998, pp. 190-195.

 [51] H. Moon, R. Chellappa, and A. Rosenfeld, "Performance Analysis of a Simple Vehicle Detection
Algorithm," Image and Vision Computing, vol. 20, no. 1, 2002, pp. 1-13.

 [52] Larry Matthies, Todd Litwin, Ken Owens, Art Rankin, Karl Murphy, David Coombs, Jim Gilsinn,
Tsai Hong, Steven Legowik, Marilyn Nashman, and Billibon Yoshimi, "Performance Evaluation of
UGV Obstacle Detection with CCD/FLIR Stereo Vision and LADAR," 1998, pp. 658-670.

 [53] M. O Shneier, T. Chang, T. Hong, and G. Scott H. Cheok, "A Repository of Sensor Data For
Autonomous Driving Research," SPIE Aerosense Symposium, 2003, pp. 390-395.

Chapter 6

Temporal Registration of Sensed Range
Images for Autonomous Navigation

R. Madhavan, T. Hong, and E. Messina
National Institute of Standards and Technology (NIST)
{raj .madhavan, tsai .hong , elena.messina}@nist .gov

1 Introduction

As discussed in earlier chapters, the 4D/RCS architecture specifies the simulta-
neous representation of information about entities and events in a hierarchical
distributed knowledge database wherein information is presented in a form that
is ideally suited for path planning and task decomposition. Maps are populated
both with knowledge from a priori sources such as digital terrain databases,
and with knowledge from sensors. The range and resolution of maps at differ-
ent levels are specified to correspond to the range and resolution of planning
algorithms. This limits the amount of computational power required to main-
tain maps and symbolic data structures with a latency that is acceptable for
planning and reactive processes at each level.

Typically, the position estimation for Unmanned Ground Vehicles (UGVs)
(for example, the Demo III program [37]; also see Chapter 10) relies on fusing
Global Positioning System reported estimates with other on-board navigation
sensors. The required accuracy of the GPS estimates cannot be guaranteed for
the entirety of a particular mission as the direct line of sight to the satellites
cannot be maintained at all times. GPS can be lost due to multipathing effects
and terrain conditions, especially for on-road driving tasks in urban canyons or
under tree cover. Sufficiently accurate vehicle positions are necessary to derive
correct locations of sensed data towards accurate representations of the world
model and for correctly executing planned trajectories and missions. In order
to compensate for such unavailability and unreliability of GPS, another form
of secondary position estimation becomes necessary. This chapter describes the
development of registration algorithms to overcome this limitation.

The following reasons also warrant the need to develop robust registration
algorithms:

• Within 4D/RCS, the use of a priori maps would enhance the scope of the
world model. These maps may take a variety of forms including survey
and aerial maps and may provide significant information about existing

1

topology and structures. In order to take advantage of this knowledge,
these a priori maps need to be registered with sensor-centric maps [14].
Additionally, for incorporating a priori knowledge into the world model,
some form of weighting is required and this depends on how well the a
priori data and the sensed information are registered.

• There is also the need to generate higher resolution a priori terrain maps
as the current survey maps are too coarse for off-road autonomous driving
and also for maintaining up-to-date representations of the world even if
the maps are of higher resolution.

• Another potential application for registering range images is the compu-
tation of ground truth as such registration is not dependent on time-based
drift (unlike inertial navigation systems), vehicle maneuvers and terrain
of travel. Such ground truth is necessary for evaluating performance of
navigation algorithms and systems, as discussed in Chapter 9.

Active range sensing has become an integral part of any unmanned vehi-
cle navigation system due its ability to produce unambiguous, direct, robust,
and precise images consisting of range pixels, for example, using LADAR im-
agery. This is in direct contrast to passive sensing where the inference of range
largely remains computationally intensive and not robust enough for use in nat-
ural outdoor environments. Depending on the speed of the vehicle, operating
environment, and data rate, such range images acquired from a moving plat-
form need to be registered to make efficient use of information contained in
them for various navigation tasks including map-building, localization, obstacle
avoidance, and control within the 4D/RCS architecture.

One of the following two approaches is commonly employed for matching
range images to a priori maps [12]:

• Feature-based Matching : In this approach, two sets of features, F1
i and

F2
j , are extracted from two sets to be matched and then correspondences

between features, F1
ik and F2

jk, k ∈ i, j, that are globally consistent, are
found. The displacement between the two sets can then be computed to
deduce the sensor pose.

• Pixel-based Matching : This approach directly works on two sets of data
points, P1 and P2, by minimizing a cost function of the form F(T(P2),P1),
where T(P2) is the second set of points subjected to a transformation T.
Any sensible cost is acceptable as long as its minimum corresponds to a
best estimate of T in some sense. Usually, the minimization leads to an
iterative gradient-like algorithm.

Lines and edges are two of the most widely used feature primitives. Matching
between sensor observations and modeled features in a map have been considered
as a search in an Interpretation Tree [9]. Drumheller extracts lines from sonar
data and matches them against a room model to enable robot localization [6].
The complexity of the search problem is minimized by applying local constraints

2

(distances, angles and normal directions) to the set of possible pairings between
observed and modeled features. The Hough transform is a shape detection
technique which can be used to isolate features of a particular shape within an
image or Time-of-Flight (TOF) sensor data. Schiele and Crowley extract line
segments using the Hough transform from an occupancy grid and update the
position of the robot using a Kalman filter [34]. Other researchers [7, 20] have
combined odometric data and laser measurements using an Extended Kalman
Filter (EKF) where the range weighted Hough transform is employed to extract
lines from laser data. The resulting peaks are used as feature coordinates.
Even though the Hough transform provides good results in indoor cluttered
environments, it is restricted to operating in rectangular-shaped domains where
no more than two predominant walls are present.

Pixel-based methods that attempt to minimize the discrepancies between
sensed data and a model of the environment have been utilized for range reg-
istration. The attraction of these methods lies in the fact that the matching
works directly on data points. Because the search is confined to small perturba-
tions of the range images, it is computationally efficient. For example, Kweon
et al. [19] compared elevation maps obtained from 3D range images to deter-
mine vehicle location. A similar point matching approach has also been adopted
by Shaffer [35]. Cox [4] proposes a point matching method for an indoor robot
named Blanche where scan-points from an optical rangefinder are matched to an
a priori map composed of straight line segments. Blanche’s position estimation
system utilizes a robust matching algorithm which estimates the precision of the
corresponding match/correction that is then optimally combined with odomet-
ric position to provide an improved estimate of robot position. Hoffman et al.
employ a point matching algorithm for obtaining the inter-frame rotation and
translation in a vision-based rover application [13]. Lu [21] finds correspond-
ing points between two successive scans to compute the relative rotation and
translation. An Iterative Dual Correspondence (IDC) algorithm is formulated
based on closest point and matching range rules. Olson [30, 31] constructs a
three-dimensional occupancy map of the terrain using stereo vision and icon-
ically matches with a similar map to obtain the relative position between the
maps enabling a mobile robot to perform self-localization.

The major drawback of the above approaches is that their use is limited
to structured office or factory environments rather than unstructured natural
environments. Straightforward correlation-based schemes (for e.g., see [41]), in
general, are unable to handle outliers. As cross-correlation calculates the simi-
larity, the two scans must be similar and thus this method cannot accommodate
occlusions. This is easy to understand since if areas visible in one scan are not
visible in another due to occlusion, then correlation of these scans may produce
arbitrarily bad pose estimates. Also correlation usually places a high burden on
computation especially when the scans are at different orientations.

In this chapter, algorithms for registering range images to overcome both
the unavailability and unreliability of GPS within required accuracy bounds for
UGV navigation are presented. Despite the apparent simplicity of the prob-
lem, to register range images from unmanned vehicles traversing unstructured

3

environments, the terrain of travel, sensor noise, and determination of accu-
rate correspondences make it quite challenging. At the core of the registration
process is a modified version of the well-known Iterative Closest Point (ICP)
algorithm. These modifications render robustness to outliers, occlusions and
false matches/spurious points. Results of the registration algorithm using real
field data acquired from two different LADARs on the UGV are presented.

This chapter also evaluates the performance of the registration algorithm
for position estimation of UGVs operating in unstructured environments. Field
data obtained from two trials on UGVs traversing undulating outdoor terrain
is used to quantify the performance of the algorithm in producing continual
position estimates. Using the data obtained from the first trial, the iterative
registration algorithm aids the position estimation process whenever GPS es-
timates are unavailable or are below required accuracy bounds. In the second
trial, ICP is combined with a post-correspondence EKF to account for uncer-
tainty present in the range images. For both the trials, the position estimates
are then compared with those provided by ground truth to facilitate the perfor-
mance evaluation of the registration algorithm. In addition, the importance of
performance measures for assessing the quality of correspondences is described.
These measures provide an indication of the quality of the correspondences thus
making the registration algorithm more robust to outliers as spurious matches
are not used in computing the incremental transformation. The registration al-
gorithm is combined with one such performance measure and compared to the
traditional ICP algorithm in terms of accuracy and speed.

Extensions to the ICP algorithm that make it possible to register range
images obtained from a UGV to range images obtained from an Unmanned
Aerial Vehicle (UAV) are then proposed. Registration of range data guarantees
an estimate of the vehicle’s position even when only one of the vehicles has
GPS information. Temporal range registration enables position information
to be continually maintained even when both vehicles can no longer maintain
GPS contact. A Building Detection and Recognition (BDR) algorithm in urban
environments using LADAR data is also presented. The motivation behind the
development of the BDR algorithm is many fold:
World modeling: In 4D/RCS, the WM acts as a bridge between sensory
processing and behavior generation by providing a central repository for storing
sensory data in a unified representation [14]. Using the Knowledge Database
(KD), it directly dictates behavior generation and in turn the level of intelligent
planning that is achievable. Accordingly, it is necessary to have an underlying
rich WM with a current and consistent KD which enables the UGV to analyze
the past and plan for the future.
Registration across different sensing modalities: A continually updated
and maintained WM will allow the sensors aboard the UGV to focus their
attention on regions of future images where maximal useful information will be
available. Complementary fusion and registration of information from different
sensors offer distinct advantages over any one sensing modality.
Additionally, it is envisaged that the results of the BDR algorithm will be useful
in the aforementioned air to ground registration scenarios.

4

This chapter is organized as follows: Section 2 details the ICP algorithm
with suitable modifications for robustness. Section 3 presents the results of the
proposed algorithm when applied for registering consecutive range images ob-
tained from two LADARs mounted on a moving UGV. Section 4 evaluates the
performance of the registration algorithm for position estimation and demon-
strates the importance of performance measures with an example. Section 5
extends the modified ICP algorithm for air to ground registration by a hybrid
feature-based registration approach. Section 6 describes the BDR algorithm and
describes the results using LADAR range images obtained from a UGV travers-
ing urban environments. Finally, Section 7 provides conclusions and describes
further research work.

2 Temporal Registration Algorithm

The process of registration is termed as follows: Given two sets of range images
(model set: M and data set: D): Find a transformation (rotation and transla-
tion) which when applied to D minimizes a distance measure between the two
point sets.

The goal can be stated more formally as:

min(R,T)

∑
i

||Mi − (RDi + T) ||2 (1)

where R is a rotation matrix, T is a translation vector and the subscript i refers
to the corresponding points of the sets M and D1.

The ICP algorithm for registering 3D LADAR range images with suitable
modifications is given in the next section. The registration algorithm is a mod-
ified variant of the well-known ICP algorithm [2]. At each iteration, the algo-
rithm determines the closest match for each point and updates the estimated
position based on a least-squares metric with some modifications to increase ro-
bustness. ICP and its variants have been widely used for registration purposes
[33]. For autonomous vehicle navigation, ICP has been used for registration
of range images for 3D terrain mapping and localization [17]. Other versions
of the ICP algorithm have also been proposed for registration of range images
in the presence of outliers [18, 26]. The modified algorithm is better suited for
unstructured environments due to the robustness offered to outliers in the range
data that is obtained from sensors aboard UGVs traversing undulating outdoor
terrain.

2.1 Iterative Closest Point Algorithm

The ICP algorithm can be summarized as follows: Given an initial motion trans-
formation between the two point sets, a pair of correspondences are developed

1Though it is not necessary that the model and data sets have the same number of points,
after determining correspondences of data points with the model points, the number of model
and data points used are the same. Hence only one index is used to denote both data sets.

5

between data points in one set and the next. For each point in the first data
set, find the point in the second that is closest to it under the current trans-
formation. It should be noted that correspondences between the two point sets
is initially unknown and that point correspondences provided by sets of closest
points are a reasonable approximation to the true point correspondence. From
the pair of correspondences, an incremental motion can be computed facilitating
further alignment of the data points in one set to the other. This find corre-
spondence/compute motion process is iterated until a predetermined threshold
termination condition.

In its simplest form, the ICP algorithm can be described by the following
steps:

1. For each point in data set D, compute its closest point in data set M.
In this chapter, this is accomplished via nearest point search from the set
comprising ND data and NM model points.

2. Compute the incremental transformation (R,T) using Singular Value De-
composition (SVD) via correspondences obtained in step 1.

3. Apply the incremental transformation from step 2. to D.

4. If relative changes in R and T are less than a threshold, terminate. Else
go to step 1.

To deal with spurious points/false matches and to account for occlusions
and outliers, the least-squares objective function in Equation (1) is modified
and weighted such that [42]:

min(R,T)

∑
i

wi ||Mi − (RDi + T) ||2 (2)

If the Euclidean distance between a point xi in one set and its closest point
yi in the other, denoted by di

�
= d(xi, yi), is bigger than the maximum tolerable

distance threshold Dmax, then wi is fixed to zero in Equation (2). This means
that an xi cannot be paired with a yi since the distance between reasonable pairs
cannot be very big. The value of Dmax is set adaptively in a robust manner by
analyzing distance statistics.

Let {xi, yi, di} be the set of original points, the set of closest points and their
distances, respectively. The mean and standard deviation of the distances are
computed as:

µ =
1
N

N∑
i=1

di

σ =

√√√√ 1
N

N∑
i=1

(di − µ)2

where N is the total number of pairs.

6

The pseudo-code for Adaptive Thresholding (AT) of the distance Dmax is
given below:

if µ < D
Ditn

max = µ + 3σ;
elseif µ < 3D

Ditn
max = µ + 2σ;

elseif µ < 6D
Ditn

max = µ + σ;
else Ditn

max = ε;

where itn denotes the iteration number. D is a user-defined parameter which
indicates when the registration between the two data sets can be considered to
be good. The pseudocode thus provides a procedure for statistically determining
Dmax. Accordingly, the modified algorithm is robust to relatively big motion
between the two data sets and to outliers in the data.

During implementation, D was selected based on the following two observa-
tions:

1. If D is too small, then several iterations are required for the algorithm to
converge and several good matches will be discarded, and

2. If D is too big, then the algorithm may not converge at all since many
spurious matches will be included. The interested reader is referred to [42]
for more details on the effect and selection of D and ε on the convergence
of the algorithm.

At the end of this step, two corresponding point sets, PM:{pi} and PD:{qi}
are available.

The incremental transformation (rotation and translation) of step 2. is
obtained as follows [1]:

• Calculate H=
∑ND

i=1(pi − pc)(qi − qc)T ; (pc,qc) are the centroids of the
point sets (PM,PD).

• Find the Singular Value Decomposition (SVD) of H such that H = UΩVT

where U and V are unitary matrices whose columns are the singular
vectors and Ω is a diagonal matrix containing the singular values.

• The rotation matrix relating the two point sets is given by R = VUT .

• The translation between the two point sets is given by T = qc − Rpc.

This process is iterated as stated in step 4. until the mean Euclidean distance
between the corresponding point sets PM and PD is less than or equal to a
predetermined distance or until a given number of iterations is exceeded.

7

3 Temporal Registration of Sensed Range Im-
ages

In this section, the results of the temporal registration algorithm on two sets of
LADAR data (henceforth referred to as UGVL1 and UGVL2) is presented.

3.1 Experimental Setup and Results

The experimental Unmanned Vehicle (XUV) shown in Figure 1(a) is a hydro-
static diesel, four-wheel-drive, four-wheel-steer vehicle. The military High Mo-
bility Multipurpose Wheeled Vehicle (HMMWV) shown in Figure 1(b) is a one
and one quarter ton, diesel-powered four-wheel-drive truck actuated with elec-
tric motors for steering, braking, throttle, transmission, transfer case, and park
brake and sensors to monitor speed, engine RPM and temperature.

(a)
(b)

Figure 1: The Demo III XUV shown in (a) can drive autonomously at speeds
of up to 60 km/h on-road, 35 km/h off-road in daylight, and 15 km/h off-road
at night or under inclement weather conditions. (b) shows the NIST HMMWV
and its sensor suite.

Both vehicles utilize the 4D/RCS architecture using Neutral Message Lan-
guage (NML) communications for autonomous navigation in unstructured and
off-road driving conditions. The sensor suite of the XUV and the HMMWV con-
sists of a pair of cameras for stereo vision, a Schwartz Electro-Optics LADAR,
a stereo pair of Forward Looking Infra-Red (FLIR) cameras, a stereo pair of
monochrome cameras, GPS, Inertial Navigation System (INS), a force bumper
sensor and actuators for steering, braking and transmission. An integrated
Kalman filter navigation system fuses observations from odometry, inertial and
differential GPS sensors for position estimation.

UGVL1 (shown in Figure 1(a)) data was obtained during field trials as the
XUV traversed rugged terrain with vegetation. The LADAR was mounted
on this UGV on a pan/tilt platform to increase its narrow 20◦ field of view.

8

The range of the tilt motion is ±30◦ resulting in an effective field of view of
about 90◦. UGVL1 provides a range image of 32 lines × 180 pixels where
each data point contains the distance to a target in the operating environment.
The angular increment of this LADAR is 0.7◦ × 0.5◦ in the horizontal and
vertical directions, respectively. Utilizing knowledge about the LADAR mount
position and calibration factors, the range information provided by the LADAR
is transformed to cartesian coordinates.

UGVL2 (Riegl LADAR in Figure 1(b)) data was collected from a sensor
mounted on the HMMWV as the vehicle traversed urban environments. The
effective field of view is 80◦ × 330◦ thus providing an almost panoramic view of
the environment with an angular increment of 0.036◦. The scan rate of UGVL2
is 1◦/s − 15◦/s providing 10000 pts/s with range up to 800 m thus making it
much slower than that of UGVL1 but the resulting 3D range image is of a much
higher resolution. For more details on the LADARs, see [36].

In the case of UGVL2, the 3D point cloud was acquired from two different
view points whereas for UGVL1, the 3D point cloud represents scan points
that were acquired between two consecutive vehicle locations. Additionally, for
UGVL1, range image D was also translated 1 m along each of the (x,y,z) axes
in addition to the translation and rotation that the image underwent due to the
motion of the vehicle. It is important to note here that even though the range
image points arrive in the same sequence for both the model and data sets, it
is not guaranteed that both sets will have the same number of points as some
facets of the LADAR data sets might return empty values.

Figures 2(a)−(b) show the results when the modified ICP algorithm is used
to register 3D range images obtained from UGVL1 and Figures 2(c)−(d) show
that for UGVL2. The number of model (M) and data (D) points for the two
LADARs are {2857, 2878} and {125396, 123826}, respectively. As can be seen
from Figure 2, the images are well registered. The closest point distances for
UGVL1 before and after registration also prove that the images are sufficiently
registered. The mean distances (m) after registration for the above three cases
are {0.11, 0.84, 0.43}, respectively.

4 Performance Evaluation of Temporal Regis-
tration

In this section, performance of the temporal registration algorithm (with adap-
tive thresholding) using two sets of field trials is evaluated.

4.1 Registration-aided Position Estimation

In this section, the position of an UGV operating in an unknown outdoor en-
vironment is estimated. The registration algorithm is used for aiding position

9

(a) (b)

(c) (d)

Figure 2: 3D LADAR range images before and after registration. (a) and (b)
show the unregistered and registered UGVL1 range images, respectively. Here,
the data range image (D denoted by ‘◦’ in yellow) was deliberately translated 1
m along the (x,y,z) axes in addition to the inherent translation to demonstrate
the robustness of the registration algorithm. (c) and (d) show the unregistered
and registered range images corresponding to two sets of UGVL2 range images
where the model (M) range image is shown in green, unregistered and registered
data (D) range images are shown in red and white, respectively.

10

estimation whenever GPS errors are above a predetermined threshold2. When-
ever GPS position accuracy falls below the threshold, successive range images
are registered with each other from the previous vehicle location (that is ei-
ther available from dead-reckoning or the previous acceptable GPS estimate) to
obtain the current vehicle location.

An EKF was used to fuse encoder, GPS and compass observations to ar-
rive at ground truth position estimates. The EKF-based localization algorithm
continually corrects the diverging dead-reckoning estimates based on external
sensing information provided by GPS and compass corrections. Since the ex-
periments were carried out in an outdoor environment with the UGV executing
general motion (translation and rotation on all axes), sensor calibration is es-
pecially important to ensure accuracy of readings. For the encoder readings,
external sensors (GPS and magnetic compass) were used to obtain calibration
factors corresponding to the various axes. The correction factor for magnetic
compass was obtained by looking up geodesic charts to determine the angle of
magnetic variation corresponding to the longitude/latitude of the experiment’s
location. It should be noted here that the EKF pose estimate is always superior
than that provided by GPS alone and thus has been considered as ground truth.
Consequently, a better position fix is guaranteed even when GPS is subject to
multipathing errors. The ground truth was obtained in a similar fashion as
reported in [23].

Figure 3 shows the results of the position estimation using the registration
algorithm. As mentioned earlier, registration of range images is used to aid
position estimation when GPS reported positional errors exceed a given thresh-
old. In Figure 3(a), the registration-aided position estimates are denoted by
‘+’ and that of the GPS by ‘◦’. The wheel encoder estimates are also shown
by ‘×’ for comparison. The UGV is subject to slip and skid as a result of
the undulatory nature of the terrain of travel. Accordingly, the errors in the
wheel encoder estimates grow without bounds. The errors between the GPS and
the registration-aided position estimates as compared with the ground truth are
shown in Figure 3(b). The solid line represents the error in the registration-aided
position estimates and that of the GPS estimate is shown in dashed-dotted line.
It is evident that the registration-aided estimates are far superior than that of
GPS alone.

4.2 2D Map-aided Position Estimation

A map-aided position estimation algorithm for computing accurate pose es-
timates for a UGV operating in tunnel-like environments is described in this
section. A bearing-only laser was mounted on the roof of the vehicle so that it
could detect strategically placed artificial landmarks (reflective stripes) in the
trial environment. The exact position of the landmarks were made available
from surveying using a digital theodolite. When the vehicle moves through the

2The error in the GPS positions reported were obtained as a function of the number of
satellites acquired. As an alternative, the so-called dilution of precision measure associated
with the GPS can be used for the same purpose [8].

11

environment, the presence of these landmarks is detected by using the observa-
tions from the laser. Thus, as the vehicle traverses the environment, a sequence
of bearing observations to a number of fixed and known locations are made.
Since the locations of these reflectors are known to the vehicle navigation sys-
tem, the location of the vehicle can be computed from the bearing observations
made. Utilizing bearing observations from a bearing-only laser in combination
with dead-reckoning sensors (velocity and steering encoders and rate of change
of orientation information from the inertial measurement unit), an EKF was
employed to obtain ground truth [25]. Using the ground truth together with
the information from a range and bearing scanning laser rangefinder, a map of
the operating domain, represented by a polyline that adequately approximates
the geometry of the environment, is obtained. The map building process relies
on position estimation provided by artificial landmarks.

A combined ICP-EKF algorithm is used to match range images from a scan-
ning laser rangefinder to the line segments of the polyline map [22]. For this
application, ICP alone does not provide sufficiently reliable and accurate vehi-
cle motion estimates. These shortcomings are overcome by combining the ICP
with a post-correspondence EKF. Once correspondences are established, a post-
correspondence EKF, with the aid of a nonlinear observation model, provides
consistent vehicle pose estimates. The observation model relates line segments
of the polyline map and range measurements provided by the laser rangefinder
enabling the prediction of the range. Using this observation model, it was pos-
sible to discard ambiguous range measurements thus increasing the confidence
in vehicle position estimates.

The ICP-EKF algorithm has several advantages. First, the uncertainty asso-
ciated with observations is explicitly taken into account. Second, observations
from a variety of different sensors can be easily combined as the changes are
reflected only as additional observational states in the EKF. Third, the pixel-
based algorithm does not require extraction and matching of features since it
works directly on sensed data. Fourth, laser observations that do not correspond
to any line segment of the polyline map are discarded during the EKF update
stage thus making the algorithm robust to errors in the map.

The estimated vehicle positions (solid line) provided by the ICP-EKF al-
gorithm along with the ground truth (denoted by ◦) is shown in Figure 4(a).
The vehicle travels a distance of 150 m from right to left. The corresponding
2σ confidence bounds for the absolute error in x, y and φ are shown in Figure
4(b). It can be seen that the errors are bounded and thus the pose estimates
are consistent. It is also clear that the estimated path is in close agreement with
the ground truth.

4.3 Performance Measures

The correspondence determination process is the most challenging step of the
iterative algorithm. Establishing reliable correspondences is extremely difficult
as the UGV is subjected to heavy pitching and rolling motion characteristic of
travel over undulating terrain. This is further exacerbated by the uncertainty of

12

the location of the sensor platform relative to the global frame of reference. In
addition to these factors, noise inherently present in range images complicates
the process of determining reliable correspondences.

One solution to overcome the above deficiencies is to extract naturally oc-
curring view-invariant features, for example, corners, from range images. Such
ground control points can then be used for establishing reliable registration with
the ICP algorithm converging to the global minimum. The feature-based hybrid
approach was shown to be effective in producing reliable registration for UGV
navigation in rugged terrain and is described in Section 5.

For the map-aided position estimation scheme described in Section 4.2, the
ICP-EKF algorithm failed to produce unambiguous correspondences with the
map whenever variations in data sets were not unique. To enable ICP to pro-
duce accurate correspondences, a strategy to augment the ICP-EKF algorithm
with artificial/natural landmarks was devised to provide external aiding. The
proposed landmark augmentation methodology has been verified for the local-
ization of a Load-Haul-Dump truck and resulted in the ICP-EKF algorithm
producing reliable and consistent estimates [22].

The following measure towards performance evaluation of the registration
algorithm for position estimation is proposed.

4.3.1 Mean Squared Error Measure

To indicate if the correspondences make sense the following measure is proposed:

Pmse =
1
n

n∑
i=1

[d (pi, �i)]
2

where pi and �i are the ith of n range data points and d (pi, �i) is the distance
from the pth

i point to the �th
i point. Global minimum of the function will occur

at the true pose of the vehicle.
At the true pose, all or at least the majority of the range data points will

be close to their corresponding points, thus yielding a very low value for the
correct solution. The problem with this measure is that it is difficult to decide
if the pose is true in the presence of outliers and occlusions3.

4.3.2 Results and Discussion

In this section, the combined utility of adaptive thresholding and the Pmse

measure by using it to register 3D range images is illustrated. The registration
results are then compared with direct ICP (i.e., without AT and Pmse). For the

3Another measure that has been proposed is the Classification Factor (Pcf). The problem
with this measure is that it is not as sensitive as Pmse since it applies only for a certain
local neighborhood. Thus Pmse can be used as a comparative performance measure whereas
Pcf for pass/fail decisions for the correspondences before they are passed on for computing
the incremental transformation. Additional performance measures have been developed and
a detailed exposition is available from [24].

13

comparison, the same termination threshold condition is employed for both the
algorithms.

Figure 5 summarizes the comparative results. Figures 5(a) and 5(b) show
the registered LADAR images via the direct and combined ICP algorithms,
respectively. The combined ICP needed 39 iterations whereas the direct ICP
took 82 iterations4 and the mean distances before and after registration were
0.07 m and 0.19 m for the two algorithms, respectively. Figures 5(c) and 5(d)
show the closest point distance before and after registration. It is thus evident
that the combined ICP algorithm is vastly superior to the direct ICP algorithm
both in terms of accuracy and speed. Even though the Pmse metric is sensitive to
outliers, the adaptive thresholding methodology in combination with the mean-
squared error measure provides an acceptable means in inferring the validity of
the position estimate.

5 Air to Ground Feature-based Registration

Another way to minimize the dependency on GPS for UGV navigation is to use
aerial survey maps constructed using a downward-looking LADAR mounted
on an Unmanned Aerial Vehicle (UAV). If the LADAR range images from the
UGV can be registered to those from the UAV, then these results can serve as
secondary position estimates in the event of absence or degradation of GPS.

In this section, a hybrid approach by combining the modified ICP algorithm
with a feature-based method for registering two sets of LADAR range images is
described. The approach is conceptually similar to Hebert et al. [11] who employ
range imagery to compute vehicle displacement between two viewing positions
by using a two-stage technique (feature matching followed by point matching).
The advantage of this hybrid approach lies in the fact that the accuracy of the
point matching technique is retained while keeping the computational burden
under control as the feature-based method provides a good initial estimate for
refinement.

The value of aerial imagery obtained via active range sensing for aiding
ground vehicle navigation is being recognized within the UGV community. For
example, in [40], aerial and ground views from unmanned vehicles are registered
by extracting a geometrically consistent set of correspondences using surface sig-
natures from which a registration transformation is estimated. It is not clear,
given the computational burden associated with the extraction of surface signa-
tures, whether this approach can be implemented in real-time. In [39], an aerial
vehicle, a Flying Eye (FE), flies ahead of an UGV acting as a “scout” to detect
difficult obstacles from an overhead perspective thus benefitting ground vehicle
navigation. The above article briefly mentions the need for registering the data
from the FE to the ground vehicle but the details of the registration process
are not presented. The hybrid approach described in this chapter exploits the

4The difference in the complexity per iteration, for real-time implementation purposes, is
almost negligible and thus for the direct and combined ICP algorithms, the complexity per
iteration can be considered to be the same.

14

simplicity and speed of the iterative closest point algorithm thus lending itself
to real-time implementation.

The underlying assumption in the iterative registration algorithm is that the
rotation angle between the range images that need to be registered is not too
large and also that these images are not too far apart. For the current case
of UAV and UGV LADAR data, this assumption is overly restrictive and an
aiding mechanism for the registration of the range images becomes necessary.
Towards guaranteeing robust and accurate registration, the z translation value
is first obtained by estimating the ground z (elevation) values on the UGV and
UAV LADAR data in the vicinity of the UGV’s current location. For the UGV,
the ground values are obtained from the LADAR points that are within a given
radius immediately in front of the vehicle and those for the UAV are obtained by
finding the minimum of the LADAR values. Then the UAV and UGV LADAR
data are projected into the base ground planes as depicted in Figure 6(a) and
by using the Canny edge detector [3] the feature planes are constructed. The
corner features are detected based on the intersections of lines formed by edges
and are independently extracted from both LADAR data sets by considering
those points that are above a given height from the ground as shown in Figure
6(b).

The two sets of the projected corner points (UAV LADAR set: A and UGV
LADAR set: G) are used to estimate a 2D translation. Given two sets of 2D
corner points:

A
�
= aj =

⎡
⎢⎢⎢⎣

a1j

a2j

...
anj

⎤
⎥⎥⎥⎦ ; j = 1, 2, · · · n; G

�
= gk =

⎡
⎢⎢⎢⎣

g1k

g2k

...
gnk

⎤
⎥⎥⎥⎦ ; k = 1, 2, · · · n;

To find a translation along the x and y directions, the means of sets A and
G are first computed using:

ā =
1
n

n∑
j=1

aj ; ḡ =
1
n

n∑
k=1

gk;

The difference between the means of x, y and those between the aerial and
ground z values provides a rough estimate of the required 3D translation between
the two sets of LADAR data. The 3D translational offset when applied to the
UGV range image enables the ICP algorithm to provide reliable registration
results.

5.1 Experimental Setup and Results

The UAV LADAR produces a 3D range image at up to 6000 terrain pts/s within
a 100 m scanning range [28, 27]. It provides an aerial survey map with significant
information about existing topology and structures.

15

Figure 7 shows a top view of unregistered range images obtained from the
UGV (in white) and UAV (in black) LADARs, respectively. Figure 8 depicts
the results of the feature-based registration algorithm. Figure 8(a) shows a top
view of the LADAR range images after applying the translation obtained using
the corner features. Figure 8(c) shows the results of the iterative registration
algorithm applied to the LADAR range images in Figure 8(a). Figures 8(b)
and 8(d) show a magnified view of stages depicted in Figures 8(a) and 8(c),
respectively. From Figures 7 and 8, it is evident that the LADAR range images
are registered. For additional results, see [5].

6 Building Detection and Recognition

Several building detection algorithms are readily available for the detection
and recognition of buildings from aerial LADAR/LIDAR (LIght Detection And
Ranging) images [29, 32]. The adopted approach is to classify the data points ac-
cording to whether they belong to the terrain, buildings or other object classes.
The authors are not aware of algorithms that detect and recognize buildings for
UGV navigation from ground-based LADAR data and believe that this work is
the first of its kind.

The BDR algorithm consists of the following four main stages:

A1. First, ground detection is performed by using several small fixed areas of
patches in front of the UGV to fit a plane for estimating and initializing
the ground surface. Then, these 3D ground points are subtracted such
that the points corresponding to objects above a certain height from the
ground are available.

A2. Second, the projection distance to the ground plane is computed. Each
range data point is projected to the ground surface which has a grid map
representation of 10 cm resolution. The distance to the ground surface is
stored in the grid data structure and is used to filter potential building
segments.

A3. Third, an eight-connected component analysis on the projected grid map
is used to group potential building segments.

A4. Finally, geometric properties are computed on each connected component
and are used for building recognition.

6.1 Experimental Setup and Results

The data was obtained from the LADAR mounted on the HMMWV as shown
in Figure 1(b) as the vehicle traversed urban environments. Figures 9(a) and
(b) show a top-down view of the raw sensor data points before and after ground

16

subtraction5. Figure 9(c) (middle) shows the potential building segments. The
intensity (top) and the panoramic color camera (bottom) images are also in-
cluded in Figure 9(c) for comparison. Figure 9(d) depicts the 8 components
resulting from the connected-component analysis. The final output of the algo-
rithm after filtering small components is shown in Figure 9(e). The top figure
shows a top-down view of the connected components projected onto the ground
plane and the bottom figure shows that to the 3D point cloud.

In Figure 10, the left column shows the potential building segments, inten-
sity, and color camera images, respectively, for three different sets of LADAR
data. In the right column, the top and bottom figures show the top-down view
of the connected components and their projection to the 3D point cloud, re-
spectively, for the same sets of LADAR data. It is evident from Figures 9 and
10 that the buildings are reliably detected and recognized in the LADAR data.

Table 1 summarizes the false-positive rates of the BDR algorithm for four dif-
ferent LADAR data sets. Data sets #1 through #4 correspond to Figures 9(a)-
(e), 10(a)-(b), 10(c)-(d), and 10(e)-(f), respectively. These data sets are rep-
resentative of typical scenarios encountered in urban environments from which
the buildings need to be detected. Whenever the BDR algorithm is unable
to detect and recognize structures from the LADAR data as building or non-
building, then that occurrence is deemed as a false-positive. For data sets #3
and #4, one of the buildings was not detected due to increased clutter in the
environment.

Table 1: False-Positive rates of the building detection and recognition algorithm.
Data sets #1 through #4 correspond to Figures 9(a)-(e), 10(a)-(b), 10(c)-(d),
and 10(e)-(f), respectively.

Data Set No. of Buildings No. of Other Objects False Recognitions
#1 8 0 0
#2 6 1 0
#3 4 5 1
#4 5 6 1

7 Conclusions and Further Research

Temporal registration of range images from unmanned ground and aerial ve-
hicles was the main theme of this chapter. The need for such registration is
motivated by several factors, the primary of which is the requirement to con-
tinually estimate the position of the unmanned vehicle within accuracy bounds

5The figures corresponding to the results of the BDR algorithm in this chapter are better
viewed in color and are available from http://www.isd.mel.nist.gov/downloads/AIPR2004.
The range images are shown in false color for better clarity (dark blue means no LADAR
return).

17

dictated by a particular mission even when the GPS position estimates are un-
reliable or unavailable. By making suitable modifications to the ICP algorithm
it was shown that the modified algorithm provides reliable and robust registra-
tion in rugged terrain and urban environments for registering successive range
images obtained from two different LADARs on a UGV.

The evaluation of performance of the registration algorithm for position es-
timation of UGVs operating in unstructured environments was considered next.
The temporal registration algorithm was used to aid the position estimation
process and the resulting estimates were compared with ground truth to facili-
tate the performance evaluation for two sets of field data. Field data obtained
from trials on UGVs traversing undulating outdoor terrain was used to quan-
tify the performance of the algorithm in producing continual position estimates.
In the first set of experimental results, registration-aided position estimates
were generated whenever GPS estimates were unavailable or unreliable. For the
second set of trials, the ICP-EKF algorithm was used for map-aided position
estimation. In both cases, the presented results demonstrated the efficacy of the
registration algorithm for position estimation. The importance of performance
measures towards assessing the quality of correspondences required for accurate
and efficient registration was detailed. The modified algorithm was combined
with a mean-squared error measure to register 3D LADAR range images. The
combined algorithm was then evaluated against the direct ICP algorithm. The
accompanying results showed the superiority of the combined algorithm both in
terms of speed and accuracy.

The temporal registration algorithm was then extended to register aerial
images obtained from a UAV with those from the UGV. A hybrid approach was
proposed to this end by combining the modified ICP algorithm with a feature-
based method. The feature-based hybrid approach was also shown to be effective
in producing reliable registration for UGV navigation. An algorithm for building
detection and recognition from LADAR data was also presented in this chapter.
The proposed BDR algorithm was tested on field data obtained from a UGV
traversing urban environments and the resultant false-positive rates were found
to be sufficiently reliable and efficient for use in temporal registration.

The results presented in the chapter demonstrated the potential of this ap-
proach lending itself to real-time implementation. For practical purposes, the
sets of LADAR data utilized in this chapter can be assumed to be of the same
resolution even though typically the aerial data tend to be of lower resolution
than that of the UGV LADAR. To address this issue, schemes for use within the
temporal registration algorithm that will inherently account for varying resolu-
tion in data sets that need to be registered are being developed. Towards this,
corner detection schemes using the Harris [10] and SUSAN corner detectors [38]
on the 3D projected base ground planes are being considered.

As ICP will only converge to the closest local minimum, the use of control
points enabled to guarantee that this local minimum will correspond to the ac-
tual global minimum. If wrong convergence proves to be an issue in cases where
control points cannot be established, stochastic optimization algorithms (e.g.
Simulated Annealing) can be used to alleviate this problem. SA is extremely

18

slow in converging to the global minimum and thus a hybrid algorithm that
combines it with the proposed iterative algorithm would be more appropriate.
As the convergence of the algorithm depends on an initial estimate, a sufficiently
good initial estimate is required for superior registration. An initial estimate
is almost always available for scenarios considered in this chapter as it can be
obtained from either the vehicle’s dead reckoning or GPS estimates.

Computing the correspondence is the most computationally expensive part
of the algorithm. kd -trees have been proposed for faster correspondence where
the complexity is reduced from O(NDNM) −→ O(NDlogNM). Quaternions [16]
(instead of SVD) have been considered to determine the 3D transformation but
it results only in a slight improvement in the resultant registration for the tested
field data.

In case of non-unique data sets (meaning less “structure” in the environ-
ment), extraction of naturally occurring control points was shown to be a good
means of guaranteeing the convergence of the algorithm for reliable registration.
In the field trials, the vehicle was driven at a top speed of 32 km/h for which
case a good initial estimate is readily available and this immensely speeds up the
correspondence determination. In the results reported in this chapter, reliable
registration has been achieved in 10-12 iterations (at the most). This makes the
proposed registration scheme very viable for real-time implementation.

The performance of the registration algorithm was evaluated for UGV nav-
igation and measures to quantify the performance of the algorithm have been
developed [24]. The quality of the 3D registration will significantly improve if
the uncertainty of the LADAR range images are taken into account similar to
the 2D case. Extension of these results to the 3D case are being investigated.
To quantify the accuracy of the registration results, methods for estimating a
covariance matrix of the error function that is minimized are being developed.
The covariance matrix will be useful when fusing the position estimates ob-
tained via registration with other sensors. At the time this chapter was written,
the authors were in the process of obtaining LADAR data in areas where GPS
accuracy degrades and then approaches its best estimate. Such data sets would
be of immense value in evaluating the utility of the registration algorithm and
performance measures.

Another interesting extension of the registration work described in this chap-
ter is its use for a multi-robot team. When some robots do not have absolute
positioning capabilities or when the quality of the observations from absolute
positioning sensors deteriorate, another robot in the team with better position-
ing capability can assist other robots whose sensors have deteriorated or failed.
This idea has been demonstrated for the localization of a team of robots where a
distributed EKF-based cooperative localization scheme exploited heterogeneity
of the available sensors is exploited in the absence or degradation of absolute
sensors aboard the team members. The EKF-based localization algorithm was
cast in a form such that the update stage of the EKF utilizes the relative pose
information obtained using either a scanning laser range finder or a camera-
based vision system. More details on the cooperative localization scheme can
be found in [23].

19

In the BDR work described in this chapter, it has been assumed that the
ground is relatively flat for ground detection. In scenarios where this assumption
does not hold, the BDR algorithm may result in false-positives. However, in ur-
ban environments, the ground immediately in front of the UGV is almost always
relatively flat. In cluttered environments, buildings can be wrongly grouped to-
gether with other objects thus increasing the false-positive rate of the algorithm.
To counter this problem, the use of texture analysis using LADAR range values
are being investigated. The presence of varying texture within a given range
image is indicative of different classes of objects which can used for improving
building detection and recognition. In addition, using color as an additional cue
for feature detection is being considered.

The authors have not had an opportunity to subject the LADARs considered
in this chapter to factors that might cause performance deterioration (for e.g.
rain and fog). But these effects have been studied (on another LADAR) at
NIST [15] in which the authors discuss the back scattering effect caused by fog
that causes a spurious range value to be returned by the LADAR. There also
exist research in the open literature on performance degradation of 2D LADAR
under rainy conditions. For the LADAR used in the research reported in this
chapter, these effects remain to be investigated.

References

[1] K. Arun, T. Huang, and S. Blostein. Least-Squares Fitting of Two 3-D
Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 9(5):698–700, 1987.

[2] P. Besl and N. McKay. A Method for Registration of 3-D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256,
1992.

[3] J.F. Canny. A Computational Approach to Edge Detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6):679–698, Novem-
ber 1986.

[4] I. Cox. BLANCHE - An Experiment in Guidance and Navigation of an Au-
tonomous Robot Vehicle. IEEE Transactions on Robotics and Automation,
7(2):193–204, 1991.

[5] A. Downs, R. Madhavan, and T. Hong. Registration of Range Data from
Unmanned Aerial and Ground Vehicles. In Proceedings of the Applied Im-
agery Pattern Recognition Workshop, pages 45–50, October 2003.

[6] M. Drumheller. Mobile Robot Localization using Sonar. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 9(2):325–332, March 1987.

[7] J. Forsberg, U. Larsson, and A. Wernersson. Mobile Robot Navigation us-
ing the Range Weighted Hough Transform. IEEE Robotics and Automation
Magazine - Special Issue on Mobile Robots, 21:18–26, March 1995.

20

[8] M.S. Grewal, L.R. Weill, and A.P. Andrews. Global Positioning Systems,
Inertial Navigation and Integration. Wiley, 2001.

[9] W. Grimson and T. Lozano-Perez. Localizing Overlapping Parts by Search-
ing the Interpretation Tree. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(4):469–482, July 1987.

[10] C. Harris and M. Stephens. A Combined Corner and Edge Detector. In Pro-
ceedings of the Fourth Alvey Vision Conference, pages 147–151, September
1988.

[11] M. Hebert, C. Caillas, E. Krotkov, I. Kweon, and T. Kanade. Terrain
Mapping for a Roving Planetary Explorer. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 997–1002,
1989.

[12] M. Hebert, T. Kanade, and I. Kweon. 3-D Vision Techniques for Au-
tonomous Vehicles. In Proceedings of the NSF Range Image Understanding
Workshop, pages 273–337, 1988.

[13] B. Hoffman, E. Baumgartner, T. Huntsberger, and P. Schenker. Im-
proved Rover State Estimation in Challenging Terrain. Autonomous Robots,
6(2):113–130, April 1999.

[14] T. Hong, S. Balakirsky, E. Messina, T. Chang, and M. Shneier. A Hierar-
chical World Model for an Autonomous Scout Vehicle. In Proceedings of
the SPIE International Symposium on Aerospace/Defense Sensing, Simu-
lation, and Controls, pages 343–354, April 2002.

[15] T. Hong, S. Legowik, and M. Nashman. Obstacle Detection and Mapping
System. Technical Report NISTIR 6213, National Institute of Standards
and Technology, Gaithersburg, MD 20899, U.S.A., August 1998.

[16] B.K.P. Horn. Closed Form Solution of Absolute Orientation using Unit
Quaternions. Journal of the Optical Society of America, 4(4):629–642, April
1987.

[17] D. Huber, O. Carmichael, and M. Hebert. 3D Map Reconstruction from
Range data. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 891–897, 2000.

[18] V. Koivunen, J. Vezien, and R. Bajcsy. Multiple Representation Approach
to Geometric Model Construction from Range Data. Technical Report
MS-CIS-93-66, GRASP Lab., University of Pennsylvania, 1993.

[19] I. Kweon and T. Kanade. High Resolution Terrain Map from Multiple Sen-
sor Data. In Proceedings of the IEEE International Workshop on Intelligent
Robots and Systems, pages 127–134, 1990.

21

[20] U. Larsson, J. Forsberg, and A. Wernersson. On Robot Navigation us-
ing Identical Landmarks: Integrating Measurements from a Time-of-Flight
Laser. In Proceedings of the IEEE Conference on Multisensor Fusion and
Integration for Intelligent Systems, pages 17–26, October 1994.

[21] F. Lu. Shape Registration using Optimization for Mobile Robot Navigation.
PhD thesis, Dept. of Computer Science, University of Toronto, 1995.

[22] R. Madhavan and H. Durrant-Whyte. Terrain Aided Localization of Au-
tonomous Ground Vehicles. Special Issue of the Journal of Automation in
Construction (Invited), 13(1):69–86, January 2004.

[23] R. Madhavan, K. Fregene, and L.E. Parker. Distributed Cooperative Out-
door Multi-robot Localization and Mapping. Autonomous Robots: Special
Issue on Analysis and Experiments in Distributed Multi-Robot Systems,
17(1):23–39, July 2004.

[24] R. Madhavan and E. Messina. Performance Evaluation of Temporal Range
Registration for Unmanned Vehicle Navigation. Integrated Computer-Aided
Engineering; Special Issue on Performance Metrics for Intelligent Systems
(Invited), 12(3):291–303, 2005.

[25] R. Madhavan, E. Nettleton, E. Nebot, G. Dissanayake, J. Cunningham,
H. Durrant-Whyte, P. Corke, and J. Roberts. Evaluation of Internal Nav-
igation Sensor Suites for Underground Mining Vehicle Navigation. In Pro-
ceedings of the IEEE International Conference on Robotics and Automa-
tion, pages 999–1004, May 1999.

[26] T. Masuda and N. Yokoya. A Robust Method for Registration and Seg-
mentation of Multiple Range Images. In Proceedings of the Second IEEE
CAD-based Vision Workshop, pages 106–113, 1994.

[27] R. Miller, O. Amidi, and M. Delouis. Arctic Test Flights of the CMU
Autonomous Helicopter. In Proceedings of the Association for Unmanned
Vehicle Systems International 26th Annual Symposium, 1999.

[28] R. Miller and O. Amidi. 3-D Site Mapping with the CMU Autonomous
Helicopter. In Proceedings of the 5th International Conference on Intelligent
Autonomous Systems, June 1998.

[29] C. Nardinocchi, M. Scaioni, and G. Forlani. Building Extraction from
LIDAR Data. In Proc. of the IEEE/ISPRS Joint Workshop on Remote
Sensing and Data Fusion over Urban Areas, pages 79–83, 2001.

[30] C. Olson. Mobile Robot Self-localization by Iconic Matching of Range
Maps. In Proceedings of the 8th International Conference on Advanced
Robotics, pages 447–452, May 1997.

[31] C. Olson. Probabilistic Self-Localization for Mobile Robots. IEEE Trans-
actions on Robotics and Automation, 16(1):55–66, February 2000.

22

[32] F. Rottensteiner. Automatic Generation of High-quality Building Models
from Lidar Data. IEEE Computer Graphics and Applications, 23(6):42–50,
November/December 2003.

[33] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm.
In Proceedings of the International Conference on 3-D Digital Imaging and
Modeling, pages 145–152, 2001.

[34] B. Schiele and J. Crowley. A Comparison of Position Estimation Tech-
niques using Occupancy Grids. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1628–1634, May 1994.

[35] G. Shaffer. Two-Dimensional Mapping of Expansive Unknown Areas. PhD
thesis, Carnegie Mellon University, 1992.

[36] M. Shneier, T. Chang, T. Hong, G. Cheok, H. Scott, S. Legowik, and
A. Lytle. A Repository of Sensor Data for Autonomous Driving Research.
In Proceedings of the SPIE Unmanned Ground Vehicle Technology V, April
2003.

[37] C. Shoemaker and J. Bornstein. The Demo III UGV Program: A
Testbed for Autonomous Navigation Research. In Proceedings of the IEEE
ISIC/CIRA/ISAS Joint Conference, pages 644–651, September 1998.

[38] S.M. Smith and J.M. Brady. SUSAN - A New Approach to Low Level
Image Processing. International Journal of Computer Vision, pages 45–78,
May 1997.

[39] A. Stentz et al. Real-Time, Multi-Perspective Perception for Unmanned
Ground Vehicles. In Proceedings of the AUVSI Unmanned Systems Con-
ference, July 2003.

[40] N. Vandapel, R. Donamukkala, and M. Hebert. Experimental Results in
Using Aerial LADAR Data for Mobile Robot Navigation. In Proceedings
of the International Conference on Field and Service Robotics, July 2003.

[41] G. Weiβ, C. Wetzler, and E. von Puttkamer. Keeping Track of Position
and Orientation of Moving Indoor Systems by Correlation of Range-finder
Scans. In Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 595–601, September 1994.

[42] Z. Zhang. Iterative Point Matching for Registration of Free-Form Curves
and Surfaces. International Journal of Computer Vision, 13(2):119–152,
1994.

23

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
Position Estimates

X [m]

Y
 [m

]

(a)

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2
Position Errors

X
 [m

]

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5

Y
 [m

]

time [s]

(b)

Figure 3: Registration-aided position estimation. The aided estimates are shown
by ‘+’ and that of GPS by ‘◦’. The wheel encoder estimates shown by ‘×’ are
included for comparison in (a). In (b), position errors as compared to the ground
truth is depicted; the solid line represents the error in the registration-aided
position estimates and that of the GPS estimate is shown in dashed-dotted line.

24

40 50 60 70 80 90 100 110 120 130 140
−30

−20

−10

0

10

20

30

40

50

X [m]

Y
 [m

]

Estimated Vehicle Path

Gnd. Tth

ICP−EKF

(a)

30 40 50 60 70 80 90 100 110 120
−2

−1

0

1

2
2σ bounds for x, y and Φ

σ x [m
]

30 40 50 60 70 80 90 100 110 120
−2

−1

0

1

2

σ y [m
]

30 40 50 60 70 80 90 100 110 120
−0.4

−0.2

0

0.2

0.4

time [s]

σ Φ
 [r

ad
]

(b)

Figure 4: 2D map-aided position estimation. ICP-EKF estimated position the
trial vehicle (solid line) and the ground truth (dotted line) are shown in (a).
The 2σ confidence bounds are computed using the covariance estimate for the
error in x, y and φ compared to the actual error computed with the ground
truth estimates as depicted in (b).

25

(a) Direct ICP

(b) Modified ICP with AT and Pmse

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

Data Points

D
is

ta
nc

e
[m

]

Closest Point Distance Before and After Registration

unregistered
registered

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

Data Points

D
is

ta
nc

e
[m

]

Closest Point Distance Before and After Registration

unregistered
registered

(d)

Figure 5: Illustration of 3D LADAR registration via the direct (w/o AT and
Pmse) and combined ICP algorithms. The model (‘◦’) and data (‘+’) points
before (a) and after (b) registration are shown. The registered (shown in dashed-
dotted line) and unregistered (shown in solid line) closest point distances via the
direct ICP (w/o AT and Pmse) and the combined ICP algorithms, are shown
in (c) and (d), respectively, corresponding to the registration of range images
depicted in Figures (a) and (b).

26

(a)

(b)

Figure 6: Projection of LADAR data to base ground planes is shown in (a). The
extracted features (corners) from the UGV (white) and UAV (black) LADARs
are shown in (b) as white and black squares, respectively.

(a) (b)

Figure 7: A top view of unregistered UAV (black) and UGV (white) LADAR
range images is shown in (a). A magnified side view of (a) is shown in (b).

27

(a) (b)

(c) (d)

Figure 8: A top view of the feature-based translation obtained using the ex-
tracted corners is shown in (a) and a magnified side view of the same is shown
in (b). (c) shows a top view of the registered UAV (black) and UGV (white)
LADAR range images obtained by utilizing the feature-based translation results
and (d) is a magnified view of (c). See text for further details.

28

(a) 3D point cloud before ground sub-
traction

(b) 3D point cloud after ground sub-
traction

(c) Potential buildings, intensity, and
color camera images

(d) 8 components

(e) Final output of the BDR algorithm

Figure 9: Results of the building detection and recognition algorithm.

29

(a) Data set #2 (b) Data set #2

(c) Data set #3 (d) Data set #3

(e) Data set #4 (f) Data set #4

Figure 10: Building detection and recognition for three different sets of LADAR
data.

30

Chapter 7

Advanced LADAR for Driving Unmanned Ground Vehicles

Maris Juberts, Anthony Barbera, and Sandor Szabo
National Institute of Standards and Technology (NIST)

{maris.juberts,tony.barbera,sandor.szabo}@nist.gov

1. Overview Of Needs And Capabilities Of LADAR for Autonomous Driving

 The U.S. Department of Defense (DOD) has initiated plans for the deployment of autonomous robotic vehicles in
various tactical operations expected to start in 2010. Several programs, including the Future Combat Systems (FCS)
program, have received significant funding in order for this to take place. Envisioned are manned and autonomous
Unmanned Ground Vehicles (UGVs) as well as manned and unmanned air vehicles performing cooperative tactical
missions. Some of the tactical missions being considered for UGVs include: reconnaissance, active or passive
surveillance, communication relay, mine detection or clearing, targeting, search and rescue, supply, terrain
control/denial, forward observation, and lethal or non-lethal missions. These missions will require the vehicles to drive
autonomously over open terrain and on roads which may contain traffic, obstacles, military personnel as well as
pedestrians. UGVs must therefore be able to detect, recognize and track objects and terrain features in very cluttered
environments.

 As described in Chapter 1, safe driving at operational speeds requires the autonomous UGVs to perceive and model
the 3D environment in real-time in order to support tactical reasoning, path planning, obstacle avoidance, and dynamic
vehicle motion control. There are several sensor modalities that can directly provide 3D range imaging of a scene,
including sonar, radar, structured light, and LADAR. As pointed out, sonar and radar have poor angular spatial resolution
at most ranges, and sonar is slow and structured light is effective only at short ranges. Only LADAR has demonstrated
the ability to provide real-time 3D range images, reliably and with sufficient resolution, that can be used to model the 3D
environment within about 50 m of the sensor for off road autonomous driving. One of the advantages of LADAR is that
data segmentation and grouping, needed for distinguishing objects from background data, can be performed much more
easily and robustly in the 3D space provided by LADAR point clouds. To achieve autonomous driving performance in
normal traffic at operational speeds requires that LADAR provides real-time images at ranges out to more than 100 m
and with spatial resolution approaching that of human perception. This technology has evolved and is close to delivering
these requirements. What is needed is a well funded development effort to build reliable, high performance LADARs at
reasonable cost.

 Although several LADAR sensors exist at the time of this writing which have successfully been implemented and
demonstrated to provide somewhat reliable obstacle detection and can be used for path planning and path selection, they
tend to be limited in performance (primarily resolution and maximum range), are affected by obscurants (dust, fog, grass,
foliage), and are quite large and expensive. One such mobility LADAR is reported in Appendix A of a NIST
publication1. An example of where the available UGV LADAR technology falls short is shown in Figure 1. Although the
flatness of the road is visible in the display of the 3D range image of the road the vehicle is following, it has very limited
range information from the road and terrain further ahead in the scene. In addition, although the trees and brush along the
sides of the road are seen as obstructions, it would be very hard to use that information for classifying or identifying what
those obstructions are. Limitations in available UGV LADAR spatial resolution (about 0.25o per pixel) are also evident
in Figure 2. It is a range image taken with a Riegl LMS Z420 LADAR, set at a resolution of 0.2o per pixel, of two
persons standing at a distance of 100 m from the camera. Even though target returns are obtained from that distance,
there are only about 4 pixel hits on each person. This is insufficient for recognizing that the returns are from a person.
Another example of available technology limitations is shown in Figure 3. The figure displays the range image of a
scene taken in a parking lot. It is very hard to identify any detected known objects in the scene. In the future, it is

expected that unmanned vehicles must be able to locate available parking spaces on their own and to be able to park
autonomously.

Figure 1. (left): Digital camera image of road and trees; (right) the same scene as viewed by Demo III real-time LADAR.
Where does the technology fall short? The vehicle is effectively myopic. LADAR is low resolution (75 mm to 150 mm
range accuracy) and short range (< 40 m returns from horizontal surfaces). This LADAR does not penetrate dust and
smoke. Planning is not optimized for road following.

Figure 2. Detection of two human targets at 100 m. Range image taken with Riegl LMS Z420 LADAR scanner set to an
angular resolution of 0.2o per pixel.

Figure 3. Typical point cloud of parking lot produced by Figure 4. High resolution point cloud image of parking lot.
a coarse UGV LADAR. Image is color coded in vertical (z) dimension.

2 Humans at 100 m

Human at 100 m
~ 1o x .2o

~ 4 pixels

Angular Resolution = 0.2o per pixel

What denser, high resolution range data can provide is clearly evident in the range image taken of a parking lot with a
high resolution LADAR camera as shown in Figure 4. Detection and identification of cars, tree trunks, overhanging
branches, man-made structures (light pole) and even curbs are highly possible from this kind of data. It must be pointed
out, however, that the data was taken with a high resolution scanning LADAR that required several minutes to generate
the range image. In addition, even though considerable effort and funding has been provided by the DOD R&D
community, nearly all of the development has been for target detection (ATR) and tracking from various flying
platforms. Participation in the Army and DARPA sponsored UGV programs has helped NIST to identify requirement
specifications for LADAR to be used for on and off-road autonomous driving. This chapter describes the expected
requirements for advanced LADAR for driving Unmanned Ground Vehicles and presents an overview of proposed
LADAR design concepts and a status report on developments in next generation scannerless LADAR and advanced
scanning LADAR which may be able to achieve the stated requirements. Although the primary use of LADAR has been
in the military robotics programs, LADAR is also beginning to show up in other industries as well. This chapter also
briefly describes the needs and applications of LADAR sensors in the transportation industry and the industrial material
handling industry. Examples of real-time range images taken with existing LADAR prototypes are presented.

The Department of Transportation’s Automated Highway Systems program in the mid ‘90s was completed in
1997 with a successful demonstration of autonomous highway vehicles in San Diego, California2. However, interest in
highway automation by the Government and the transportation industry, since that time, has taken a back seat to
improvements in highway safety. Since traffic fatalities in the U.S. have remained steady at around 42,000 per year, the
transportation industry and the Government are looking at advanced technology to improve vehicle safety and reduce
traffic accidents. In particular, the DOT has been looking at on-vehicle sensor-based driver warning systems for rear-end
and road departure crash prevention. In 2005, the DOT initiated a new program to fund the development and to evaluate
the performance of an Integrated Vehicle Based Safety System (IVBSS) that provides warnings in three crash scenarios:
rear-end, road departure and lane change. The IVBSS will most likely use a collection of video cameras and range
sensors to determine potential crash conditions.

Figure 5 illustrates the ways in which LADARs might be employed in automotive safety applications. A vehicle

mounted LADAR is expected to provide the following measurement attributes:

1. Determine location of obstacles (range and azimuth)
2. Determine size of obstacles
3. Determine range rates to obstacles
4. Perform measurements at maximum highway speeds (120 km/h)
5. Detect obstacles at far range (> 65 m)
6. Sufficient Field Of View (FOV) to view and detect obstacles in path of vehicle

- rear-end sensing – FOV must cover road in front to measure curvature of road
- road-departure sensing – FOV must cover shoulder in forward direction of vehicle and take into

account the curvature of the road and obstacles directly to the side (e.g., jersey barriers)
- lane-change sensing – FOV must cover adjacent lane directly to the side of the vehicle and

possibly to the rear to detect passing vehicles

Figure 5. LADARs for automotive safety and driver assist applications (figure from IBEO Automotive Sensor
GmbH14).

The material handling industry is also considering using advanced LADAR sensors for Automatic Guided Vehicle

(AGV) autonomous navigation, non-contact safety systems and for automation of material handling3. One way of
increasing cost efficiency in the manufacturing and material handling industries is to increase the speeds that AGVs
operate at. Vehicle speeds for indoor operation as high as 2 m/s are being targeted. This however increases the possibility
of accidental collisions with personnel and other stationery or mobile equipment. The most widely used AGV safety
systems use contact bumpers, however, this may not be sufficient to prevent injury or damage at these higher operating
speeds. Another approach which is gaining acceptance is to use 2D LADAR line scanners as non-contact safety bumpers
and for 3D image generation. This improves the safety bumper approach, however the vehicle and sensor have to be
moving in order to generate a 3D scene. Other real-time, non-contact imaging devices are being looked at to fill the need
for improving obstacle detection and avoidance, real-time path planning, and mapping functions. A good possible
solution to this need are low cost, compact, solid-state Focal Plane Array 3D LADAR imagers. These are now becoming
available in the U.S. and in Europe. These cameras can provide the AGV with real-time/dynamic (at frame rates of 10
Hz or higher) 3D range images for world modeling of the operational environment. An example of a single frame 3D
range image, taken with a CSEM SwissRanger II, camera is shown in Figure 6. Actually this 3D scene is a result of
combining range image data from two side-by-side cameras which produce an effective wide horizontal Field of View
(FOV) of close to 90o. The vertical FOV is close to 45o. By placing additional cameras around the vehicle, a 360o ring of
perception in 3D around the vehicle can be achieved at close to video frame rates. This technology could open up new
application for recognition of personnel, materials and for automation of material handling and assembly.

Figure 6. Image taken with two side-by-side solid state CSEM – SwissRanger 2 cameras13.

This chapter is organized as follows:

 Section 2 discusses expected requirements for LADARs to be used for on and off-road autonomous driving.

Section 3 describes example potential solutions to the requirements that were offered by four winners of a NIST
Phase I Broad Agency Announcement (BAA) contract to develop LADAR concept designs. Section 4 provides
examples of existing real-time advanced LADAR prototypes available from other developers. Section 5 discusses
the steps being taken to further identify/refine LADAR sensor requirements for FCS UGV missions and
recommends what steps are needed to meet these requirements.

2. Expected Sensor Requirements

2.1 Earlier Baseline Requirements

Even though considerable effort and funding for advanced LADAR development has been provided by the DOD R&D
community, nearly all of the development has been for Automatic Target Recognition (ATR) and tracking from various
flying platforms. This includes LADAR technology development which allows for foliage penetration, permitting
detection of targets hidden under trees and camouflage netting. Although much of the development has contributed
significantly toward furthering the performance of LADAR sensors, it has not addressed the needs for autonomous
driving with unmanned ground vehicles. LADAR sensors for ground vehicles have their own particular requirements.
This includes having a very broad dynamic range. This is the ability of the sensor to detect and recognize
obstacles/objects/terrain features which are at very close range (< 1 m) and at more than 100 m, all in a single frame of
data.

 Participation in the Army Demo III program helped NIST to identify requirement specifications for LADARs to be
used for on and off-road autonomous driving. At that time, NIST envisioned the need for two types of LADAR range
imaging sensors for this type of application - one having a wide FOV (40° x 90°) with a resolution of about 0.25° or
better per pixel, and the second a foveal LADAR having a narrow FOV of approximately 1/10th of the wide FOV with a
resolution of about 0.05° or better per pixel. The intent was to make the foveal LADAR quickly steerable to points-of-
interest positions within the wide peripheral angle FOV LADAR at a rate of at least 3 saccades (point-to-point moves)
per second. Both types of LADAR sensors were expected to have a resolution of about 5 cm or better in range, and be
able to detect the ground plane out to a distance of better than 50 m and vertical surfaces out to a range of at least 100 m.
Frame rates of higher than 10 Hz were required. Both types of LADAR were expected to be eye safe and be provided
with the capability of penetrating dust, fog, grass and light foliage (either by sensing multiple returns or looking for the
last return), and be able to operate in full sunlight conditions. Small size and low cost were also emphasized as important
requirements.

 The initial NIST Broad Agency Announcement (BAA), which contained details on the expected requirements, was
released in June of 2002 and is included in the NIST publication1 as Appendix B. There was a good industry response to
the announcement with 15 proposals being submitted. A unanimous decision was made by the proposal reviewers to
make four awards for Phase I at the end of September 2002. The four awards went to (listed in alphabetical order):

• Advanced Scientific Concepts Inc., Santa Barbara, California
• Coherent Technology Inc., Lafayette, Colorado
• Lockheed Martin Missiles and Fire Control, Dallas, Texas
• Raytheon Missile Systems, Tucson, Arizona

 Synopses of some of the main features of each design were prepared by each contractor for inclusion in the NIST
report1. These are provided in Section 3 of this chapter. Because of the proprietary nature of the designs, however, the
contractors desired to keep much of the proposed design information confidential. Although sponsorship and funding for
the next phase of development never materialized, the need of advanced LADARs for use on UGVs still exists. Over the
last few years NIST received numerous requests for information pertaining to the status of the original BAA and about
the progress in advanced LADAR development in general.

2.2 Requirements Based on Analysis of Autonomous On-road Driving

The DARPA Mobile Autonomous Robot Software (MARS) On-Road Driving Project, described in Chapters 2 and 4,
funded NIST to do a task analysis of autonomous on-road driving. If one looks at an on-road driving task, it is very
difficult to identify the sensors and the processing required because different driving tasks have significantly different
resolution, classification, and identification requirements. For the task of the vehicle driving down a road, the sensor
system has to be able to identify large objects moving nearby, their direction, speed and acceleration, their position in the
lanes and the state of the brake and turn signal indicator lights on other vehicles. Figure 7 shows a typical scene that a
driver may encounter when driving through an intersection. The sensor processing system has to be able to identify: the
position and velocity of turning cars; the position and velocity of oncoming cars; pedestrians; traffic signals; the position

and velocity of vehicles in the direction of travel; road edges; intersection edges; lanes and the position and velocity of
the driven vehicle in its lane.

Figure 7. Perception needed for driving on roads.

 Chapter 2 described how the NIST developed 4D/RCS methodology and reference architecture was used in the
MARS project for the task analysis of autonomous on-road driving. It further described how this task decomposition
representation is used as the framework to further specify the world model attributes, features, and events required for
proper reasoning about the driving scenario subtask activities. These world model specifications, in turn, are used as the
requirements for the sensory processing system. These requirements identify those things that have to be measured in the
environment, including their resolutions, accuracy tolerances, detection timing, and detection distances for each subtask.
This methodology concentrates on the task behaviors explored through example scenarios to define a task decomposition
tree that clearly represents the branching of tasks into layers of simpler and simpler subtask activities. There is a named
branching condition/situation identified for every fork of this task tree. These conditions become the input conditions of
the “if-then” rules of the knowledge set that define how the task is to respond to input state changes. Detailed analysis of
each branching condition/situation is used to identify antecedent world states and these, in turn, are further analyzed to
identify all of the entities, objects, and attributes that have to be sensed to determine if any of these world states exist. An
example given is the subtask activity to “Pass_Vehicle_In_Front” on a two lane road. This is just one of over 170
subtask activities so far identified for on-road driving. After evaluating possible branching conditions/situations and the
associated world states for this subtask, the objects that have to be observed to recognize the world states are identified
along with the minimum sensing resolutions needed for each particular subtask. At a speed of 120 km/h, the minimum
passing zone is 200 m or more. In order to detect objects in this passing zone, a minimum resolution of 0.05° to 0.09° is
required. This is consistent with the LADAR BAA requirement specifications mentioned earlier. At higher speeds, the
passing zone will be longer and the minimum resolutions smaller, but this sets a reasonable sensor requirement for this
particular subtask.

 Analysis of high resolution LADAR for driving was conducted as part of the MARS project. Figure 8 shows a
LADAR range image taken with a long range, high resolution range imager of vehicles on a road and at an intersection
on the NIST grounds. For this scene, cars were detected and localized for ranges out to 62 m, however, longer ranges
(out to 200 m) for the detection of a road and the cars on a road were possible. The project concluded that the perception
problem for on-road driving is tractable using LADAR image processing techniques.

Analysis of
Next Generation LADAR

for Driving

Cars at 30, 41, and 62 m
On-coming cars velocity = - 10 m/s
Own velocity = 10 m/s

Figure 8. High resolution LADAR range image of vehicles on a road.

2.3 Updated Requirements of LADAR for UGVs to be used in FCS

Early in 2005, DARPA tasked several government labs versed in advanced LADAR technology to conduct an analysis of
LADAR performance requirements for future FCS UGV autonomous driving applications. Although the main objective
of the task was to define requirements for LADAR stealth, only the updates to LADAR sensor performance requirements
for autonomous driving will be presented here. In this study NIST was tasked to leverage the existing performance
requirements established for the NIST BAA in next generation LADAR, and to update the requirements for tactical UGV
missions. NIST updated the requirements based on guidance from DARPA and on the outcome of an ARL funded
project to establish perception and autonomous driving requirements for a tactical Road Reconnaissance mission.
Initial study results have indicated that the original NIST BAA requirements still stand but need some minor changes and
additions. Figure 9 is a conceptual diagram of a single LADAR sensor or dual sensors intended for autonomous UGV
driving needs. A Wide FOV (WFOV) (40° x 120°), coarse resolution (0.25°) LADAR is needed for peripheral vision and
a Narrow FOV (NFOV) (4° x 12°), fine resolution (0.025° or better) is needed for saccadic foveal perception. The intent
is to steer the foveal LADAR to areas of interest within the field-of-regard of the peripheral LADAR sensor at a rate of 3
- 10 saccades per second. The higher resolution is necessary to detect, classify and track objects and personnel on or near
the path taken by the vehicle at distances up to 200 m, when the vehicle is operating at top speed. Some sort of image
stabilization or image motion compensation must be provided for the high resolution camera.

Figure 9. NIST conceptual diagram of a single LADAR sensor or dual sensors for FCS UGV autonomous driving needs

In addition to the increased resolution for the foveal LADAR, there are some other suggested changes and additions:

1. Performance in range measurements should be stated as follows:
 Range uncertainty (standard deviation plus bias) must be ± 5 cm.
 Range resolution should be at least 15 cm or better
 2. In addition to range data, provide intensity and color data for improved object classification and recognition.

3. Measurement requirements should also include: Concertina wire detection, thin wire and object detection, and
detection of rocks hidden in grass and foliage. This will require understanding the capability of algorithms and
processing software needed to perform automatic terrain and object detection and classification. A couple of
publications4,5 describe research which was conducted in this topic area.

 As UGVs near deployment in military operations for FCS, there is a growing need for high speed driving safety.
In a study conducted for ARL, NIST has generated some initial perception performance requirements for LADAR at
distances out to 100 m. The LADAR sensor must be able to detect and identify a person in the path of the vehicle in time
for the vehicle to stop or avoid hitting the person. Tests conducted at NIST with a long range, variable resolution, high
performance LADAR (Riegl LMS Z420) have concluded that LADAR with coarse resolution (0.2° to 0.25°) can detect
objects the size of a human at 100 m, but cannot identify them. When the resolution was set to 0.02° (foveal LADAR
perception), it was possible to apply segmentation approaches to identify a person as shown in Figure 10. There are 600
pixels on the target at 100 m. In addition, by combining the range image with color, fewer than 100 range pixels on
target may be required to identify a person at ranges past 100 m.

12o x 4o NFOV
0.025o per pixel
Foveal vision

120o x 40o WFOV
0.25o per pixel
Peripheral vision

Human at 100 m

Human at 100 m
~ 1° x 0.2°
 ~ 600 pixels

Figure 10. Recognition of a human target at 100 m. Range image taken with Riegl LMS Z420 set to an angular
resolution of 0.02° per pixel. This is approximately the resolution of unaided human foveal vision.

3. Example Potential Solutions to Advanced LADAR Requirements

The following are technical synopses offered by the original four NIST Phase I BAA winners on their proposed designs
for a next generation LADAR for driving UGVs. Although the BAA did not proceed to Phase II, the participants have
continued to make progress and some have provided progress reports which are included following the synopses.

3.1 Advanced Scientific Concepts Inc. (ASC)

3.1.1. Synopsis of ASC’s CUGVEL

The objective of the Advanced Scientific Concepts Inc.'s (ASC) contract effort was the design of a 3D Flash LADAR
system that could meet the specifications discussed in section 2.1 of this chapter. The proposed ASC system is called the
Compact Unmanned Ground Vehicle LADAR (CUGVEL). The ASC designs used Commercially Off The Shelf (COTS)
parts as much as possible to reduce cost and a compact laser was used to reduce volume, weight and power. The designs
used no mechanically moving parts for laser scanning and only a single laser pulse was needed to capture the entire FOV
with a hybrid 3D FPA. Figure 11 shows a typical ASC hybrid 3D FPA configuration. It shows how a Readout Integrated
Circuit (ROIC) is bump bonded to a solid-state detector array (such as a Silicon, InGaAs or HgCdTe PIN or APD
detectors). Each unit cell, or pixel, contains circuitry which independently counts time from the emission of a laser pulse
from the camera, to the detection of the reflected pulse from a surface. In this manner, each pixel captures its
independent 3D information in a scene (angle, angle, range). Additional circuitry is available in each pixel to capture
temporal information from the returning pulses. Twenty sampling circuits are provided in the ASC FPA design which
helps in detecting objects which are obscured by smoke, foliage, etc.

 Figure 11. ASC 3D FPA Hybrid Design. ROIC bump bonded to detector array chip.

As designed with off-the-shelf optics, all the 3D imaging systems use two aperture systems whether they are WFOV,
NFOV or a combination of the two: an aperture for the laser-transmit optics and an aperture for the 3D imaging, receive
optics. Figure 12 illustrates a possible camera configuration for the ASC pulse TOF WFOV design6. The drive and
output electronic circuit boards, as well as the laser transmitter, are inside the camera housing. The same configuration
and the same 3D FPA (with longer focal length optics) can also meet the needs for a NFOV stand-alone sensor. Single
aperture CUGVEL systems are possible at an increased cost with potentially reduced weight and volume. There are
advantages for having two WFOV and NFOV imaging systems; objects that require fine resolution can be investigated
completely independently, without affecting the WFOV frame rate. In addition the optics are simpler. The disadvantage

is the increased weight and volume of two separate systems. A combined WFOV and NFOV system is also possible;
however, this concept would have to be further evaluated.

 Hand Held 3D Camera
 Under Development at ASC

 Receiver Aperture

 Ribbon Cable Down loads
 3D Data to Laptop

 Laser Transmitter Aperture

Laptop Processes and Displays
3D Images & Controls Camera
Functions

Figure 12. Possible packaged configuration for the standalone WFOV CUGVEL. Estimated weight is 1.8 kg; the COTs
optics are a large fraction of the weight.

3.1.2 Progress Report on ASC Flash LADAR Development

In 2004 ASC reported6 that their prototype camera, shown in Figure 12, which uses their FPA 3D 128X128 InGaAs PIN
array (operates with a 15 µJ, 1570 nm pulsed laser), had been used to take Flash range images at distances out to about
40 m. Several unprocessed range images are shown in Figures 13 and 14. These figures were provided by ASC. Another
publication7 reviews progress at ASC in applying their 3D Flash LADAR to longer range applications (300 – 600 m).
Various lasers, with pulse energies up to 45 mJ at a wavelength of 1.5 µm, were used for the longer range operation.
Figures 15 and 16 show a top down range image and a rotated 3D range image respectively of a building and cars taken
from a flying platform at an altitude of over 300 m. This work, with a newer version of their Flash LADAR, illustrates
the ability of the Flash LADAR to be used for object identification and 3D mapping from a flying platform.

Figure 13. Car at distance of about 40 m outdoors. Figure 14. Person sitting on a bench (approx. 15 m)

ASC reports that they are now using a 128 X 128 APD detector with their ROIC electronics. They have demonstrated a
times 8 improvement in gain over the InGaAs PIN detector array and are now able to achieve even longer range
operation, out to over 2000 m, at a 20-30 Hz frame rate. The new camera imager that they have built around this detector
includes a registered color imager in the common aperture path. It could also be configured to include an IR detector
array. These features would enhance the object detection, classification and recognition abilities of this camera.

Figure 15. Down looking 3D Image of Two Roofs. Figure 16. Rotated Figure 15 3D Image. Shows presence of
Color denotes range. cyclone fence and automobile height.

3.2 Coherent Technologies Inc. (CTI)

3.2.1 Synopsis of the CTI FM-CW LADAR Architectural Approach

CTI has designed an innovative, coherent FM-CW LADAR for an Unmanned Ground Vehicle (UGV) 3D imaging
sensor. The proposed approach is a departure from conventional direct and coherent detection designs. It offers
significant size, weight, power, and performance advantages over direct detection systems such as pulsed Time-of-Flight
(TOF) or Amplitude-Modulated Continuous Wave (AM-CW) waveforms. It also offers cost reduction over conventional
pulsed coherent detection designs. For the NIST-specified UGV sensor, the compact coherent FM-CW system meets or
exceeds all narrow field-of-view (FOV) requirements (few cm range resolution, 200 m range, IFOV < 1 mrad (0.05°),
frame rate ~ 20Hz, > 9° x 9° FOV) and provides pan/tilt mosaics for the wide FOV (40°x90°) operation with moderate
frame rates. The narrow FOV high-resolution sensor meets the most stringent requirements while also providing higher
sensitivity, superior countermeasure/jam/spoof/damage resistance, and greater range-scalability compared to alternative
direct detection architectures. The following is a list of some of the main specific advantages offered by the CTI
approach:

 • The innovative optical (not RF) homodyne receiver architecture offers a path to very high range resolution (0.75 cm
to 3 cm) through high effective bandwidths (10 GHz to 40 GHz).
 • The homodyne receiver reduces signal processing burdens by more than 10 times versus conventional broadband
signal processing approaches.
 • High quantum efficiency (80 %) shot noise-limited performance is obtained by the coherent transceiver where
mixing function in the optical domain as opposed to the RF domain, where AM-CW transceivers operate.
 • The miniature (few mm size) aperture significantly simplifies the scanner design, thereby enabling high-speed raster
scans with a compact low power lower cost laser system.

Laser source

Beam

Window

Frameless
motor

Galvo mirrors
mount

16 facets
mirror

 • The laser power is transmitted with 100 % duty cycle, enabling full utilization of the energy to generate target
returns and receiver signal.
 • Costly master oscillators were eliminated in the design, making a coherent transceiver practical for this moderate
volume, cost-sensitive market.
 • Highly linear frequency modulation is not required by this sensor design.
 • Optically mixing the FM-CW waveform does not encounter the 3 dB SNR loss that is inherent in AM-CW
transceivers (single sideband demodulation) and other RF domain mixing receivers.
 • Countermeasure resistance is unmatched for the coherent transceiver. The proposed coherent transceiver can reject
large in-spectral band jamming signals by Doppler filtering. Immunity to high intensity jamming is conferred by the fact
that the local oscillator is already intentionally driving the receiver to the saturation limit of the detectors.
 • A coherent transceiver is inherently more immune to background interference.
 • Coherent transceivers offer significantly higher dynamic range than direct detection transceivers. A coherent
transceiver detects the field amplitude, not the intensity of an echo as direct detection transceivers do. Coherent detection
receivers typically have an 80 dB dynamic range vs. 40 dB for direct detection systems.
 • The proposed design utilizes small pixel count focal plane arrays, but can utilize large ones as they become
available.
 • Speckle is mitigated in the proposed high bandwidth (> 4 GHz) transceiver.

There have been significant technical advances in all coherent transceiver subsystems, thereby making the proposed
system tractable. Figure 17 shows a preliminary conceptual drawing of the coherent FM-CW laser radar sensor. The
sensor dimensions are 42 cm x 17 cm x 18 cm (L,W,H). The design can be made smaller with additional effort. Smaller
in many cases, means lower cost, motivating size reduction.

Figure 17. Mockup of Coherent Technologies Inc. FM-CW UGV LADAR.

3.2.2 Progress Report on CTI FM-CW Coherent LADAR Development

CTI reports that they are developing a 32 X 32 pixel array detector for coherent range imaging which could be applied to
the needs of improved real-time perception for autonomous UGV applications. This imager will be swept over the area
of regard in order to generate a full range image (capable of 0.02°/pixel spatial resolution). Because it uses a very small

aperture size, it may be necessary to provide a short, built it stand-off distance – for eye safety reasons. However,
because of the much higher quantum limited detector capability, much lower laser power is needed in comparison to
direct detection techniques. An added feature of using the coherent approach comes from its natural ability to directly
measure velocities of moving objects using the Doppler shift information. The new coherent LADAR array detector will
be ready for testing before the end of 2005.

3.3 Lockheed Martin Missiles and Fire Control

3.3.1 Synopsis of Lockheed Martin’s Traditional Scanning, Pulsed Laser Time-of-Flight LADAR Design

A simple system that can meet the shorter-range requirements for autonomous navigation can be constructed using
commercial parts and non-developmental items, such as Lockheed Martin's mature laser pulse signal processing
electronics. A dual-axis scanned, small linear array receiver was proposed based on experience. This approach led to the
proposal of a design that is small, flexible, and inexpensive. Items such as high-repetition rate, low-pulse-energy lasers,
detectors, scanners, and processors are commercially available. An added benefit is the ability to change the scan rates to
adjust resolution, FOV, and frame rates to meet mission needs without requiring complex gimbaled and/or optical
designs.

The basic components of a LADAR sensor are the transmitter, receiver, optical system, and system electronics. The
transmitter is a compact, high pulse rate laser (or laser diode). The optical system fully scans the laser to create an image
with fine angular resolution. It also provides the collecting aperture for the InGaAs (or Silicon) detector receiver. The
system electronics control the laser, scanner, process the laser returns, and provides data to update the terrain database.
Figure 18 shows the proven Lockheed sensor system architecture.

A core technology of the system is Lockheed Martin's existing, flight-tested, signal processing electronics to capture and
analyze laser pulses. This technology is referred to as the Pulse Capture Electronics (PCE). It is a well-established direct
detection approach that accurately determines relative reflectivity (scene intensity) under varying conditions of range,
atmospheric attenuation, obliquity, multiple returns, and noise. This is accomplished by matching a programmed
template with the entire return pulse data to minimize the effects of signal strength variation, noise and distortions.
Figure 19 shows LADAR pulse processing with the Pulse Capture Electronics.

Figure 18. Lockheed LADAR concept uses proven system architecture, signal processing electronics, commercial
components, and standard interfaces.

 First Pulse Sees Foliage Second Pulse Sees Wall Behind Foliage

Figure 19. LADAR Pulse Processing. Pulse signal processing has first / best / last pulse logic for improved, single-frame,
imaging performance through foliage.

3.3.2 Progress Report on Lockheed Martin UGV LADAR Development

Lockheed Martin has developed a couple of breadboard LADAR sensors using internal IR&D funding and plans to use
them for FCS autonomous ground vehicle applications. They are based on the miniaturized polygonal scanning concept
proposed in the Phase I part of the NIST LADAR BAA. The two breadboards have the following specifications:

Breadboard no. 1: Uses a 50 kHz laser and collects 0.25° pixels over a 90° X (up to) 40° FOV image. They
typically operate it at a 90° X 30° FOV to get a 1 Hz scanning rate for ranges out to 50 m.

Breadboard no. 2: Uses a 200 kHz laser and collects 0.10°pixels over a 90° X (up to) 40° FOV image. They

typically operate it at a 90° X 22° FOV to get a 1 Hz scanning rate for distances up to 1000
 m. This system was being upgraded to operate with a linear array. This would increase the

scanning rate to 4 Hz for a 90° X 30° FOV. This represents a range data collection rate of
approximately 1,000,000 pixels per second.

Some initial image data collected with breadboard no. 1 is shown in Figure 20. Since the system is capable of detecting
and processing three returns from each laser pulse, the corresponding three range images are displayed.

Figure 20. Range image data taken with Lockheed Martin UGV LADAR breadboard no. 1. Range data on the left and
corresponding reflectance image data on the right.

First Pulse

Best Pulse

Last Pulse

3.4 Raytheon Missile Systems

3.4.1 Synopsis of Raytheon’s FPA Flash LADAR Design Concept

Raytheon is developing a 256 x 256 pixel HgCdTe Flash LADAR avalanche photodiode (APD) detector array and a
multi-pulse processing Read-Out-Integrated-Circuit (ROIC) for the Air Force research Laboratory (Eglin A.F.B., FL) for
a seeker application. APD's and ROIC's have been designed, fabricated, hybridized and tested. All functionality has been
verified. Operability's in excess of 97 % have been achieved. Figure 21 shows elements of the detector buildup as well as
the final detector configuration on a Leadless Chip Carrier (LCC). Table 1 lists the detector performance requirements.
The detector records amplitude of the first pulse, and times of arrival of the first and second pulse returns. The ROIC
performs several functions including global bias, individual bias adjustment for each pixel, timing ramp generation, and
signal pre-amplification. Raytheon is now under an AFRL Dual Use Science and Technology (DUST) contract to extend
the ROIC to three pulse-return capability, as well as improve range accuracy and resolution by a factor of 2. To achieve
these improvements, the DUST ROIC is being designed with 0.18 µm geometry, whereas the AFRL/MNGS Flash
LADAR ROIC has been designed with 0.35 µm. First demonstration of DUST ROIC performance was in late 2004.

256 x 256

ROIC IC

8” ROIC Wafer

256 x 256 Ranging
Focal Plane Array
In LCC Package

APD Wafer

256 x 256 Ranging Focal Plane Array Combines Novel “Time
of Arrival” Readout IC and APD Detector Array

APD Array

Figure 21. Raytheon FPA technology for a fully functional, advanced, 256 x 256 Flash LADAR detector array.

Table 1: AFRL / MNGS
Flash LADAR Detector Requirements

Geometric Parameters

Format 256 x 256
Pixel Pitch (µm) 60
Detector Optical Area (µm x µm) 35 x 35

EO Parameters

Wavelength (µm) 1.55
NEP System (pW/rt-Hz) 0.1

ROIC TIA Noise Current (pA/rt-Hz) 0.5
NEPD APD (pW/rt-Hz) 0.08
NEP APD (nW) 0.52
Bandwidth (MHz) 100
Idark (pregain) (nA) <10
K (electron to hole ionization ratio) 0.1
Gain, M 5-10
Fex 4
QE % >90
Fill Factor % >80
Crosstalk % <1

Figure 22 depicts Raytheon's AFRL/MNGS Flash LADAR system concept. This brassboard sensor will be fully
computer controlled, provide real-time imagery display at 10 frames per second, perform burst mode data
collection/transmission at 20 frames per second, and output all LADAR data to the AFRL/MNGS ATA data processor.

Figure 22. System layout for Raytheon's AFRL/MNGS Flash LADAR brassboard system. Gimbals and scanning
hardware are not required to collect LADAR imagery over a large field-of-view.

Table 2 highlights the advantages Flash LADAR has over conventional scanned LADAR sensors for the UGV
application. Raytheon believes the detector array developed under the AFRL/MNGS Flash LADAR program will serve
well in demonstrating UGV LADAR technology, and that the subsequent DUST array will serve to generate a high
performance, low cost, UGV LADAR production system.

Table 2: Advantages of Flash LADAR for UGV Applications

• Overall system simplicity and ruggedness
• Data collection rates reaching 2-Million pixels/second
• Fine stabilization and motion compensation not required
• No motion artifacts in collected imagery
• Most electronics processing able to be carried out on single integrated circuit

3.4.2 Progress Report on Flash LADAR Development

At the time of this writing, Raytheon was in the process of completing the effort funded by the Air Force Research
Laboratory, Munitions Directorate, Eglin A.F.B, FL, to generate a brassboard Flash LADAR seeker. Dr. William
Humbert is the AFRL/MNGS program manager. AFRL intends to use the brassboard seeker for development of Flash
LADAR autonomous target acquisition (ATA) algorithms. To generate the seeker, Raytheon is developing a 256 x 256
pixel HgCdTe flash LADAR avalanche photodiode (APD) detector array, a multi-pulse processing read-out-integrated-
circuit (ROIC), and Flash LADAR seeker system components and architecture.

3.5 Summary of Main Features and Salient Characteristics of Proposed Advanced LADAR Concepts

Table 3 summarizes the main features and salient characteristics of each of the proposed concept designs offered by the
original NIST Phase I BAA winners.

Table 3: Summary of example potential solutions for driving UGVs

Company Type of LADAR Main Features & Salient Characteristics
Advanced Scientific
Concepts

2D FPA “Flash” 1. scannerless
2. system simplicity & ruggedness
3. highest potential data collection rate
4. leverages other agency sponsored R&D
5. meets NFOV & WFOV imaging requirements
6. high immunity to motion artifacts
7. small sensor size
8. high cost savings in large volume production
9. 128 x 128 operational arrays available for tests
10. stores 20 consecutive return pulse samples
11. excellent obscurant penetration

Raytheon Missile
Systems

2D FPA “Flash” Same as for Advanced Scientific Concepts items
1. through 8.
9. largest FPA array being tested (256 x 256)
10. stores first and last laser pulse returns
11. some obscurant penetration capability

Coherent
Technologies Inc.

Coherent FM-CW 1. scanning sensor with small linear array
2. highest potential detector sensitivity
3. low laser power requirements because of 2
4. highest potential dynamic range and resolution
5. highest potential range image quality
6. outstanding obscurant penetration
7. optimized for NFOV imaging requirements. and data
rate

Lockheed Martin
Missile & Fire
Control

Scanning pulsed laser
Time-of-Flight

1. scanning sensor with small linear array
2. based on existing LADAR built for flying ATR
3. good data rate – uses multiple detector array
4. short term delivery possible
5. stores three laser pulse returns
6. good obscurant penetration capability
7. programmable FOV – NFOV and WFOV combined in
one sensor possible

4. Examples Of Existing Real-Time Advanced LADAR Prototypes

This section describes several additional advanced LADAR prototypes (FPA and Scanning) which have been built by the
developers to demonstrate use of such sensors for improving perception in autonomous and semi-autonomous vehicles
for autonomous navigation, non-contact safety systems, autonomous material handling, and other industrial, commercial,
transportation and military applications.

4.1 MIT Lincoln Laboratory
Work at MIT Lincoln Lab has taken another approach to FPA development. In order to achieve enhanced ionization
which is responsive to the arrival of a single photon, they have developed a “Geiger-mode” (GM) avalanche photodiode
(APD) array that is integrated with fast CMOS time-to-digital converter circuits at each pixel8. When a photon is
detected there is an explosive growth of current over a period of tens of picoseconds. Essentially, the APD saturates
while providing a gain of typically > 108. This effect is achieved by reverse-biasing the APD above the breakdown
voltage using a power supply that can source unlimited current. Over the last couple of years movies have been taken
with a GM APD 32 x 32 FPA LADAR. However, since it is not possible to include the real-time movies in this text, a
couple of range images taken with earlier prototypes are provided. These are shown in Figures 23 and 24. These figures
were provided by MIT/LL. Several different sensor cameras have been built and demonstrated over the past few years.
Some of that work is described in SPIE conference publications9,10. They used solid-state Fiber-Pumped lasers (530 nm
and 780 nm), operated at fast firing rates (8 - 10) kHz, required between 15 µJ and 30 µJ per pulse illumination, and used
pan/tilt and scanning mechanisms to cover a larger FOV.

MIT also reports11 that they have extended their earlier work with silicon based APDs by developing arrays of
InGaAsP/InP APDs, which are efficient detectors for near-IR radiation at 1.06 µm. 32 x 32 pixel arrays, with 100 µm
pitches.. Figure 25 shows the key elements that are integrated into a package for Geiger-mode operation. In the figure,
light enters the array from the top and is focused by the microlens array onto the detector array. About 70-80% of the
light is captured and focused onto the detector pixel elements. The overall detector efficiency with the microlenses is in
the order of 30-35% thus considerably increasing detector efficiency. The thermoelectric cooler is necessary to reduce
the darck current rates in order to keep the LADAR time-of-flight gates open for times in excess of 1 µs. This is adequate
for many LADAR applications. MIT has also demonstrated 32 x 32 pixel InGaAs/InP arrays 1.5 µm operation and plan
to extend this work into the 2-4 µm wavelength region.

3D LADAR range image of van at 60 m

Color-coded range 3D model

 Figure 23. Two trucks at a distance of 150 m. Figure 24. Chevy Van at 60 m (courtesy MIT/LL).

Figure 25. Cross section showing key elements integrated into package for Geiger-mode APD arrays (courtesy MIT/LL).

4.2 CSEM (Zurich, Switzerland)

Still another FPA approach has been developed by CSEM in Zurich, Switzerland. Their research has concentrated on
developing compact, robust, low cost, and real-time 3D image cameras, which take advantage of available custom
CMOS/CCD technology. This unique combination permits the optimal use of the strengths of both CMOS and CCD
technologies is terms of performance. A prototype miniature 3D Time-of-Flight (TOF) camera, the SwissRanger 2 (SR-
2), has been built and is available for experimentation purposes12,13. The SR-2 is a stand-alone range image camera
system which includes the illumination unit, a 3D optical sensor, and control electronics in a very compact unit. It is
shown in Figure 26. The emitted optical signal (LED array, 870 nm) is a continuous wave signal which is modulated in
amplitude. The IR signal is modulated at a frequency of 20 MHz. This represents an ambiguity interval of 7.5 m for the
range measurements. The reflected signal from the scene travels back to the camera, where the TOF is measured by
recording the phase delay between the signals. The signal phase is detected by synchronously demodulating the
incoming optical signal by cross correlation with the demodulation signal. Sampling response at the detector at intervals
of Π/2, or four equally spaced temporal points, allows for the calculation of the phase delay. The phase delay is
measured by each pixel. In other words, each pixel is able to measure the TOF. This results in a complete distance/range
map at frame rates approaching 30 Hz where the spatial resolution is defined by the number of pixels in the FPA. For the
SR-2, this happens to be better than 0.25° per pixel (124 x 160 pixels for a FOV of about 30°). At the time of this
publication, the CMOS detector was not able to suppress the effects of high intensity ambient light, therefore operation
in bright sunlight was not possible. Pixels with ambient suppression are in the process of development by both CSEM
and the German group at PMD (see below). Figure 27 is a photo of various size obstacle targets set up in a hallway at
NIST. Figures 28 and 29 are the SR-2 reflectance and range images, respectively.

Figure 26. CSEM SwissRanger 2 prototype camera Figure 27. Photo of various size obstacle targets in
(Figure provided by CSEM). hallway.

Figure 28. SR-2 active illumination reflectance image. Figure 29. SR-2 processed range image (color coded in
 range).

4.3 PMD Technologies (PMDTec) in Siegen, Germany

Another continuous wave Amplitude Modulated (AM) phase-based FPA LADAR camera was under development by
PMDTec in Germany. Similar to CSEM, it too uses CMOS technology to lower costs, and, because of the single 20
MHz modulation frequency, is limited to 7.5 m (ambiguity interval) operation. The early prototype, now named PMD
[vision] 1k-S has been available since 2004. Since the process for measuring range at each pixel is identical to that used
by CSEM, it will not be further described here. There are some differences however. The pixel array size is 64 x 16,
frame rates of up to 50 Hz are possible, but it is somewhat larger in size when compared to the CSEM SR-2. However, a
key feature in the design is the addition of active Suppression of Background Intensity (SBI) circuitry at each pixel.
Depending on the intensity of the illumination source and the level of ambient light conditions, tests conducted by the
company indicate that an SBI performance as good as 40 dB can be achieved. This implies that operation outdoors, even
in sunlight, may be possible. Example images provided by PMDTec taken with the 1k-S camera are shown in Figures
30 and 31. Figure 30 is the reflectance image and Figure 31is the 3D range image.

Figure 30. Active illumination reflectance image taken with Figure 31. Processed 3D range image taken with the 1k-S
PMD [vision] 1k-S prototype camera. camera. Reflectance image superimposed on range image.

In 2005 PMD announced the release of two new camera prototypes, the PMD [vision] 3k-S and the PMD [vision] 19k.
The 3k-S 3D range camera is similar to the 1k-S camera, but has a larger 64 x 48 array size and also has the SBI circuitry
for each pixel in the array. The newer 19k 3D range camera has a pixel array size of 160 x 120 and is very similar to the
CSEM SR-2 camera and has a maximum frame rate of this camera is 10 Hz.

4.4 Canesta, Sunnyvale, California

Canesta, a U.S. company, has introduced competing CMOS-based Focal Plane Array 3D cameras that perform similarly
to the CSEM SR-2 and PMD [vision] 3D range camera prototypes. They also use the continuous wave AM phase based
approach for measuring time-of-flight (essentially range) at each pixel in the array. At the time of this writing, three
Canesta Development Kits were available for research and development purposes. Model DP 203 is a 30° FOV camera,
while DP 205 and DP 208 are 50° FOV and 80° FOV cameras respectively. All three have a 64 x 64 array size. Similarly
to the PMD Tec cameras, these cameras also have background illumination suppression circuitry built into each pixel in
the array. These cameras typically are set to operate at the 7.5 m (ambiguity interval), but the modulation frequency can
be easily changed so that the cameras operate over a different ambiguity interval range.

4.5 IBEO Automobile Sensor GmbH, Hamburg, Germany

A LADAR product for automotive safety applications was announced14 by IBEO (www.ibeo-as.de). The IBEO “Alasca”
sensor uses multi-return pulsed TOF range measurements which are scanned across the horizontal FOV. The sensor
utilizes a four–layer/plane approach where the returns from the four layers are processed in parallel as the mirror scans
the scene horizontally. Although the sensor does not use FPA technology, the sensor can produce a wide 240° horizontal
FOV (using two sensors in front) at a resolution of 0.25°, 0.5° or 1.0°, and a 3.2° vertical FOV at a resolution of 0.8° at a
10 - 40 Hz frame rate. Distance range measurements can be resolved to 1 cm and range accuracy can vary as much as ± 5
cm. The multi-target return detection capability was incorporated in the design to allow for the detection of objects on
the road even in heavy rain. This model sensor utilizes a 905 nm laser which has a range of 0.3 - 80 m. A 200 m sensor is
expected to be released in the future.

 The short term objective for this sensor is to introduce preventive safety features/functions in automobiles to assist
drivers in unsafe driving conditions. The long term objective is to provide vehicles with full automated collision
avoidance capabilities. The Alasca Gen 1 model is limited to 80 m range operation but has been tested and evaluated for
automated stop-and-go driving, automated emergency braking, pedestrian detection, pre-crash detection - collision
warning, and for other applications such as automated intersection crossing assistance, turning assist, parking assist and
blind spot monitoring. The Alasca Gen 2 model, which is expected in the future, will increase detection range to 230 m,
will provide fog detection and measurements in fog, will provide for automatic detection and tracking of lane markings
and road edges, and provide full ACC capability for stop-and-go driving at speeds of 0 - 180 km/h. Figure 5 shows how
LADARs (like the the Alasca) can be used for a variety of automotive safety and driver assist applications. In the
illustration the vehicle is fitted with a single sensor (150° opening angle) and 230 m range detection. Figure 32 shows
how a test vehicle was instrumented with a multi-layer laserscanner for analyzing the performance of the sensor under
realistic driving conditions.

Figure 32. IBEO test vehicle fitted with an Alasca LADAR.

5. Conclusions

Based on the analysis of autonomous on-road driving for the MARS project and autonomous on and off-road driving for
FCS (DARPA and ARL) UGV mission applications, some conclusions on LADAR baseline sensing requirements can be
drawn. The required sensor resolutions will vary depending on which subtask activity is analyzed and on the speeds of
the vehicles involved. Much analysis work has been completed for off-road navigation, however, this work is continuing
in an attempt to identify the sensing requirements for all of the on-road driving and on-road subtask activities and the
resulting required sensor resolutions. Additionally, on-road military tactical behavior driving tasks are now being
analyzed to determine the sensing needs for high speed driving safety. This work will aid in identifying those sensor
capabilities that are most important for both near-term and long-term future development of autonomous driving
systems.

 Potential solutions for meeting the established LADAR requirements were presented in Section 3 with inputs from
four leading LADAR developers (winners of the NIST Phase I next generation LADAR for UGVs BAA contract).
Although sponsorship and funding for the Phase II part of the development never materialized, the companies have
continued to make progress and provided updated status reports on their capability. Section 4 described additional
LADAR developers and prototypes which offer potential solutions for improving perception performance of autonomous
and semi-autonomous vehicles in the military and civilian sector industries.

 Since the release of the original BAA LADAR requirements specification in June of 2002 through the time of
publication of this book, NIST has not seen the announcement of any new LADAR products that can meet all of the
stated requirements. However, as reported in this chapter, prototype advanced LADAR cameras are becoming available
for experimentation which have the potential for a variety of ground vehicle mobility applications in the near future.
NIST intends to continue encouraging and tracking these and other new developments, and working with other
government agencies and industry to measure LADAR performance and investigate potential new applications. Although
some improvements, such as spatial resolution and increased maximum range, of available mobility LADAR are being
reported from ongoing work for FCS, not all of the stated requirements are expected to be achieved in the next six years.
Therefore, NIST encourages additional funding support for further improving sensor capabilities and for the
development of new advanced, high performance sensors based on next generation technology emerging from and
reported by leading LADAR developers.

Acknowledgements

The authors of this chapter would like to thank the following individuals and organizations for contributing information
and expert opinions on the needs and solutions of advanced LADAR for UGV applications. In particular the authors
would like to thank James Albus, Mike Shneier, and Tsai Hong of the Intelligent Systems Division at NIST and Stefan
Baten of EADS Dornier for their insight into LADAR performance and requirements for UGV autonomous driving
applications. Information on LADAR designs and development research was provided by: Robert Lange and Bernd
Buxbaum of PMDTec GmbH; Peter Seitz and Nicolas Blanc of CSEM; Richard Marino and Rick Heinrichs of Lincoln
Lab; Duane Smith of Coherent Technologies Inc.; Roger Stettner of Advanced Scientific Concepts; Pat Trotta of
Raytheon Missile Systems; Bruno Evans of Lockheed Martin. In addition, the following individuals at NIST should be
credited for providing some of the photos and figures used in the report: James Albus; Tsai Hong; Tommy Chang; Peter
Russo; Gerry Cheok; William Stone.

References

1. W.C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, “Performance Analysis of Next Generation LADAR for
Manufacturing, Construction, and Mobility”, National Institute of Standards and Technology, NISTIR 7117, May 2004.

2. “National Automated Highway System Research Program: A Review” TRB Special Report 253, Transportation
Research Board, Washington, DC 1998.

3. R. Bostelman, T. Hong, R. Madhavan, “Obstacle Detection using a Time-of-Flight Range Camera for Automated
Guided Vehicle Safety and Navigation”, Integrated Computer-Aided Engineering Journal, Special Issue: Performance
Metrics for Intelligent Systems, Volume 12, Number 3, 2005.

4. N. Vandapel, M. Hebert, “Finding Organized Structures in 3D LADAR Data”, Army Science Conference, November,
2004.

5. M. Hebert, N. Vandapel, “Terrain Classification Techniques from LADAR Data for Autonomous Navigation”,
Collaborative Technology Alliance conference, May, 2003.

6. R. Stettner, et.al., “Eye-safe laser radar 3D imaging”, Proceedings SPIE, Defense & Security, Volume 5412, April,
2004, Orlando, Florida.

7. R. Stettner, et.al., “Large format time-of-flight focal plane detector development”, Proceedings SPIE, Defense &
Security, Volume 5791, April, 2005, Orlando, Florida.

8. R. Marino, et.al., “A Compact 3D Imaging Laser Radar System Using Geiger-Mode APD Arrays: System and
Measurements”, Proceedings SPIE, Aerosense, Volume 5086, April, 2003, Orlando, Florida.

9. R.W. Cannata, et.al., “Obscuration measurements of tree canopy structure using a 3D imaging ladar system”,
Proceedings SPIE, Defense & Security, Volume 5412, April, 2004, Orlando, Florida.

10. R. Marino, et.al., “High-resolution 3D imaging laser radar flight test experiments”, Proceedings SPIE, Defense &
 Security, Volume 5791, April 2005, Orlando, Florida.

11. J.P. Donnelly, et.al., “1-µm Geiger-Mode Detector Development”, Proceedings SPIE, Defense & Security, Volume
5791, April, 2005, Orlando, Florida.

12. R. Lange, et.al., “Demodulation Pixels in CCD and CMOS Technologies for Time-of-Flight Ranging”, Proceedings
of the SPIE, Volume 3965A, pp.177-188, San Jose, 2000.

13. T. Oggier, et al., “An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth
resolution (SwissRangerTM)”, Proceedings of the SPIE, Vol. 5249 No. 65, 2003.

14. U. Lages, “Laser Sensor Technologies for Preventive Safety Functions”, 12th International Symposium ATA EL,
June 2004, Parma, Italy.

Chapter 8

Standards-Based Architectural Framework
for Intelligent Autonomous Vehicles

Hui-Min Huang, Elena Messina, and James Albus

National Institute of Standards and Technology (NIST)
{hui-min.huang,elena.messina,james.albus}@nist.gov

1 Introduction

The 4D/RCS architecture addresses the problem of intelligent control at three layers of abstraction: (1)
conceptual framework (2) reference model architecture and (3) engineering guidelines. Chapter 1 provided
comprehensive descriptions for the first two layers. The other earlier chapters focused on particular aspects
of the architecture, including the corresponding implementation issues. This chapter focuses on the third
layer, the engineering guidelines. Particular attention is paid to the roles that standards play in the process
of implementing intelligent systems using an architecture-based approach.

In order to characterize this 4D/RCS engineering approach from an architectural perspective, the following
two terms must be defined first:

Software architecture:
“the structure that identifies, defines, and organizes components, their relationships, and
principles of design; the assignment of functions to subsystems and the specification of the
interfaces between subsystems [1].”

Software architectural framework:
“a set of guidelines and descriptions of approaches for the development and evaluation of
software architectures.”

These two concepts anchor this chapter. The chapter is outlined as follows: Some important perspectives
for software architectures and for engineering standards are provided in Section 1. These are followed, in
section 2, by a summary of the major government and private industry initiatives in architectural
frameworks for guiding the development of large software system programs. In section 3, the authors
attempt to establish a framework for assessing the standards availability and for analyzing the standards
needs in the area of intelligent unmanned systems (UMS) control. In sections 4 through 7, the authors use
the established framework to identify, describe, and analyze the relevant standardization efforts. The
authors point out some architectural aspects that can benefit from standardization. The authors also discuss
whether and how some of the ongoing research efforts, including 4D/RCS might evolve into standards.
4D/RCS’s ultimate objective is for itself to be an integral part of the UMS standards portfolio. Section 8
describes an implementation example that uses some of the standards. A summary follows, in section 9.

1.1 Orientations for Architectures
It is not until the last two decades that the issue of software architecture began to receive wide recognition
as a key ingredient to the success of software intensive systems. The federal government has since
established major, high-level architectural initiatives [2, 3]. Industry and academia have also launched
major architectural research and development efforts [4, 5, 6, 7]. However, one must keep in mind that
engineering systems are developed for different purposes: to process and organize information, to execute
particular business processes, or to generate electromechanical behaviors. The architectural principles

behind the different systems, therefore, must focus on the intended purposes. For example, 4D/RCS is a
model-based, behavior-oriented architecture. A key aspect is the set of tasks that the control entities
perform. On the other hand, the overall architecture for the U.S. Department of Transportation’s Intelligent
Transportation System (ITS) [8] involves many aspects, such as traffic management, statistics, and
finances. The corresponding sub architectures should be built based on these key aspects.

1.2 National Standards Strategy
The National Standards Strategy for the United States (NSS) and the later United States Standards Strategy
(USSS) [9] include calls for increasing government use of the standards and improving the responsiveness
of the standards system to consumers’ needs. This motivates NIST to actively participate in architectural
standardization efforts. The authors view that architectural implementations using standard interfaces,
standard components, common definitions of terms, and standard metrics significantly facilitate
interoperable or portable systems and contribute to sharable and reusable software components. These, in
turn, improve the competitiveness of U.S. products.

1.3 Characteristics of Standards
There are several characteristics of standards that must be understood.

In the U.S., standards participation must be voluntary. Standardization processes must be open,
transparent, consensus based, responsive, and meet the needs of the constituencies [9]. Standards apply
only when the participants willingly create and/or adopt them. A team could decide to create or adopt
certain conventions and call them standards for the team. There are also voluntary groups like Open Robot
Control Software (OROCOS) [10] and Orca [11] that seek to develop common robotic control software but
do not seem to formally standardize the results. Informal standards of this sort are referred to as de facto
standards and can be just as effective as formal standards in certain circumstances, particularly when they
are voluntarily adopted by participant in a particular special interest group. Included in this informal
category are efforts by consortia that aim at component portability and maintenance benefits without their
products standards, such as the Automotive Open System Architecture (AUTOSAR) [12], Coupled Layer
Architecture for Robotic Autonomy (CLARAty) [13]. Yet, some other consortia, such as Object
management Group (OMG) [14], Open Group [15], and OPC [16] may consider formal standards
generation as a part of their objectives.

Most commonly, though, standards are generated by the formal Standards Development Organizations
(SDOs). SDOs must follow the guidelines and procedures published by the American National Standards
Institute (ANSI). ANSI coordinates and administers domestic standards, as well as represents the United
States in the International Organization for Standardization (ISO). It is, therefore, advisable to reference
standards by their hosts or sponsors, e.g., a DoD standard, ASTM (formerly known as the American
Society for Testing and Materials) International standards, etc.

Various levels of conformity can be designated for the published standardization reports. For example,
IEEE publishes the following types of documents [17]:

• Standard--for specifying mandatory requirements
• Recommended Practice
• Guide--for providing information
• Trial-Use (for any of the above)--when the document will be published for a limited period (two

years or less) before it becomes an official IEEE document.

The Society of Automotive Engineers (SAE) Aerospace Council publishes the following types of
documents: Aerospace Material Specification, Aerospace Standard, Aerospace Recommended Practice,
Aerospace Resource Document, and Aerospace Information Report. Other SDOs have similar setups.

2 Architectural Framework Standards

This section describes some of the major architectural framework standards that are relevant to the
standards framework presented in this chapter. A framework in this context is the support structure within
which other standards can be organized and developed.

2.1 Federal Enterprise Architecture (FEA)
Federal Enterprise Architecture (FEA) [2] describes an infrastructure that aimed at providing services to the
public. FEA employs a set of reference models, namely, Performance Reference Model (PRM), Business
Reference Model (BRM), Service Component Reference Model (SRM), Technical Reference Model
(TRM), and Data Reference Model (DRM).

The Service Platform and Infrastructure of the TRM includes embedded technology and software
engineering as parts of the service components. This would be the type of service that 4D/RCS provides.

The PRM identifies high-level, key measurement areas, including mission results, customer results,
processes and activities, technology, and human capital. Most of these are at the policy level. The
engineering performance metrics that concern the researchers is a detailed subset of the PRM.

Overall, UMS architectures, including 4D/RCS could be considered a detailed subset of the FEA.

2.2 Department of Defense Architectural Framework (DODAF)
DODAF [3] specifies that integrated architectures be represented in the following three architectural views,
which are inter-related: operational, systems, and technical standards. An additional “all” view addresses
issues that are common to all the three views. Each view is further realized by a collection of products.
These effectively created a “three plus one” view structure, which is summarized as follows:

A. Operational View
The Operational View addresses the tasks and activities, operational elements, and information exchanges
required to accomplish missions. The specific products include: high-level operational concept, operational
node connectivity, operational information exchange matrix, organizational relationships, operational
activity model, rules model, state transitions, event-traces, and logical data model.

B. Systems View
The Systems View describes systems and interconnections supporting the operational activities. The
specific products include: systems interface and communications, inter-systems matrix, systems
functionality, mapping operational activities to systems functions, systems data exchange matrix, systems
performance parameters, systems evolutions and technology forecast, rules, state transitions, and event-
traces for system, and physical schema.

C. Technical Standards View

The Technical Standards View provides the technical systems implementation guidelines for developing
engineering specifications, establishing common building blocks, and developing product lines. The
products include a collection of the technical standards, options and implementation conventions, rules, and
criteria.

D. All View
The All View specifies two products: overview and summary information and integrated dictionary.

These identified products serve as valuable references for 4D/RCS in developing architectural applications.
For example, node connections, state transitions, dictionaries are among the key products for 4D/RCS.

2.3 Standards for Levels of Abstraction
There are multiple standards that describe the multiple layers of architectural abstraction for UMS. The
authors use them to identify the architectural standards needs.

The Open Systems Interconnect (OSI) model, developed by the ISO contains the following seven-layer of
abstraction: Application, Presentation, Session, Transport, Network, Data link, and Physical.

The Internet Protocol Suite (also referred to as the TCP/IP suite) contains the following layers of
abstraction: Application, Transport, Network, and Data link.

The DoD TRM, based on the SAE General Open Architecture (GOA) model, described four layers:
application software, system services, resource access services, and physical resources.

The three models can easily be mapped. The authors will use the GOA/TRM model for the stated purposes
of this chapter.

2.4 IEEE 1471-2000
This standard, entitled “Recommended Practice for Architectural Description of Software-Intensive
Systems,” identifies the roles of architecture in a software engineering community that includes systems,
various stakeholders, and the operational environments [18]. This standard also specifies that architectures
be described using a set of views and composed with a set of models. The standard helps to identify the
entities that should be involved in the architectural development for UMSs.

However, IEEE 1471-2000 does not cover the next level details of specific models or views as DODAF
does. Also, although IEEE 1471-2000 correctly identified various application scopes for the architectures:
those for single and new system, those for existent systems, and iterative architecture for evolutionary
systems, it does not emphasize a particular type, namely, reference architecture, of which 4D/RCS is one.
IEEE 1471-2000 provides a different perspective for architectures, and, as such, it could complement the
aforementioned architectural framework standards.

3 UMS Standards Needs from an Architectural Framework Perspective

Standards definition is a critical architectural framework issue. The authors use a two-dimensional model
to describe an architectural framework, depicted in Figure 1. The vertical axis is adopted from the SAE
GOA/DoD TRM. In other words, from the vertical perspective, the architectural standards should cover
three major layers of abstraction: hardware (computer, sensor, actuator, chassis, power), operating
environments and resource handling, as well as applications and application support software.

level 1-- physical resources

level 2 direct interface
level 2 -- resource access services

level 3 direct interface

level 3 -- system services
level 4 direct interface

level 4 -- unmanned system applications
level 4 -- support applications

direct fire
platoon

C2 UGV
section

C2 UAV
section

scout
vehicle

recon
vehicle

auto navmission
package

communication

driver

headingspeed

GOA/TRM
OSI

Standards at
Multiple Layers
of Abstraction

Figure 1: Architectural Framework for Standards Analysis.

Horizontally, the architectural standards should cover other following aspects relevant to the
standardization effort. These include:

1. organization of architectural applications
a. functional components
b. inter-component connections
c. governing rules for organizing the components and connections

2. knowledge models for tasks, entities, events, images, maps, and costs
3. execution models

a. solution paradigms such as state-transitions, search
b. messaging protocols such as send/receive acknowledgement, periodical vs. per request
c. inter-component dependence such as dynamic configuration, sequential vs. concurrent

4. metrics
a. functional requirements, such as missions and tasks
b. systems performance specification on computers and on electric/mechanical systems

5. processes and tools
a. terminology
b. development methods through out life cycle, including domain knowledge mining and

orchestration, system partition
c. tools and environments for representation and for simulation
d. testing, verification and validation, user interface

The following sections address the UMS standards needs and availability based on this framework.

4 Application Layer Standards

This layer concerns application software for the unmanned vehicle systems. Standards efforts and needs
are focused on the following types:

• Architectural Connectors—the interfaces that convey information among the architectural
components

• Architectural Components—the computing units that utilize the Connectors to support intelligent
systems

• Data Models—the information that support intelligent decision making
• Execution Model—the real-time decision making processes

4.1 Existent Architectural Connectors Standards
The ongoing standardization efforts in this category include SAE AS-4 and North Atlantic Treaty
Organization (NATO) Standardisation Agreements (STANAG). The Unmanned Systems committee,
designated as AS-4, of the Aerospace Avionic Systems Division, Aerospace Council of the SAE is
developing a message specification for UMS. AS-4 was migrated from the Joint Architecture for
Unmanned Systems Working Group (JAUS WG), originally chartered by the Office of the Secretary of
Defense (OSD). NIST is a charter member of JAUS WG.

The AS-4 committee advances the JAUS documents. The Unmanned Systems Message Specification
(UMSMS) is the next version of the message specification section in the JAUS Reference Architecture,
Version 3.2. Within the UMSMS, there are six categories of messages, namely, command, query, inform
(responses to queries), event setup, event notification (responding to event setups), and node management.
Each message is assigned a code, i.e., a message ID. Each message class is assigned a code range, or
message space. Additional message space is reserved for applications that require messages that are not
yet specified in the UMSMS. These are called User Defined Messages. Proven User Defined Messages
should be submitted to the WG for consideration. Messages begin with a standard, 16-byte header that
includes the following fields:

- message properties for specifying such properties as message priority, acknowledgement of
receipt, whether user-defined or standard message, and the version of RA or UMSMS that the
message conforms to,

- source and destination IDs for the involved components, nodes, and subsystems,

- data control, for indicating data size and single/multi packet transactions, and

- sequence number for serializing the messages.

There is a service connection feature in the messaging that support regular, periodic data transmission of
the Inform or Command class messages. The UMSMS also supports the broadcast type of messaging.

4D/RCS systematically lists sets of command vocabulary and identifies interfaces among architectural
components. 4D/RCS could, therefore, serve as a reference for the UMSMS.

The NATO Standardisation Agency (NSA) has published a series of standards, called STANAGs. The title
of STANAG 4586 is “Standard Interfaces of UAV Control System (UCS) for NATO UAV
Interoperability.” The document describes interfacing standards, such as the Data Link Interface (DLI),
that provides common messages and mechanisms for UAVs; Command and Control Interface (CCI),
which defines messages on airspace control, air traffic control, mission planning, etc.; and the Human
Computer Interface (HCI), which is for operator control, monitoring, warnings, cautions, and advisories,
communications management, post mission reporting, etc.

The document covers both the data content and the protocols, which are identified as the top three layers in
the authors’ framework of study. These, to some extent, overlap the aforementioned SAE AS-4 work in the
domain of UAV. Efforts have begun to investigate the possibility of integrating the two.

4.2 Further needs and paths for interfacing standards
Command interface is essential to UMS. In DoD, Services publish standard tasks, such as Air Force Task
List (AFTL) [19] and Army Universal Task List [20]. These might serve as good starting points for
developing architectural command interfaces. In addition, DoD has message standards to facilitate
information sharing, including Tactical Digital Information Links (TADIL) [21] and Joint Variable
Message Format (JVMF) [22].

The Access 5 Project [23], aimed at developing “recommendations for the safe and reliable integration and
routine access of High Altitude Long Endurance Remotely Operated Aircraft Systems in the National
Airspace System” offers opportunities for architectural standardization.

Given all these standardization activities, several issues will have to be addressed. A decision is needed
regarding whether to coordinate amongst or actually consolidate multiple standards. Especially for
command structure standards, it may be necessary to optimize them for robotic systems versus human
soldiers. Another major issue is how generic to make messages. Depending on the domain (aerial,
ground, underwater, etc.), it may be more efficient and effective to make the interfaces be domain-specific.

4.3 Architectural Components Standard
The ongoing standardization efforts in this category include SAE AS-4. The aforementioned JAUS
Reference Architecture (RA) (Section 4.1) contains component specification. In this specification, the
components are categorized into six types, namely, command and control, communication, platform,
manipulator, and environment sensing. Each component has a unique identifier (ID) and performs a
single function. Each component has a specified set of messages it sends and receives.

The updated version of JAUS RA contains a limited set of components. Components play a limited role in
JAUS. They are not covered in the JAUS compliance plan, and, hence, are not enforceable. Another issue
with the component specification is that the guidelines for functionally organizing components are not
provided1. However, the authors regard these guidelines as essential architectural concerns.

There are other architectural efforts that emphasize component organization. The concept of an Observe,
Orient, Decide, and Act (OODA) loop [24] has existed since the 1980s. The loop process features many
lines of cross-referencing, feeding back, and feeding forward as well as rich interactions with the
environment. The OODA loop is strikingly similar to the construct of a 4D/RCS node that includes the
functions of sensory processing, world modeling, value judgment, and behavior generation. 4D/RCS takes
a further step and describes that the functional loop be replicated throughout all the nodes of a system.

4D/RCS and OODA can serve as organizational frameworks for the JAUS components and messages.

4.4 Data model standards
Unmanned system control utilizes a large number of different data types. The data types include scalars,
vectors, arrays, symbols, strings, pointers, lists, frames, and graphs. Information in the database includes
signals, state variables, names, characters, numbers, attribute values, relationships, images, maps, rules,
equations, and recipes. Knowledge includes structural and dynamic models that describe how the world
behaves, and task knowledge that describes how to perform tasks, what tools to use, what resources are
needed, and what information is required. State variables define estimated conditions in the world.
Attributes describe properties. Entities and events can be represented in frames that contain lists of state
variables, attribute values, and relationships. Images contain information about the position of entities in
the world, and maps can provide geometric representations of terrain overlaid with labels, icons, and text
that contain information necessary for situation assessment and planning of action. Therefore the standards
requirements for data applying to unmanned systems are enormous. Some key applicable standards efforts
are underway.

Geographic data is an area that has a lot of standardization efforts, although a lot of the results may need to
be tailored to the computing requirements of the UMS real-time control. Federal Geographic Data
Committee (FGDC) [25] is a U.S. Federal Government interagency committee for developing the National
Spatial Data Infrastructure (NSDI), including geospatial data standards. The developed standards include:

1JAUS’s coverage of this aspect is limited to a topological view, stating that a node contains a number of
components.

• Spatial Data Transfer Standard (SDTS) - for sharing earth-referenced spatial data among
heterogeneous computer systems [26]. SDTS also includes a Computer Aided Design and
Drafting (CADD) Profile that supports exchange of geospatial data contained within CADD
systems with other geoprocessing systems [27], and

• Vegetation Classification Standard [28].

National Geospatial-Intelligence Agency (NGA), formerly National Imagery and Mapping Agency
(NIMA), maintains a set of geospatial data standards such as Universal Transverse Mercator (UTM) [29],
Digital Terrain Elevation Data (DTED) [30], Raster Product Format (RPF), and Vector Product Format
(VPF).

World geodetic system 1984 (WGS 84) [31,32], an earth-fixed global frame, is widely used. WGS 84 was
adopted by the International Civil Aviation Organisation (ICAO) as its geodetic reference standard. NATO
NSA took the approach of adopting many of these data model standards as its STANAGs [33]. There is
also a National CAD (computer-aided design) Standard [34] that aims at facilitating the integration of
building design data.

In terms of standards for detailed mechanical parts, the Standard for the Exchange of Product Model Data
(STEP) is a comprehensive ISO standard (ISO 10303) that describes how to represent and exchange
product information. STEP includes many “parts” ranging from mechanical design representations,
systems engineering data representation, to product life cycle support. It is conceivable that some aspects
could be extended for modeling the relevant objects in the UMS architectures.

All of these efforts are potentially useful to the problem of UMS control, yet, as stated before, a lot more
standards may be needed to support the rich knowledge bases required for intelligent system control.

4.5 Execution Model Standards
Architectures should describe consistent models for execution, as those would support system integration
efforts. 4D/RCS, for example, specifies the default model for execution as one in which all control nodes
may execute concurrently. The intelligence is distributed among all the nodes in the system. Messaging
within 4D/RCS should be non-blocking and reception of all messages should be acknowledged. Other
execution models have been defined for unmanned systems. The key point is that a consistent standard is
necessary for collaborating systems or intra-system components.

5 System Service Layer Standards

The standards at this layer facilitate the interoperability of unmanned system components. 4D/RCS
applications should operate regardless of which system service layer standards the host computer
implements. Several major efforts are underway in this area. These standards address similar technical
issues. Therefore users should reference the one(s) that is/are most beneficial to their programs.
Summaries for these standards are provided below.

U.S. Army Weapon System Technical Architecture Working Group (WSTAWG) Operating Environment
(OE) Application Program Interface (API) specifications chartered to develop technical standards for war
fighting embedded systems for the U.S. Army. One of the Integrated Product Teams (IPT) under
WSTAWG develops the Operating Environment (OE) Application Program Interface (API) specification.
The API set serves as a foundation for portable, distributed real-time embedded weapon systems
applications.

The API set covers several areas. The operating system (OS) services form an operating system shell
facilitating portability to various operating systems. The resource access services standardize and isolate
the dependencies of the physical services layer from the OE system services. The covered issues include
common interface definition, error handling, configuration, data distribution, timer, synchronization, etc.

The WSTAWG Weapon System Common Operating Environment (WSCOE) IPT aims at developing a
common development environment consisting of standards based products to serve as a template for new or
upgraded Army manned and unmanned weapon systems. At the time of this writing, 4D/RCS was being
considered a part of the architectural base for WSCOE.

The SAE AS-4B Transport Specification defines the protocols employed for the transport of the UMSMS
messages for all supported low layer protocols and media on a computer network. A preference is to use
the Internet Protocol Suite (TCP/IP Suite) that employs the best-effort, unreliable delivery of the User
Datagram Protocol (UDP) over Internet Protocol (IP) for most of the UMSMS messaging. Transmission
Control Protocol (TCP) may be used for the assured delivery of a small volume of safety critical messages.
4D/RCS applications should operate if this standard is what the host computer implements.

The NATO STANAG 4586 covers messaging protocols. TCP/IP, HTTP, FTP, and Network Time Protocol
were specified. A comparison between this standard and the SAE AS-4 Transport specification may be
beneficial.

OMG Middleware [14] is a set of middleware specifications that aim at providing interoperability in
heterogeneous computer systems that may involve different platforms, operating systems, and
programming languages. The OMG specifications include Common Object Request Broker Architecture
(CORBA) and Data Distribution Service (DDS).

6 Performance Metric Standards

Performance requirements are typically application specific. Architectural metrics must be specified
according to the software and hardware performance requirements, for example, “cycle time of Y ms for
the control nodes” and the functions or behaviors that the resulting electro-mechanical system is expected
to perform, including issues such as accuracy and reliability, for example, to deliver supplies to an area of a
particular size. However, it could be very beneficial if there were sets of standard definitions, metrics, and
measurement processes that user could use to either specify their architectures or evaluate the systems
under development. These standards could be established in a generic way but allow for instantiations
applicable to specific systems.

There have been a lot of studies on software metrics. The relevant standards include [35, 36]. In addition, a
collection of bibliography is provided in [37]. Mills, in [38], assessed a collection of software metrics that
might involve measuring the size (lines of code, function points), complexity (nodes and branches in
logical flows), quality (mean time between failure), level of effort, etc.

On the functional/behavioral performance, a general area that receives a significant amount of attention is
the adaptability, robustness, and reliability of unmanned systems. Unmanned systems are anticipated to
operate in uncertain and changing environments which may be unsafe for humans. As such, unmanned
systems must be able to handle certain levels of uncertainty with certain levels of performance consistently.
These give rise to the following two standards oriented projects.

6.1 Performance Metric Standards for Urban Search and Rescue (US&R) and Bomb Disposal
Robots

The Science and Technology (S&T) Directorate of the Department of Homeland Security DHS has
initiated an effort with the NIST to develop comprehensive, performance based standards related to the
development, testing, and certification of US&R robotics [39] [40]. NIST has conducted a series of
workshops attended by the first responders to conduct a US&R robot requirements analysis [Error!
Bookmark not defined.]. The analysis also outlined test methods for the requirements. The test methods
are a significant part of the resulting standards This project has been migrated to be under ASTM
International and is designated as ASTM E54.08.01.

In a similar vein, National Institute of Justice has initiated an effort with NIST to develop performance
standards for bomb disposal robots. Chapter 9 of this book describes these issues in further detail.

6.2 Autonomy Levels for Unmanned Systems Framework
NIST initiated and is coordinating an Autonomy Levels for Unmanned Systems (ALFUS) ad hoc working
group effort. The goal is to define standard terms and metrics for specifying the autonomy requirements
and for evaluating the autonomy capabilities of intelligent unmanned systems [41, 42, 43]. The group
defined that the autonomy capability of UMS is measured by the missions that the UMS is capable of
performing in certain types of environments and requiring certain types of human intervention.
Adaptability to changes in mission operations and environmental conditions is essential. Three sets of
metrics have been defined as follows:

• Mission complexity could be measured with the metrics of: levels of subtasking, levels of decision
making, levels of collaboration, knowledge and perception requirements, planning and execution
performance, independence level, situation awareness level, etc.

• Human independence can be measured with the metrics of: interaction time, interaction types,
robotic initiation of communication, etc.

• Environmental difficulty can be measured through relative solution space, levels of dynamicity
and understandability of the environment, etc.

Work is underway to define measuring scales for all of these metrics.

Autonomy levels can be considered as a subset of the general performance metrics for unmanned systems.
The authors are also exploring extending the ALFUS model to facilitate measuring the general performance
of intelligent systems. The authors believe that, conceptually, most of the ALFUS metrics sets are
applicable to measure either autonomy levels or general system performance. What may need to be further
developed includes different sets of scales. For example, the ability to avoid certain obstacles is a
contributing factor both to the vehicle’s autonomy level and to the vehicle’s general performance
specification.

7 Process and Tools Standards

Common processes and tools facilitate sharing of architectural components. This section assesses the status
of relevant tools and process support standards.

7.1 Terminology
Terms and definitions are among the critical initial steps in architectural development efforts. They
provide a common vernacular within the community for communication and for system description. The
following are some of the published terminology reports:

• Department of Defense Dictionary of Military and Associated Terms [44]
• NATO STANAG 4586 Annex A, Terms and Definitions
• AIAA Recommended Practice - Terminology for Unmanned Aerial Vehicles and Remotely

Operated Aircraft (R-103-2004e) [45]
• 4D/RCS Definitions [Error! Bookmark not defined.]
• Autonomy Levels for Unmanned Systems Terminology [46]
• ASTM F 1490 – 04a: Standard Terminology Relating to Search and Rescue
• ASTM F 2395 – 05: Standard Terminology for Unmanned Air Vehicle Systems

In addition, the aforementioned US&R Robotic standards effort is in the process of generating a
terminology document, which is planned to be submitted to ASTM for standardization.

7.2 Development methods
Large, intelligent systems need to be developed in a systematic way, requiring sets of comprehensive
guidelines or methodologies. The following are among the established methods:

• ANSI/GEIA EIA-632, Processes for Engineering a System
• AIAA Guide for Reusable Software: Assessment Criteria for Aerospace Applications
• Chapter 2 of this book describes a methodology for developing 4D/RCS architectural applications

7.3 Tools and Software Environments
UMS architectural modeling could utilize the various representation or language standards. Developers
need to identify the key aspects of the systems, including tasks, data, and processes to be developed before
selecting best suitable modeling tools or representations.

The following are some of the standards that are either available or evolving:

• OMG Interface Definition Language (OMG IDL), which is ISO/IEC 14750
• OMG Unified Modeling Language (UML) and Systems Engineering Modeling Language (sysML)

[14]
• SAE Architecture Analysis & Design Language (AADL) [47]
• IDEF [48]
• Web ontology language (OWL) [49]

In addition, NIST researchers also experiment with several 4D/RCS tools that facilitate the architectural
development. The tools include:

• Neutral Message Language (NML) [50,51]: a uniform Application Programming Interface (API)
to the communication functions of the intelligent system components. NML employs a mailbox
(fixed size) model and supports many widely-used protocols such as interprocess shared memory,
interprocessor backplane global memory, and internet networking. NML support various
communication modes such as queued and non-queued as well as blocking and non-blocking.
NML provides language bindings for C++ and Java.

• RCS Design Tool: “A tool written as a java applet that allows programmers to create RCS

applications graphically and generates source code [51,53]”

Figure 2: RCS Node Composition in UML.

A set of tools such as this one can help ensure that engineers develop control systems that are compliant
with a given architecture. Such tools can inherently limit the choices of modules, messages, and the
underlying communications and/or computational implementation to those that conform to a standard
specification. The next section also provides an example, using generic templates, of a method to help
assure compliance to a standard for UMS architecture.

8 A 4D/RCS Implementation Reference Model

Standards-based software tools accelerate the creation and enhancement of intelligent unmanned systems.
Usage of tools also provides a basis for component reuse. Standards based commercial tools, such as those
based on the Unified Modeling Language (UML) are being experimented with for the feasibility of
facilitating a 4D/RCS development infrastructure. The following describes a set of generic templates that
might be used for particular system development.

The following UML models were developed to represent 4D/RCS: RCS Node, shown in Figure 2, RCS
Node Functions, shown in Figure 3, and RCS Node Functional Model, in Figure 4. Note that all the
modeled functions are stubs that are intended for instantiation for the applications.

As described in the earlier chapters, an RCS node consists of four functions, namely, sensory processing,
world modeling, value judgment, and behavioral generation. Behavior generation is further decomposed
into the planner and executor functions (see Figure 2). All the node functions, as well as the node itself,
can be implemented with sets of generic functions. Figure 3 illustrates the concept. RCS applications are
distributive in nature. They can be executed cyclically on their own. The authors employed a base class,
called cyclicProcess to realize this concept. In the cyclic process, a preprocess, a decision process, and a
post process would be executed in order by the unitCycle function. The cycle time is specified by the
cycleTime variable.

Figure 3: RCS Node Function Code Frames in UML.

All the node functions inherit the functionality of cyclicProcess. The node function templates contain
additional functions, including reading from and writing to particular communication channels. These read
and write activities described in the early chapters of this book and are illustrated in Figure 4.

Figure 4: 4D/RCS Node Functional Model in UML.

9 Conclusion
An architectural standards framework based on 4D/RCS has been described. This framework was used to
assess intelligent, unmanned system standards that were either established or being developed. The authors
also identified de facto standards. Architectural standards needs were also highlighted through this
assessment process. The authors’ findings included that standards needs in the area of behavioral
performance metrics might be worth its focus from the architectural community.

References

1 James Albus et al., 4D/RCS: A Reference Model Architecture For Unmanned Vehicle Systems, Version

2.0, NISTIR 6910, Gaithersburg, MD, 2002, http://www.isd.mel.nist.gov/projects/rcs/
2 Executive Office of the President of the United States, FY07 Budget Formulation FEA Consolidated

Reference Model Document, http://www.whitehouse.gov/omb/egov/a-1-fea.html
3 DoD Architecture Framework Working Group, DoD Architecture Framework Version 1.0,

http://www.defenselink.mil/nii/doc/DoDAF_v1_Volume_I.pdf,
http://www.defenselink.mil/nii/doc/DoDAF_v1_Volume_II.pdf

4 http://www.iasahome.org/iasaweb/appmanager/home/home

5 Carnegie Mellon Software Engineering Institute, Software Architecture for Software-Intensive Systems

http://www.sei.cmu.edu/architecture/index.html
6 IEEE Recommended Practice for Architectural Description of Software-Intensive Systems ANSI/IEEE

Std 1471, http://www.pithecanthropus.com/~awg/public_html/browsing_library.html
7 Foundation for Physical Intelligent Agents, FIPA Abstract Architecture Specification,
 http://www.fipa.org/specs/fipa00001/SC00001L.html#_Toc26668600, December 3, 2002.
8 United States Department of Transportation, National ITS Architecture Version 5.1,
 http://www.iteris.com/itsarch/
9 American National Standards Institute, United States Standards Strategy,

http://ansi.org/standards_activities/nss/usss.aspx?menuid=3, December 8, 2005.
10 http://www.orocos.org/index.html
11 http://orca-robotics.sourceforge.net/index.html
12 http://www.autosar.org/find02_ns6.php
13 R. Volpe, et al., "The CLARAty Architecture for Robotic Autonomy," IEEE Aerospace Conference,

Big Sky, Montana, March 10-17, 2001, http://robotics.jpl.nasa.gov/
14 http://www.omg.org/
15 http://www.opengroup.org/
16 http://opcfoundation.org/Default.aspx/01_about/01_whatis.asp?MID=AboutOPC#top
17 IEEE Standards Style Manual
18 ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive

Systems, IEEE, New York, New York, 2000
19 Air Force Doctrine Document 1-1, 12 August 1998
20 U.S. Army Field Manual No. 7-15.
21 http://www.fas.org/irp/program/disseminate/tadil.htm
22 Dalrymple, E., “U.S. Army Develops High Quality, Extremely Low Cost Digital Message Parser,”
Software Technology Support Center Magazine, www.stsc.hill.af.mil/crosstalk/2002/02/dalrymple.pdf ,
February 2002
23 Access 5 Project, Functional Requirements Document for High Altitude Long Endurance (HALE)
Unmanned Aircraft Systems (UAS) Operations in the National Airspace System (NAS), January 2006.
24 http://www.belisarius.com/boyd.htm
25 http://fgdc.gov/
26 http://mcmcweb.er.usgs.gov/sdts/whatsdts.html
27 http://www.fgdc.gov/standards/documents/standards/sdts_cadd/
28 http://www.fgdc.gov/standards/documents/standards/vegetation/vegclass.pdf
29 http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html
30 National Imagery and Mapping Agency, http://www.fas.org/irp/program/core/dted.htm
31 http://www.wgs84.com/
32 http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
33 STANAG 4586, Annex B, section 4.3
34 http://www.nationalcadstandard.org/whyncs.html
35 Dictionary of Measures to Produce Reliable Software. IEEE Std 982.1-1988, New York, April 1989
36 A Software Quality Metrics Methodology. IEEE Std 1061-1992, New York, March 1993
37 http://irb.cs.uni-magdeburg.de/sw-eng/us/bibliography/bib_main.shtml
38 Mills, E. E., Software Metrics, SEI curriculum Module SEI-CM-12-1.1, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 1988.
39 http://www.isd.mel.nist.gov/US&R_Robot_Standards/
40 Messina, E. and Jacoff, A., “Performance Standards for Urban Search and Rescue Robots,” Proceedings

of the 2006 SPIE Defense and Security Symposium, Orlando, FL, April 2006.
41 http://www.isd.mel.nist.gov/projects/autonomy_levels/
42 Hui-Min Huang, Kerry Pavek, James Albus, Elena Messina, “Autonomy Levels for Unmanned Systems

(ALFUS) Framework: An Update,” Proceedings of the SPIE Defense and Security Symposium 2005,
Conference 5804, Orlando, Florida, March 2005.

43 Hui-Min Huang, Elena Messina, Ralph English, Robert Wade, James Albus, and Brian Novak,
“Autonomy Measures for Robots,” Proceedings of the 2004 ASME International Mechanical
Engineering Congress & Exposition, Anaheim, California, November 2004.

44 Department of Defense Joint Publication 1-02, http://www.dtic.mil/doctrine/jel/doddict
45 http://www.aiaa.org/content.cfm?pageid=363&id=1189&Type=StoreProduct&LayerID=51
46 Huang, H., Autonomy Levels for Unmanned Systems Terminology, NIST Special Publication 1011,

Version 1.1, http://www.isd.mel.nist.gov/projects/autonomy_levels/terminology.htm
47 http://www.aadl.info/
48 Mayer, Richard J., et al., IDEF Family of Methods for Concurrent Engineering and Business Re-

engineering Applications, Knowledge-Based Systems, Inc., 1992
49 http://www.w3.org/2004/OWL/
50 Shackleford, W., Proctor, F.M., Michaloski, J.L., The Neutral Message Language: A Model and Method
for Message Passing in Heterogeneous Environments, Proceedings of the 2000 World Automation
Conference, Maui, HI, June 11 - 16, 2000, (2000)
51 http://www.isd.mel.nist.gov/projects/rcslib/
53 Veysel G., Moore, M., Passino, K., Shackleford, W., Proctor, F., and Albus, J., The RCS Handbook:
Tools for Real-time Control Systems Software Development, Wiley Series on Intelligent Systems, John
Wiley & Sons, Inc., June 2001.

Chapter 9

Performance Evaluation of Autonomous Mobile Robots

Elena Messina, Adam Jacoff, and Harry Scott
National Institute of Standards and Technology (NIST)

{elena.messina,adam.jacoff,harry.scott}@nist.gov

1. Introduction

As the nation’s metrology laboratory, NIST has been involved in measuring performance of various
technologies related to unmanned ground vehicles for decades [23] [11] [12]. A comprehensive effort was
initiated in 1999 to develop measures of performance for intelligent systems. This primarily, but not
exclusively, focused on the software within the systems. Emphasis was placed on unmanned ground
vehicles, since that was a technology with which NIST had extensive experience. Over the years, NIST has
been collaborating with Army Research Laboratory, DARPA, DOT, and other organizations to develop
focused measures of performance for unmanned systems and subsystems. This chapter discusses the
overall philosophy guiding the performance evaluation work at NIST, describes the required infrastructure
to support a measurement program for unmanned ground vehicles, and provides examples of applied
performance evaluations.

The approach espoused by NIST in evaluation of mobile robots is based on both cognitive principles and
domain-specific requirements. In this chapter, \ the terms “intelligent system” and “cognitive system” are
used interchangeably. A definition of cognition is “the mental acquisition of knowledge through thought,
experience, and the senses” [18]. Basic understanding of animal and human cognition has helped shape
the 4D/RCS architecture [3]. Therefore the approach to evaluating systems developed using 4D/RCS
exercises basic functions that have a cognitive foundation: sensing and modeling the world and planning
behavior to achieve goals. Equally important is the development of tests that are driven by the constraints
of the domain that the system must function within and by the tasks that the system must be able to
accomplish. Both the cognitive and task-based performance evaluation approaches are useful in
measuring the performance of non-RCS-based systems. Regardless of their underlying architecture,
systems must have some capacities for sensing their environment, creating a model of what the state of the
world is, and planning – either reactively or deliberatively or both. And of course, ultimately, systems must
be able to accomplish the tasks that they are required to perform.

Figure 1: The Performance Evaluation Process for Intelligent Autonomous Vehicles. The overall process
starts with principles of cognition (concepts about perception, types of memory, feedback loops, etc.) From
those basic principles, one can derive a cognitive architecture such as 4D/RCS (not shown in this diagram).
The cognitive foundations can be used to structure a domain/task analysis. Starting with the types of tasks
that a system will be expected to perform, the behaviors it will need to have are derived, followed by the
knowledge requirements to support the behaviors (i.e., what will it need to know about in order to make
decisions – both deliberative and reactive). The knowledge requirements drive the sensory perception
requirements and the system’s external interactions, be they with other agents or humans. The output of
this step is a set of performance specifications for the overall system and for subsystems, including sensors,
world models, planners, etc. An infrastructure is needed to support evaluations of the system. Tools in
this infrastructure include simulations and data capture. The performance specifications are used to derive
test designs and test methods and set the requirements for datasets, ground truth, arena designs, and other
supporting artifacts.

Figure 1 shows a high-level picture of the performance measurement process and its various stages. The
process begins with an understanding of the principles of cognition. This foundation provides guidance in
the development of an implementation architecture and methodology, such as 4D/RCS, which is discussed
in-depth elsewhere in this book, as well as in the derivation of the tests. The methodology includes a task
and domain-based analysis, which results in behavioral, knowledge, sensing, and other system
requirements. The supporting infrastructure for performance evaluation, comprising test

designs/protocols, tools including simulators and visualizers, ground truth and sensor datasets, and testbed
environments. In this chapter, examples are provided of how this process has been applied by NIST and
ARL to evaluate performance of unmanned vehicles.

A methodology for deriving the control architecture for a mobile robot (or other complex system) is
described more fully in Chapter 2. A parallel methodology is applied to derive appropriate performance
metrics for the system. The relevant point for performance evaluation is that the derivation of the
evaluation procedures is also driven by the requirements of the tasks that the system is to perform. The
design and the evaluation process both begin with a rigorous analysis of what the system is supposed to do.
Measures and constraints are defined at this time, ideally in close consultation with the end users and
domain experts (also known as subject matter experts or SMEs). The system’s overall capabilities, such as
being submersible or able to carry a payload of a certain weight, are key aspects that have to be evaluated.
However, these physically-based performance tests are relatively straightforward to design and carry out.
More challenging to evaluate are the individual tasks and overall missions that the system is to perform. Is
the system supposed to be able to support a route reconnaissance or try to find victims in a collapsed
building? The mission definition and environmental conditions lead to specific and unique performance
requirements. SMEs are asked to describe what they themselves do, and to start defining what they would
like the robot to be able to do as well. This is especially true in the vast majority of instances where the
robot is not a replacement for the human, but rather is intended to assist him/her or augment their
capabilities. The evaluations span performance by the entire system as well as individual components. It
is essential to be able to characterize the subsystems, including sensing and locomotion, as well as the
entire system, in order to understand the capabilities and limitations that will be encountered when
deploying a system.

Besides defining metrics and tests for measuring the system’s ability to accomplish overall mission goals
and individual tasks, it is essential to be able to isolate subsystems and measure their individual strengths
and weaknesses. If the system fails to perform a task or a mission under test, the engineers need to
understand the exact mechanism or chain of events that led to the failure. This can be accomplished by
several means. Capturing results from the system under test and comparing them to ground truth is a
central strategy in the performance evaluation of autonomous vehicles. The trace of a vehicle’s path and
its own representation of the world and its location within it can be compared to actual positions in the
world through the use of methods described in Section 3.

Having well-characterized components and subsystems is also necessary for enabling reuse of existing
work in new implementations. System engineers can determine whether a particular component is suited
to their application or even choose among various candidate approaches if there is quantitative data on the
performance of the component under known conditions. Targeted subsystem tests, either standalone or as
part of an overall test arena, can provide insights into the particular capabilities of sensors or algorithms.

This chapter is organized as follows. Section 2 contains a discussion of testbeds that NIST has designed to
evaluate the performance of mobile robots. The testbeds encompass portable, physical arenas as well as
virtual representations. A discussion of the approaches used to measure performance of urban search and
rescue research robots through the use of testbeds and competition metrics is included in this section.
Testing approaches for evaluating the capabilities of robots to be potentially fielded for homeland security
applications, such as urban search and rescue and bomb disposal conclude Section 2. Section 3 discusses
infrastructural capabilities for capturing performance data. In particular, tracking technologies are
described for indoor and outdoor applications. Section 4 gives a detailed overview of the Technology
Readiness Level (TRL) assessment that was performed on the Autonomous Mobility component of the
ARL Demo III XUV. This assessment is a distillation of the methodology and infrastructure developed at
NIST for evaluating performance of unmanned vehicles. Section 5 briefly touches on some additional,
more theoretical performance measurement efforts that involve the greater community of researchers and
practitioners. Chapter conclusions are listed in Section 6.

2. Testbeds and Test Methods

Measuring the performance of robots in controlled, repeatable, and reproducible ways is an essential
requirement. Controlled experiments refer to being able to characterize and manage the conditions under
which the system is tested. For example, the amount of moisture in the air, temperature, and lighting may
be important to control. Repeatability of an experiment refers to being able to conduct the experiment
under the exact same conditions (both the external environmental ones) and with the same starting state of
the system each time. Reproducible means that the tests and related artifacts and instrumentation are
defined adequately enough that another organization can duplicate the tests elsewhere. This can be
accomplished through the use of specifically engineered testbeds. This section describes testbeds that have
been designed by NIST to measure robot performance in targeted application domains. Metrics and
instrumentation to capture performance results are an integral part of the testbed approach. The testbeds
described are only a subset of a spectrum possible. Shown in Figure 2, there is a range of testbeds that
includes virtual ones (described below), qualifying arenas (described in this section), reality arenas (some
of which are described in Section 2.3), and outdoor arenas.

Figure 2: Testbeds for mobile robots range from virtual to indoor to outdoor. Example images from each
category are shown.

2.1 Testbeds for Urban Search and Rescue Robot Competitions

Partly supported initially by the DARPA Tactical Mobile Robots (TMR) and later by the Mobile
Autonomous Robots Software (MARS) program, NIST became involved in a mobile robot competition
hosted by the American Association for Artificial Intelligence (AAAI) starting in 2000. The competition
encouraged participants to contribute to the field of Urban Search and Rescue (USAR) robotics and
provided the competitors with a sense of what a real USAR situation involves. The goal of the Rescue
Robot Competition was to increase awareness of the challenges involved in search and rescue applications,
provide objective evaluation of robotic implementations in representative environments, and promote
collaboration between researchers. It required robots to demonstrate their capabilities in mobility, sensory

perception, planning, mapping, and practical operator interfaces, while searching for simulated victims in a
maze of increasingly difficult obstacles. The competition rules and format were adopted by the RoboCup
international organization [15] [4], which placed the event in an international forum.

The competitions were hosted within the Reference Test Arenas for Urban Search and Rescue Robots,
which were developed by NIST and were proliferated globally [13]. The arenas provided a continuum of
increasingly difficult representations of collapsed buildings that had simulated victims scattered
throughout. There were three areas of increasing difficulty within the arenas labeled yellow, orange, and
red, with red being the most challenging. They were also referred to as “qualifying arenas” since a robot
had, at minimum, to traverse all three arenas without difficulty before being considered qualified to attempt
more realistic test environments.

Figure 3 shows images of versions of the arenas. A maze of walls, doors, and elevated floors provided
various tests for robot navigation and mapping capabilities. Variable flooring, overturned furniture, and
problematic rubble provided obvious physical obstacles. Sensory obstacles, intended to confuse specific
robot sensors and perception algorithms, provided additional challenges. Intuitive operator interfaces and
robust sensory fusion algorithms were highly encouraged to reliably negotiate the arenas and locate
victims.

Figure 3: NIST Reference Test Arenas for Urban Search and Rescue Robots, shown as deployed in a competition.

Robot teams were scored according to a performance metric that quantified robot capabilities pertinent to
USAR applications for the purposes of comparison between diverse robotic implementations and team
strategies. The rules of these competitions evolved each year to encourage robots to negotiate complex
and collapsed structures, find simulated victims, determine their condition and location, and generate
human readable maps to enable victim recovery [14]. The associated performance metric also evolved as it
attempted to quantify and encourage these and other robot capabilities pertinent to urban search and rescue
applications. The rules and performance metric focused on the basic USAR tasks of setting up an operator
station, safely negotiating the complex and collapsed structures in the arenas, allowing clear comparisons
of diverse robotic implementations, and demonstrating reasonable operational stamina.

Figure 4 shows the performance metric for the competitions. Perception of detailed victim information
through multiple sensors was encouraged by the metric. It also encouraged teams to minimize the number
of operators, which could be achieved through use of better operator interfaces and/or autonomous
behaviors that allowed effective robot control of multiple robots. Finally, arena weightings accounted for
the difference in difficulty negotiating each arena. The more difficult the arena, the higher the arena
weighting (score) for each victim found.
• Up to 50 points were available for each victim found based upon a variety of factors. However, points

were also deducted for errant victim identifications or uncontrolled bumping of victims or arena
features. The penalties were meant to encourage confidence in reported results and promote safe
operation within dangerous environments. The performance metric’s point allocations were as follows:

o Up to 20 points per victim applied toward a paper-based map of the environment
generated immediately after the completion of each mission. Map quality and accuracy
(victim location) were each worth up to 10 points.

o Up to 15 points per victim applied toward sensory perception of simulated victims to
reward individual sensor capabilities and correct interpretation of particular combinations
of sensor readings. These included correct identification of victim tag (a numeric ID
placed on the simulated victim or in its vicinity), definition of victim’s situation (lightly
trapped, in a void space, or entombed), and its state (conscious, semi-conscious, or
aware).

o Up to 15 points per victim apply toward demonstrating advanced mobility via remote
teleoperation or other control modes. These points were awarded through correct
identification of the victim tag and victim situation, both of these requiring not just
sensory perception capabilities, but sufficient maneuverability and agility for the robot to
circumnavigate the location of the victim in order to appropriately assess its situation (by
viewing its surroundings) and finding its tag, which was placed in places near the victim
that were not readily accessible.

o Penalties were assessed for each instance in which the robot exhibited uncontrolled
bumping of arena features (-5 points) or of the victims (-20 points).

• To discourage a large number of operators being required, the total number obtained from the previous
scoring measures was squared in the above equation. The number of operators counted any person who
entered the operator station during a mission.

• Finally, the overall resulting points were weighted by arena factors, which accounted for the difference
in difficulty negotiating each arena; the more difficult the arena, the higher the arena weighting (score)
for each victim found. Factors were 0.5 for victims found in Yellow, 0.75 for those found in Orange,
and 1.0 for those found in Red.

The Reference Test Arenas for Urban Search and Rescue Robots were produced by applying the
methodology described above in the introduction. A task-specific understanding was developed for the
performance requirements. In this case, the robot had to perform tasks to aid human rescuers in exploring
collapsed and compromised buildings and trying to locate victims. The robots were presented with a series
of challenges that were abstractions of a real-world collapse and that were isolated (especially within the
yellow and orange arenas) so as to enable researchers to understand their system’s strengths and

ARENA
WEIGHTING

VICTIM
BUMPING

ARENA
BUMPING

MAP
QUALITY

VICTIM
LOCATION

VICTIM
TAG

VICTIM
SITUATION

VICTIM
STATE++ -++ -

NUMBER OF OPERATORS1 +
2

ARENA
WEIGHTING

VICTIM
BUMPING

ARENA
BUMPING

MAP
QUALITY

VICTIM
LOCATION

VICTIM
TAG

VICTIM
SITUATION

VICTIM
STATE++ -++ - VICTIM

BUMPING
ARENA

BUMPING
MAP

QUALITY
VICTIM

LOCATION
VICTIM

TAG
VICTIM

SITUATION
VICTIM
STATE

VICTIM
BUMPING

ARENA
BUMPING

MAP
QUALITY

VICTIM
LOCATION

VICTIM
TAG

VICTIM
SITUATION

VICTIM
STATE++ -++ -++ -++ -

NUMBER OF OPERATORS1 +
2

NUMBER OF OPERATORS1 +
2

Figure 4: The performance metric used for scoring competitions

weaknesses. Having an immature robot fail when trying to explore a very complex and realistic collapsed
building representation does not yield any insights into what caused the failure and what needs to be
improved – other than “it was too hard.” The robots were to find victims that exhibited a variety of signs
of life. The redundancy in the victim’s sensor signatures mirrored the various signs of life that humans
emit and encouraged the fusion of multiple sensors by the robot developers. The combination of available
signs of life not only indicated the presence of a victim, but also their state: unconscious, semi-conscious,
or aware. The victims were placed according to statistics from actual earthquakes: surface (50%), lightly
trapped (30%), void (15%), or entombed (5%) [17].

To gain understanding of the characteristics of the robot’s components, there were tests that isolate the
individual elements. For example, the arenas included a variety of distinct challenges aimed at particular
types of sensors. Some obstacles were clear acrylic, making them invisible to color or black and white
cameras, but not necessarily to certain range sensors. Other obstacles were made of acoustic tiles, which
absorbed emissions by sonar sensors. Wall coverings with regular patterns, such as vertical stripes, were
used to confuse stereo algorithms. A system’s ability or inability to deal with these particular obstacles
revealed the strengths and weaknesses of the different approaches.

As the capabilities of the robots matured, the challenges within the competitions and hence the arenas
evolved. Communication dropouts, which are pervasive in the real world, were introduced. More focus
on robot autonomy led to new competition rules that enforced totally independent operation by the robots
within certain portions of the arena. The competition rules and arena configurations continued to evolve as
the technologies and algorithms matured and approached being deployable.

2.2 Virtual Testbeds

Virtual versions of NIST’s Reference Test Arenas for Urban Search and Rescue Robots were developed to
provide the research community with an efficient way to test algorithms independent of the costs associated
with maintaining functional robots and traveling to one of the permanent arena sites for validation and
practice. The effort was two-fold and covered two of the infrastructural elements for performance
evaluation: sensor datasets and simulations. Both of these elements were aimed at providing researchers
with the ability to develop and evaluate algorithms without needing access to robot hardware, including
sensors, or to the physical instantiations of the reference test arenas.

Sensor data sets that were captured systematically within the actual arenas were made available to
researchers to allow them to process arena sensor data during the development of their algorithms, while
freeing them from the costs and maintenance associated with real robot hardware. Data from range-imaging
sensors such as LADARs and from digital color cameras were captured. The virtual arena helped quicken
the pace of software development and evaluation while maintaining a direct correlation to the real world,
representative environment. Once a researcher’s software was tested and deemed likely to succeed, it was
downloaded to an actual robot equipped with the exact same sensors used to capture the original data set,
and allowed to run in the actual arenas.

The University of Pittsburgh and Carnegie Mellon University developed USARSim, a realistic simulation
of the Reference Test Arenas for Urban Search and Rescue Robots using a game engine graphics
environment [21] [22]. This pseudo-dynamic simulation of NIST’s arenas supported hardware-independent
algorithm development with simulated sensor signatures and added the ability to virtually design and test
new robotic mechanisms and sensor configurations. Figure 5 shows an image of the Orange arena modeled
within USARSim. Starting in 2006, the RoboCup Rescue organization initiated a new Rescue competition
using USARSim-based venues.

Figure 5: NIST Orange Arena modeled in USARSim.(courtesy of University of Pittsburgh and Carnegie
Mellon University).

USARSim was integrated into a broader infrastructure that supported system and component evaluations.
The Mobility Open Architecture Simulation and Tools (MOAST) environment conformed to the NIST
4D/RCS architecture and allowed simulated and real architectural components to function seamlessly in the
same system [7]. This permitted not only the development of individual components, but also allowd
component performance metrics to be developed and for the components to be evaluated under repeatable
conditions. The environment was composed of high-fidelity and low-fidelity simulation systems, a detailed
model of real-world terrain, actual hardware components, a central knowledge repository, and architectural
glue that tied all of the components together. The need for a simulation environment is critical to the
development, testing, and analysis of algorithms for mobile robotics. Simulation has benefits that include
reduced competition for scarce resources (i.e. multiple agent configurations can be preset and remain
constant), no risk of harm to personnel or equipment, the ability to add as yet undeveloped capabilities to
subsystems, and the ability to perform repeated tests over vast and varied terrains. In a properly configured
simulation environment, an individual code module or agent can be tested and understood before moving to
real hardware.

The MOAST environment strove to seamlessly integrate simulation subsystems with real robotic hardware
subsystems. The goal was to allow the individual subsystems to each perform in the area where and when
they did best. For example, simulation systems could replicate multiple platforms for the development of
multi-platform behaviors. They allowed for repeatable events, and provided detailed system/event logging.
In addition, by simulating the results of sensor processing, the potential benefits of detecting new features
or utilizing novel sensing paradigms could be measured. However, as noted, there is no substitute for real
mobility, sensing, and communications. Therefore, when available, real system components/subsystems
were able to plug into the MOAST environment and replace simulated subsystems. This was made possible
through the architectural glue of the environment. This glue included a reference model architecture with
well-defined interfaces and communications protocols, and detailed specifications of individual subsystem
input/output. The 4D/RCS reference model architecture was selected for the MOAST reference model
architecture. All communications between modules was accomplished over Neutral Messaging Language
(NML) channels that functioned as the communication medium. By minimizing the jump from the virtual
to the real world arenas, and allowing hardware-independent testing of concepts, this tool quickened the
pace of development of more capable systems. The ability to repeat experiments under controlled

conditions and to capture results from algorithms and subsystems (which could be output via NML
channels and easily written to files) greatly facilitated performance evaluation of a system or component.

2.3 Testbeds and test methods for homeland security robots

The performance evaluation approach undertaken for the USAR robot competitions was a platform for
expansion into other areas. Lessons learned were applied to technology readiness level assessments,
described in Section 4. Outside sponsors asked NIST to develop performance metrics and standards for
USAR robots and for bomb-disposal robots. Programs to address these needs led to the development of
requirements, test methods, and test environments that lie closer to the reality arenas in the spectrum
illustrated in Figure 2.

Both of these programs closely followed the performance evaluation process in Figure 1. SMEs (in this
case urban search and rescue task force members and bomb squad members) defined the tasks that the
robots are to perform and set the performance objectives and thresholds. The deployment mission,
environmental conditions, logistical constraints, and other considerations all helped define the performance
requirements. Test protocols, artifacts, and environments were defined based on these requirements.
These tests were aimed at the component or function level. For overall system evaluation, exercises in
which the robots were run by responders in representative environments were also part of the testing
program. These were akin to the technology readiness level assessments, which are described in Section 4
below.

The Department of Homeland Security initiated a program in 2004 to develop performance metrics and
standards for USAR robots. This led to an in-depth definition of the performance requirements for robots
by the intended user community. Federal Emergency Management Agency (FEMA) Task Force members
were the principal contributors in the definition process. The initial set of performance requirement
categories is shown in Table 1. The initial set of individual requirements within these categories totaled
over 100, but continued to grow. Performance objectives and thresholds were defined for each individual
requirement within a category. These objectives and thresholds varied according to the robot platform or
deployment category, which is another set of domain-specific definitions developed in conjunction with the
end users (SMEs). Over a dozen individual robot or deployment categories were identified, spanning the
ground, aerial, and underwater domains. Test protocols and artifacts were developed to measure the
performance of robots per their category’s ranges. For example, speed requirements were much lower for
peek-bots, are small, throwable robots that are meant to have limited mobility, than for wide-area survey
robots that cover large distances quickly. Knowing the target platform’s intended use is critical to devising
the testing protocols and supporting apparatus.

Table 1: Main USAR Robot Performance Categories

Human-System Interaction
Pertaining to the human interaction and operator(s) control of the
robot

Logistics
Related to the overall deployment procedures and constraints in
place for disaster response

Operating Environment
Surroundings and conditions in which the operator and robot will
have to operate

Safety
Pertaining to the safety of humans and potentially property in the
vicinity of the robots

System:
Overall physical unit comprising the robot. This consists of the sub-
components below:

- Chassis
The main body of the robot, upon which additional components and
capabilities may be added. This is the minimum set of capabilities
(base platform).

- Communications

Pertaining to the support for transmission of information to and from
the robot, including commands for motion or control of payload,
sensors, or other components, as well as underlying support for
transmission of sensor and other data streams back to operator

- Mobility
The ability of the robot to negotiate and move around the
environment

- Payload
Any additional hardware that the robot carries and may either deploy
or utilize in the course of the mission

- Power
Energy source(s) for the chassis and all other components on board
the robot

- Sensing Hardware and supporting software which sense the environment

Figure 6 is an example of the type of test that was developed for USAR robots. Based on the requirements
from the various intended end users, a test method using eye charts (or other “standard” visual cues)
positioned at various locations on a wall near the floor and near the ceiling, both in front of the robot and to
its side is shown in this figure. Conditions, such as the lighting, communications signal quality, and
distance of robot to the chart, as well as the orientation of the robot, are varied. From this basic set up
several permutations are possible. Measurements taken include the smallest line of text that can be read by
the operator from any given position and the time required to be able to complete the successful reading of
this line.

Figure 6: Visual Acuity Test for Mobile Robots. Robot is positioned by operator (remotely located) at various
specified locations. The smallest line of text legible by the operator is noted. The robot’s orientation is varied.
Eye charts are placed at different elevations in front of the robot as well as to its left or right. The amount of
time necessary for the operator to identify the chart and read its text is also noted, as this is an indicator of the
ease of positioning of the robot’s sensors. Lighting conditions may also be controlled.

Another major homeland security robot performance evaluation effort at NIST was aimed at bomb disposal
applications, under sponsorship by the National Institute of Justice. Although already widely deployed by

civilian bomb squads and the military, there were no standard performance evaluations for these robots.
NIST worked with civilian and military subject matter experts to define the tasks and acceptable ranges of
performance by these robots. Numerous new artifacts and challenges were added to the existing NIST
reference test arenas for mobile robots addressing the bomb disposal task. A large number of the additions
provided manipulation challenges, as bomb disposal robots have arms and must handle a variety of objects,
as well as aim and fire disruptors at suspected explosive devices. Figure 7 shows two of the bomb-
disposal evaluation tests.

Figure 7: Bomb Disposal Test Examples. The robots must search a variety of locations for suspicious devices
(potential bombs). In some cases, they must manipulate the environment, as shown on the right, where the robot
lifts the couch in order to be expose the device to the cameras that the operator is viewing.

2.4 Discussion Regarding Design of Testbeds

It is hard to define a formal methodology by which to translate an application domain’s challenges into
testbed elements. For the USAR testbeds used in competitions, described in Section 2.1, aspects that were
critical to the performance of the robots were informally enumerated by experts who had experience in
robotics and search and rescue. Prior knowledge of what challenged robot sensing, mobility, planning, as
well as operator situation awareness was used to generate various elements of the testbeds. For example,
sensor tests within the arenas were meant to expose weaknesses commonly found in particular sensors and
algorithms and in the process, educate the research community how to avoid those pitfalls. Clear partitions
and mirrors confused operators if they were driving the robots through a maze-like arena.

The types of tasks that the robot is to perform must be understood in order to design appropriate tests. If
the robot is to search for victims, then the tests must provide representative victims. The types of features
that identify a potential victim include: human form and/or clothing, sound, movement, heat, and carbon
dioxide. Therefore the testbeds included elements that exhibited a combination of these features. The
robot developers should in turn incorporate the appropriate sensors for achieving the task. For example,
knowing that heat emissions are present where there are victims should encourage robot developers to
include sensors that detect heat. Of course, not all instances where there is heat necessarily mean that there
is a victim. Additional sensors need to be brought to bear to confirm that it is not a lamp or other
inanimate heat source.

In the development of standard performance test methods, the process is more structured and rigorous.
There is a requirements-development stage, in which the various performance needs are captured from
subject matter experts. The SMEs may also help define (as in the case for USAR robots), how the
performance is measured. Another important factor is the expected normal operating ranges for a
particular measurement. The result is a set of standard test methods, i.e., a definition of activities that the
robot is supposed to perform, artifacts required to support the activities (also referred to as “props” by
responders), and measurement techniques. The positioning of the visual acuity charts, described in

Section 2.3, for instance, depends on how a particular robot may be deployed. Some robots will operate in
confined spaces, hence their sensors are not expected to have a long range visibility. The eye charts would
be positioned more closely to these robots than for robots that are to assess a building’s structural stability
by flying or hovering beside it and trying to estimate sizes of structural cracks.

In general, NIST’s philosophy is to encourage dissemination of test arenas, artifacts, and methods as widely
as possible to educate and challenge those who build robots and related technologies. Therefore, an
additional consideration when designing tests is to try and make them as easy to replicate as possible. This
may not always be feasible, but it is nevertheless to be considered while making design decisions.
Economical and readily-available materials are strongly preferred. Figure 8 shows two examples of test
artifacts that are made from commonly available materials and can be replicated easily.

The use of “virtual testbeds” is another consideration. Although simulation environments are very useful
tools for performance evaluation, they are not a panacea and must be used with an understanding of their
limitations. Simulations cannot completely reflect the complexity and noise found in the real world.
Simulated sensor feeds, even if degraded in order to avoid being unrealistically “clean,” do not represent
the type of sensor input that a system will encounter from a real sensor in the real world. Similarly,
communication subsystems have myriads of random degradations that cannot be accurately modeled in
most simulations. Environmental models cannot capture the detail and variability present in the world. It
is practically impossible to capture the level of detail of an environment (e.g., each blade of grass that a
ground vehicle must go over) and the physical interactions that occur due to the modeling effort and the
resulting strain on the processing power of the computer running the simulation. Similarly, the actuation of
the robot cannot be completely modeled. Therefore, developers must be aware of the limits of the
simulation’s power in validating and verifying their system’s performance: it is an important and effective
first step, but if a real systems is to be built, much further testing will be needed in the real world.

Figure 8: Examples of readily-reproducible test methods. On the left is a “directed perception” test
artifact that is constructed of a set of cardboard boxes taped together. Holes cut out in the boxes are
positioned at different locations within the stack. Target items, such as glow sticks, are placed in some of
the boxes. The task is for the robot (or operator controlling the robot) to clear the entire stack, i.e., search
each box and determine whether there is an object inside or not. On the right are “random step fields,”
which are easily manufactured from standard lumber and can be used to provide mobility testing as well as
non-planar surfaces from which to execute other tests, such as visual acuity or directed perception.

3. Ground Truth Infrastructure

The supporting infrastructure for a performance measurement program relies on instruments that have
higher accuracy and resolution than the systems being tested. Effective evaluation of vehicle performance
depends on ground truth about the world, the vehicle, and what the vehicle senses. NIST has developed
capabilities that address this need.

In most of the performance evaluation procedures, precise measurements of vehicle position and
orientation are required. For outdoor applications, GPS-based methods are used. For indoor applications,
NIST can deploy a tracking system that does not rely on GPS.

3.1 Localization and Tracking of Vehicles in an Indoor Environment

In an effort to capture quantitative performance data for robots under test within the NIST Reference Test
Arenas for Urban Search and Rescue Robots, a commercial Ultra Wide Band (UWB) radio frequency
system was adapted to perform non-line-of-sight localization and tracking of each robot. The system used
four (or more) networked receivers with antennas in known locations around the perimeter of the arenas to
locate actively chirping radio frequency tags affixed to each robot for the duration of the test. The tags were
golf-ball size transmitters sending small data bursts, essentially containing tag identifiers and a time-stamp,
in short pulse radio frequency waveforms that allowed the set of receivers to use time difference of arrival
computations to determine the location of the tag. The system, which tracked the location of multiple tags
(robots) simultaneously, operated at a center frequency of 6.2 GHz with a bandwidth of approximately 1.25
GHz, and the tags transmitted at power levels of roughly 30 mW.

2D location experiments, both static and dynamic, initially assessed performance characteristics such as
range and accuracy within the multi-path environments of the NIST test arenas and found static accuracies
over one minute time intervals to be well within 0.20 m across arenas roughly measuring at least 20 m x 10
m. Although the instantaneous accuracies from a single chirp were often much larger than that due to
occlusions in the environment, the average position over multiple chirps, five or more at roughly 1 Hz, was
sufficient for the application. However, to allow tracking of moving robots and generally improve the
accuracy of all reported locations, data filters helped discern indications of the robot’s general motion and
dwelling locations. One filter suppressed positions deemed to be noise by looking for and discarding
sudden movements of more than 1 m/s, faster than the robots could reasonably traverse the complex
environments, along with sudden reversals of direction from chirp to chirp, which were physically unlikely.
Another filter considered the simultaneously reported location of three tags affixed to any given robot to
use the average of the two closest tag locations as the reported location, discarding the third location as
spurious. These filters effectively improved the overall tracking performance for robots moving at roughly
0.5 m/s, which was effective for most robots in these complex environments.

A graphical user interface was also developed to make the system easy to set up, calibrate, and use in a
variety of test scenarios, including the annual USAR robot competitions held in various locations around
the world. The tracking system displayed each robot's 2D position, updated roughly once per second and
superimposed on an overview image of the test environment or arena (Figure 9). The display also had time
indicators to synchronize with other video streams, and information regarding the robot and operator(s)
involved in the test.

Figure 9: This is a screen capture from a tracking movie showing the path of a robot (yellow dots
connected by lines when timely positions are reported) overlaid onto an overview image of one of the more
complex Reference Test Arenas for Urban Search and Rescue Robots, which includes stairs, elevated
floors, and pallets of random step fields. The surrounding tracking system receivers with antennas are
located just out of view in the corners of the image.

In addition to tracking robots within the USAR test arenas, the tracking system was deployed to capture the
performance of both robots and emergency responders in a collapsed structure training exercise hosted at
NASA's Disaster Assistance and Response Team (DART) facility at Moffett Field, California in May 2004.
This exercise/workshop brought together emergency responders and technology developers around
situationally relevant rescue scenarios to learn about each other's needs, requirements, and capabilities.
Two separate rescue scenarios were instrumented for tracking: a rubble pile search and a victim extraction
from a semi-collapsed structure. The system was able to track emergency responders on top of the rubble
pile, but not within the voids and tunnels underneath the rubble; the limited power of the small tags was
insufficient to penetrate the reinforced concrete rubble. However, tracking data was captured for
emergency responders during the victim extraction scenario within the semi-collapsed structure. Each
emergency responder was outfitted with two tags, one on either side of their helmet, prior to entering the
scenario. The antennae had to be judiciously configured to assure coverage within this structure. Figure 10
is a screen capture of a movie file showing the current position and previous paths of three responders
overlaid onto the floorplan of the intact section of the building. Each track has a variable length tail to
delineate the path traversed in a set time period.

The goal is to use such tracking movies, and associated time-stamped position data, to provide the basis for
quantitative performance metrics to support development of new technologies and their inclusion into
existing operational strategies for emergency responders. Objective performance data such as this can help
developers understand the successes and failures of their systems, and provide eventual purchasers with
clear indicators of success. Examples of performance metrics for USAR robots within well-defined arenas

and obstacles are: search rates, percentage of search area traversed, proximity to simulated victims when
identified, and other quantitative measures of performance.

Figure 10: This is a screen capture from a tracking movie of three emergency responders during a training
exercise to extract a victim from inside a simulated collapsed structure. Each emergency responder wore
two active tags on their helmets while conducting the exercise. The track of their positions is shown by
colored (red, green, blue) dots connected by straight line segments.

3.2 Localization and Tracking of Vehicles in Outdoor Environments

Further ground truth measurement infrastructure was developed in support of autonomous vehicle research
and development, and vehicle safety system analysis for lane departure warning systems. This
infrastructure was developed, in part, to support of Army Research Laboratory and Department of
Transportation projects. In the outdoor realm, the GPS provided an important element of a high precision
ground truth system

NIST’s measurement system consisted of components on the vehicles and components off the vehicles.
The off-vehicle component was a differential GPS base station installed on the tallest NIST building. The
base station antenna location was surveyed to millimeter level accuracy. The GPS unit used this known
location and its currently computed location to provide correction messages to the roving receivers in the
area. Proper operation of the base station was confirmed by evaluating position reports of a rover GPS
receiver located over National Geodetic Survey markers on the NIST campus.

The vehicle (rover) components were installed on two NIST testbed vehicles. A HMMWV and a sedan
were equipped with an Applanix high precision position and orientation system. These systems provided
full position and orientation solution for the vehicles at rates up to 200 Hz by integrating a dual frequency
GPS, a wheel encoder, and an inertial measurement unit (IMU) that was based on gyros and

accelerometers. A second GPS was used to aid in determining heading. This system was capable of
supporting reports of position, roll, pitch, and heading, as well as velocities and accelerations, all time
tagged with microsecond precision. Figure 11 illustrates the NIST HMMWV high-precision position
measurement system.

The absolute (world) position accuracy of the solution was limited by the quality of the GPS solution. A
typical position solution uncertainty from the Applanix unit operating stand-alone was on the order of a few
meters. Improvement to cm level performance was accomplished via two methods. The first method
involved logging the rover GPS data and post-processing it with logs from the nearby differential GPS
reference base station. Once the corrections from the base station were applied, the rover data was further
post-processed with other logged data from the Applanix to produce the smoothed best estimate of
trajectory data file. This produced position solutions with 2 cm level uncertainty, depending on the
quality of the logged GPS data. The data quality was influenced by environmental factors such as tree
cover, buildings and other obstructions to the satellite line-of-sight, as well as the current satellite
constellation geometry. Advantages of this technique were that no radio link is needed during the test, and
that potentially, slightly improved results over real-time approaches were possible. Disadvantages included
the delay in obtaining the reference station data, and the complexity of post-processing.

The second method employed a FreeWave data radio on the rover vehicle to receive the differential
corrections transmitted from the differential GPS base station described earlier. These messages were
passed to the Applanix unit. This permitted the Applanix to operate in a real-time kinematic (RTK) mode,
achieving cm level accuracy in real-time (no post-processing required). The Applanix unit used an
algorithm called Inertial RTK (IRTK), which featured a tightly coupled integration of the GPS information.
In this method, low level GPS data was used rather than full position solutions from the GPS component.
IRTK performed better in challenging environments with frequent, intermittent satellite signal blockages.
In the best conditions, consisting of good visibility to a sufficient number of GPS satellites from both the
rover and base station, position uncertainties of about 3.5 cm were typical. This required the GPS portion
of the system to be operating in its highest performance mode, Integer RTK. On the NIST grounds, this
mode was commonly observed continuously in relatively open areas (fields, parking lots), and sporadically
in more cluttered areas.

With slightly more challenging environmental elements, the system operated in Float RTK mode, providing
uncertainties on the order of 15 cm. This was typical around buildings, trees, etc. On the NIST grounds, it
was common for the system to switch quickly back and forth between Integer and Float RTK during a drive
on the campus. More challenging areas, denser tree cover, canyons between buildings, etc., generally
precluded RTK operation, in which case the system reverted to Code-based differential GPS mode with 1
m uncertainty, or in the most severe cases, no differential correction solution, accompanied by several
meter uncertainty. And, of course, it was possible to receive no GPS signal at all in some situations
(complete tree cover, indoors, etc.), in which case the inertial solution was aided only by the wheel
encoder. The solution degraded with time and distance traveled until GPS reception was reacquired. The
advantages of this method included immediate results without post-processing complexity and delays.
Disadvantages included requirement for real-time data link from the base station, and small potential
decrease in solution quality.

Finally, a second GPS receiver was acquired that could be configured to operate as a rover in RTK mode.
This was useful for logging high precision position data of a rover vehicle where the tests could be
conducted in a favorable environment (open field, etc.) and where the full capability (eg., roll, pitch, etc) of
an Applanix-type unit was not required. A complete, portable position logging system consisting of the
GPS receiver and antenna, a data radio receiver and antenna, and battery power supply was configured in a
small, portable enclosure for this purpose. Again, centimeter level performance was possible in appropriate
conditions. This GPS unit could also be configured to serve as a base station for use at other locations, or
used as a field unit for surveying specific locations.

Figure 11: NIST HMMWV Testbed shown with High Precision Vehicle Location Measurement System.

3.3 Ground Truth Through Digital Terrain and Feature Maps

Another essential tool in the ground truth arsenal is high precision site data. This enables comparison not
only of the vehicle’s position with actual locations on the campus map but also of what the vehicle senses
in its surroundings (and its interpretation of the objects’ locations and characteristics) with what the object
is in reality and where it is placed in the world. NIST had its entire campus and some surrounding areas
surveyed to produce a very detailed terrain model. This terrain model consisted of a bare earth elevation
array with post spacing of 45 cm (1.5 feet) and root mean square error (RMSE) of 15 cm (6 inches), color
orthophotography with pixel resolution of 7.5 cm (0.25 feet), and comprehensive vector data that captured
features in the environment. The vector data included features such as all road edges, parking lots, parking
lot stripes, buildings, sidewalks, lamp posts, and signs. Tools were developed that can track a vehicle’s
position in real time (capturing the results of the high-precision position measurement system described
above) and overlay its trace onto the NIST map. Results of onboard sensory processing could be
visualized and evaluated. For a vehicle performing road-following behavior, its sensed road edges were
overlaid on the actual ones to determine how accurately the on-board processing is positioning them in its
maps. Figure 12 shows the road edges that were computed by a NIST vehicle using sensors overlaid over
the relevant section of the high-resolution NIST campus map.

In Section 4.2, another approach to generating ground truth is discussed. Selective capture of detailed
data of areas of interest can be performed to clarify certain vehicle performance issues. Terrain data can
be captured and characterization of such parameters such as roughness, slope, or even vegetation density
can be computed. This knowledge can shed light on what types of terrains or environments a vehicle can
negotiate or not.

Figure 12: Overhead view of high precision ground survey data for NIST campus showing tracking of
vehicle position and detected road edges (shown in green). The sensor field of view is the blue triangle
in front of the blue box representing the vehicle. The extracted road edges can be compared with the
ground truth using this data.

3.4 Discussion of Ground Truth Infrastructure

Simply put, one cannot measure the performance of an unmanned vehicle unless there is ground truth.
Without knowing where the vehicle is, how fast it is moving, what features exist in the environment, and
what the other relevant external conditions are, it is futile to try to measure how well the vehicle did and it
is extremely difficult to diagnose problems.

One of the key pieces of knowledge necessary is where the vehicle went and when it went there. This
section has discussed technologies for tracking vehicles in indoor and outdoor environments, including
areas which have limited GPS. Unless the environment provides clean lines of sight to the satellites (for
GPS) or antennae (for UWB), several provisions have to be put in place to still have acceptable localization
results. Examples of some of the approaches to mitigating the localization errors were described.

The location on the world or within an indoor environment where the vehicle went can be enriched by
knowing also what the surrounding conditions were at each location. In the test arenas primarily aimed at
USAR robots, ground truth is established because these are manufactured environments and hence known
to the evaluation team. Overhead photo imagery and two or three-dimensional models may be available of
the arenas. For outdoor locations, it is more difficult to gain ground truth knowledge of the environment.
Two approaches can produce high resolution terrain characterization. One is an overhead capture of high-
resolution digital terrain elevation and exhaustive features of an entire site via aerial flyovers. Another is

judicious, targeted capture of high resolution data in areas of interest, typically from a ground-based
perspective. This is discussed in more detail in Section 4.2. A high-resolution digital aerial survey of a site
is very expensive and time-consuming and becomes obsolete after the site changes. Portions of the NIST
campus survey became obsolete shortly after capture due to new construction. Nevertheless, the richness
of features, such as curb heights and parking lot paint stripes, and size of area captured, make this a very
useful tool in the ground truth and performance evaluation arsenal. Of course, this site is used frequently
for evaluation of unmanned ground vehicles. Being able to overlay the vehicle’s position and displaying
portions of its world model over the campus features has been extremely valuable for testing new
algorithms and sensors. For sites that are used only for a limited time period, it is more efficient to capture
selected ground truth, using imaging, positioning, and other sensors. The data captured may have to be
post-processed to generate usable ground truth, for example slopes and roughness. To gain understanding
of a vehicle’s performance under different situations, this is a worthwhile effort, as is seen in the next
section.

4. Case Study: Technology Readiness Evaluation of Autonomous Mobility

The above performance evaluation methodologies and some of the tools were used in the evaluation of the
Army’s Demo III [19] XUV’s Autonomous Navigation System (ANS). This evaluation was one of the
most rigorous and comprehensive ever conducted on intelligent autonomous ground vehicles. In 2002 and
2003, the Army Research Laboratory conducted a study to determine if the autonomous navigation
subsystem developed under Demo III had reached Level 6 in the TRL scale developed by NASA [8].
Autonomous navigation controls the movement of the vehicle from waypoint to waypoint using onboard
sensors to detect and avoid hazards and obstacles. The TRL scale ranges from 1 to 9, with 9 signifying a
system that has been proven in actual missions. TRL 6 is defined as “component and/or breadboard
validation in a relevant environment.” The Future Combat Systems program, discussed in more detail in
Chapter 10, expected to rely on vehicles capable of traversing environments including Urban, Open Rolling
Arid, and Mixed Open Rolling Vegetated, but does not specify exactly how these terrains are defined. The
selection of a particular terrain that is considered “relevant” on which to test the vehicles strongly affects
the outcome of the tests. Unless there is some objective measure of terrain difficulty, the tests have limited
value. NIST developed terrain characterization methods to provide quantitative evaluation of the paths
traversed by vehicles in carrying out their missions. The terrain characterization provided ground truth.
This allowed for comparisons between autonomous vehicles and human drivers and between different types
of vehicles. To determine if autonomous mobility has reached Technology Readiness Level 6, some
measure was needed of vehicle performance over terrain of known difficulty.

This section begins with a description of the TRL 6 experiments. This is followed by a discussion of the
terrain characterization work that accompanied the TRL 6 data collection. Both of these are interrelated
elements within the holistic performance evaluation view presented in this chapter. The TRL experiment
definition was driven by the application-specific needs – both the mission types and the environments.
This led to the selection of the courses over which the robotic vehicles were required to run. Extensive
data capture of the vehicles’ performance provided meaningful information to the developers and program
managers of the strengths and weaknesses of the various components. The TRL experiments necessitated
an extensive ground truth infrastructure, which was further augmented by the terrain characterization effort.

For the TRL 6 exercises, NIST administered similar field experiments in three different terrain types:
rolling/arid, rolling/vegetated, and urban. Two courses were set up at each terrain site to provide different
levels of difficulty. The test vehicles were provided with GPS waypoints for over 650 missions, ranging
from 500 m to 2 km in length, which covered over 500 km of autonomous driving through the three terrain
types. For each mission, several types of performance data were captured, including: vehicle log files,
operator control unit log files, handwritten observer log sheets, and several streams of video to capture
vehicle performance, operator workload, and operator interface screens. After completion of vehicle
missions at each site, NIST attempted to characterize the terrain difficulty of the courses using an
instrumented HMMWV with differential GPS, inertial sensors, cameras, and laser range scanners to
capture detailed terrain features in an effort to quantify the terrain difficulty. The following is an
introduction to the approach used to administer these field experiments, collect performance data, and

characterize the terrain. A more comprehensive discussion is available in the “Autonomous Mobility
Technology Assessment Final Report,” which includes vehicle performance results [9].

4.1 Technology Readiness Level Assessment Experimental Framework
The purpose of these field experiments was to evaluate the functionality of a test vehicle’s autonomous
navigation system to conduct tactically relevant missions in a variety of repeatable terrains with an
emphasis on collection of statistically significant performance data. As noted above, TRL 6 is defined as
validation performed in a relevant environment. The definition of what constitutes a “relevant
environment” is somewhat vague, so NIST relied on subject matter experts, military officers or
noncommissioned officers, to select the sites used to conduct these experiments, which were representative
of rolling/arid, rolling/vegetated, and urban environments. The emphasis on statistically significant data
collection required development of a formal experimental design to isolate key variables, introduce
randomization, and adhere to accepted statistical practice.

A secondary focus for these experiments considered the need for occasional intervention by a human
operator under certain conditions when the vehicle recognized it could not cope with an obstacle or terrain
feature either because of limitations of the autonomous navigation system or the vehicle mobility itself.
Since a soldier conducting other mission duties is expected to perform such interventions in eventual
operations, the operator workload involved in remotely teleoperating the robot in difficult terrain is
particularly important.

Overall responsibility for the conduct of the field experiments resided with the Test Director and Test
Leaders, who ensured adherence to the experimental design, maintained a safe operating environment, and
administered day-to-day operations for the roughly two weeks at each site necessary to execute the
experimental plan, collect data, and characterize the terrain. The Test Leaders led each vehicle column in
the field and were directly responsible for collection and archiving of all experimental data. NIST engineers
and scientists also performed terrain characterization of the test courses after completion of missions at
each site.

4.1.1 Field Experiment Sites and Course Development

The purpose of these field experiments was to assess the functionality of the test vehicle’s autonomous
navigation system to conduct tactically relevant and repeatable missions in a variety of terrains. To
establish tactical relevance SMEs, military officers or noncommissioned officers from the Weapons and
Materials Research Directorate of ARL selected the sites used to conduct the experiments and to define the
specific courses at each site. The sites chosen are illustrated in Figure 13.

Figure 13: The field experiments were conducted in three different terrains: rolling/arid, rolling/vegetated,
and urban.

To simulate likely tactical conditions as closely as possible, courses were defined by SMEs from aerial
photographs. During this process, the SMEs were instructed to utilize paths that would likely be used
during military operations and to make maximal use of the diversity of terrain available at each site. Two
courses were established at each site, with each course characterized by a different level of terrain
difficulty. The course traversing less difficult terrain was designated as the “Gold” course and the course
traversing significant terrain challenges was designated as the “Black” course. To minimize the time
required to reset the vehicles between trials on the large rolling/arid and rolling/vegetated sites, closed loop
courses were used. Once each course was outlined onto the photographs, a safety officer drove the course
to ensure that there were no safety hazards. Then a series of waypoints, approximately 100 m apart, were
designated to ensure that the vehicles would stay close to the intended terrain features. GPS coordinates for
each of the waypoints were identified and used to form individual mission paths with randomized start
points, direction, and lengths of 500 m, 1000 m, or 2000 m for the principal experimental design. Longer
missions were performed as excursion missions for the experimental design, along with several other
interesting mission variations discussed in Section 4.1.3. Based on the terrain features available at each site,
the SMEs defined the Rolling/Arid Gold Course as a 6.8 km loop, and the Rolling/Arid Black Course as a
4.4 km loop. The Rolling/Vegetated Gold Course was defined as a 5.0 km loop, and the Rolling/Vegetated
Black Course was a 7.2 km loop (see Figure 14). In addition to the test courses, separate “practice courses”
were designated to allow vehicle testing and operator training for the soldiers.

The urban courses had designated waypoints at every intersection of a 500 m x 200 m barracks complex,
with five east-west avenues and eleven north-south roads or alleys – 55 waypoints in all. The limited size of
the urban area required that both the Black and Gold courses share the same physical area and features. The
unaltered urban area served as the Urban Gold Course. Additional obstacles such as junk cars, trash
dumpsters, gravel, and scrap woodpiles placed among the existing urban features served as the Urban Black
Course. The missions defined in the experimental plan were conducted on the Gold Course first. After the
additional rubble was placed, the Black Course missions were conducted.

Figure 14: Test courses defined by sets of GPS waypoints placed to ensure that the vehicles stay close to
tactically relevant terrain features. Both test courses from each of the rolling terrain sites are shown: the
Rolling/Arid Black Course (4.4 km loop) and Rolling/Arid Gold Course (6.8 km loop), the
Rolling/Vegetated Black Course (7.2 km loop) and Rolling/Vegetated Gold Course (5.0 km loop). The
Urban Black and Gold Courses used the same waypoints (every intersection in a 500m x 200m area) and
were differentiated by additional obstacles for the Black Course.

4.1.2 Test Vehicles

The prototype autonomous vehicle used to conduct the field experiments was the XUV developed for the
ARL Demo III program by General Dynamics Robotic Systems (GDRS) and others (see Figure 15). The
XUVs were four-wheel drive, four-wheel steer, vehicles that used actively nodding (front) and stationary
(rear) LADARs along with GPS and inertial sensors to navigate. Several cameras were also mounted
around the vehicle to enable teleoperative interventions.

Each mission was conducted with a column of vehicles including the XUV, a Safety HMMWV, and an
Operator Control Unit (OCU) HMMWV. The Safety HMMWV, which always stayed in close proximity to
the XUV, contained a Safety Operator who could remotely stop the XUV if considered unsafe in any way
and the Test Leader, who was responsible for all operations in the field. The OCU HMMWV was always
located some distance away from the XUV but within radio range to allow teleoperative interventions. The
operator within the OCU sat behind a “blind” to limit direct sight of the XUV and the surrounding terrain.
However, the driver of the OCU HMMWV could verbally assist the operator with direct surveillance
during designated Line of Sight (LOS) missions. During Non-Line-Of-Sight missions, the operator worked
only from the information, images, and video communicated from the XUV. A human factors observer also
rode in the OCU HMMWV to capture operator workload assessments during each intervention when they
occurred. Two concurrent vehicle columns operated continuously during the field experiments, one on each
course, to enable efficient capture of vehicle performance data at each site.

ARID BLACK COURSE

GPS WAYPOINTS

VEGETATED BLACK COURSE

GPS WAYPOINTS

URBAN BLACK AND GOLD COURSES

GPS WAYPOINTS

4.4 KM LOOP 7.2 KM LOOP 500 M X 200 M GRID

ARID GOLD COURSE

GPS WAYPOINTS

6.8 KM LOOP

VEGETATED GOLD COURSE

GPS WAYPOINTS

5.0 KM LOOP

ARID BLACK COURSE

GPS WAYPOINTS

VEGETATED BLACK COURSE

GPS WAYPOINTS

URBAN BLACK AND GOLD COURSES

GPS WAYPOINTS

4.4 KM LOOP 7.2 KM LOOP 500 M X 200 M GRID

ARID GOLD COURSE

GPS WAYPOINTS

6.8 KM LOOP

VEGETATED GOLD COURSE

GPS WAYPOINTS

5.0 KM LOOP

Figure 15: The vehicle columns used to conduct each mission included an XUV, a Safety HMMWV that
could remotely stop the XUV if considered unsafe in any way, and an Operator Control Unit (OCU)
HMMWV located within radio range for teleoperative interventions.

4.1.3 Experimental Design

Statisticians from the Computational and Information Sciences Directorate of ARL developed a formal
experimental design to isolate key mission variables, introduce randomization, and adhere to accepted
statistical practice. The “Code of Best Practice Experimentation,” a publication of the Command and
Control Research Program (CCRP) [1], also guided many aspects of the approach to formalizing the field
experiments. The SMEs, statisticians from NIST, and a “Red Team” of distinguished experts
knowledgeable in experimental design, conduct, and analysis also provided guidance. This resulted in a
statistically significant set of missions to assess the vehicle’s autonomous mobility while capturing
comprehensive performance data regarding key mission variables.

The three-site experimental design provided a variety of relevant operational terrains: rolling/arid,
rolling/vegetated, and urban. Within each site a principal experimental design was established to study five
factors: terrain difficulty, mission distance (or type of mission at the urban site), maximum vehicle speed,
line-of-sight operation for teleoperative interventions, and XUV/Team effects since multiple experimental
vehicles and associated operators were used to gather data. After completion of the principal experimental
design, excursion missions were conducted to capture less statistically rigorous data regarding alternative
mission profiles and other variables of interest.

The overall experimental design called for 656 missions over the three terrain types. At each of the two
rolling terrain sites, 182 missions were planned totaling over 200 km of autonomous driving (400 km over
two sites). The principal design for the rolling sites allocated 144 missions, using 500 m, 1000 m, or 2000
m mission lengths to address the questions of primary importance, with an additional 38 excursion
missions. The approach adopted was to randomize the presentation of course features and expect varying
XUV behaviors to provide different course looks. Twenty-four missions were performed each day by two
concurrent XUV teams. Each team conducted randomized sets of six missions in the morning and in the
afternoon, with randomly selected variables such as a starting waypoint for the set, direction around the
course loop (clockwise or counter-clockwise), and lateral displacement from the first mission waypoint (5
m, 10 m, or 15 m) to vary the actual start point. The final waypoint of each mission in the set was the
starting waypoint for the following mission, along with a random direction and lateral displacement.

For the urban site, due to its limited size, the experimental design called for 192 missions in the principal
design and 108 excursion missions, totaling roughly 150 km. Thirty-two missions were performed each day
as two concurrent XUV teams conducted randomized sets of eight missions in the morning and in the
afternoon. The factors of the principal design aligned as closely as possible with the rolling terrain
experiments, including terrain difficulty, maximum vehicle speed, line-of-site teleoperative interventions,
and XUV/team. However, mission distance was replaced with mission complexity, using “assault” or
“patrol” type missions from one end of the urban area to the other. An additional factor of five specific

XUV
OCU

HMMWV
SAFETY
HMMWVXUV

OCU
HMMWV

SAFETY
HMMWV

routes representing assault or patrol type mission complexity levels was necessary to appropriately reflect
the statistical design structure.

The principal experimental design for all three terrain types provided an emphasis on collection of
statistically significant performance data. The excursion missions investigated alternative mission profiles
and provided initial feedback on other tactical variables of interest. Some examples of excursion mission
sets included: endurance missions (7 km), 100% teleoperative missions, day vs. night missions, soldier
XUV operators, no intermediate waypoints, no GPS coverage, fully blockaded urban streets, and others. A
more comprehensive discussion is available in the formal report, which includes vehicle performance
results and analysis of outcomes [9].

4.1.4 Operator Interventions

Although the primary goal of the field experiment was to evaluate autonomous mobility, XUV operator
interventions were allowed but strictly controlled. The XUV operators, located in the OCU HMMWV
within radio range of the XUV, were provided guidance that missions were to run autonomously unless a
qualified reason for operator intervention was noted on the OCU user interface, and that teleoperation of
the vehicle was to be minimal. The XUV operator was allowed to monitor status messages transmitted from
the XUV while it was maneuvering autonomously, along with a simple display that showed the position of
the XUV with respect to upcoming waypoints. Once a qualified status message or call for help was initiated
by the XUV, the XUV operator could take over teleoperation of the vehicle until the XUV was safely away
from the present obstacle and not likely to back up into the same obstacle. Prior to each intervention, the
XUV operator had no access to video from the XUV cameras, and never had line-of-sight to the XUV or
surrounding terrain (a blind was set up in the OCU HMMWV to limit visibility).

An example of a typical intervention was when the XUV backed up three times, as it was programmed to
do, to reevaluate the terrain ahead when confronted with imposing or confusing obstacles. If, after three
backups at the same location, the XUV ANS was unable to circumvent the obstacles, the XUV sent a
message to the OCU requesting operator assistance. In total, the XUV could report 14 such qualified
intervention conditions (e.g. loss of traction, loss of GPS fix, pitch or roll exceeds 20°, etc.) for which
operator intervention was allowed. Human factors experts from the Human Research and Engineering
Directorate of ARL, riding along in the OCU HMMWV, conducted operator workload assessments while
NIST researchers captured video of all operator actions for every intervention.

4.1.5 Measures of Performance

Several forms of performance data were captured after each mission including: XUV log files, Operator
Control Unit log files, handwritten Test Leader log sheets, and several streams of video to capture vehicle
performance, operator workload, and operator interface screens. The computer-readable log files were
parsed to determine the vehicle’s state at locations along the mission path. The after-action briefing
graphics showed the mission start point, the path, and state of the XUV for each mission; yellow paths for
autonomous operations, blue paths for teleoperative interventions, and green paths for autonomous backups
by the XUV (see Figure 16). The mission classification is shown at the mission end point. Additional
images and interesting details of the path, such as multiple autonomous backups or teleoperative
interventions, which were particularly helpful to the engineers involved in developing the vehicle
behaviors, were also included in the graphics.

There were four end-of-mission classifications that divided into successful, or “complete,” missions and
incomplete missions. Missions were classified as incomplete if one of three end-of-mission conditions
occurred: Stop, E-Stop, or Fault. These classifications are described below.

Mission Complete: A mission was classified as Complete if the XUV autonomously navigated to with 20
m of the final designated waypoint (GPS coordinates) in an ordered list of mission waypoints provided
prior to the mission. The XUV was expected to pass within 20 m of each waypoint provided, but was
allowed to autonomously cut corners as long as no hazardous conditions or property boundaries were
encountered. Complete runs could include administrative stops (A-stops) as well as intermittent

teleoperative interventions. Fig. 16a shows an example of the path traced out by the vehicle during a
mission that ran to completion.

Mission Stop: When the XUV became stuck or disabled during the normal course of operations, not
involving any safety concerns, it would call for an intervention by the OCU Operator. If the OCU operator
was unable to teleoperatively extricate the XUV from a situation that caused the intervention, the mission
was considered a “Stop.” The OCU Operator essentially conceded that the mission could not be completed,
and the vehicle was moved to the next mission start point. An example of a Mission Stop, along with the
location at which the vehicle was stuck and close up pictures of the XUV and surroundings, is shown in
Fig. 16b.

Mission E-Stop: The Safety Operator or Test Leader located in the trailing Safety HMMWV could halt
operation of the XUV to prevent risk to personnel or damage to the XUV or other property. At times, upon
closer examination of the surrounding conditions, the Safety Officer realized that an unsafe condition did
not actually exist, or that the perceived hazard was temporary. An example would be when the XUV was
cresting a precipitous hill and the Safety Operator was not in a position to observe the potential path. If an
unsafe condition did not actually exist, then the stop was declared an Administrative Stop (A-Stop) and
autonomous operation would continue without penalty. If the Safety Operator determined that the XUV
could not continue safely, the end-of-mission classification was an “Emergency Stop” (E-Stop) and the
vehicle was moved to the next mission start point. Video and still pictures of the conditions surrounding
each E-Stop were captured to document the cause, as shown in Fig. 16c.

Mission Fault: Missions that were initiated with a clearly undiagnosed mechanical failure from the
previous mission (immediately evident after mission start), or suffered from data collection issues or other
administrative errors not associated with the vehicles autonomous mobility, were repeated after addressing
the cause of the problem. An example is shown in Fig 16d, where an incorrect waypoint was entered in the
vehicle mission definition. Damage incurred by the XUV during a mission did not qualify as Fault criteria.
Lessons learned from Fault missions provided ongoing refinement to the standard operating procedures so
as not to replicate preventable errors. Data captured from the Fault missions did not contribute to the
overall vehicle performance results but were included in an Appendix of the final report.

Graphical representations of individual mission paths on each course provided significant insight into the
vehicle’s behaviors and ability to effectively, and repeatably, negotiate certain terrain features. Since the
field exercises included so many missions, with start points randomly distributed around each course, the
vehicle covered most sections of the courses autonomously in one mission or another (see Figure 16). So
the autonomous path summaries shown in yellow generally trace the entire course. All information
surrounding teleoperative interventions and all autonomous backing maneuvers were tracked and similar
graphical summaries were generated for the final report (not shown here). Such graphics readily showed
areas where the vehicle was proficient at negotiating the terrain, while clearly indicating the location of
problematic for the vehicle’s sensors or mobility. The most severe challenges to the vehicle resulted in E-
Stops, which were often specific obstacles or scenarios that the vehicle either could not negotiate of could
not avoid. They are location and the number of E-Stop instances at each location were also shown on the
summary graphics. For example, positive obstacles such as fallen trees directly along the prescribed path
would high-center the vehicle and negative obstacles such as culverts near certain intersections in the
Urban course went undetected and became hazards for the XUV.

Figure 16: The four end-of-mission classifications; a) Mission Complete – the vehicle achieved the goal
point either completely autonomously or with periods of teleoperative interventions, b) Mission Stop – the
Operator conceded the vehicle was unrecoverably stuck, c) Mission E-Stop – the Safety Operator stopped
the vehicle, either to protect the vehicle or other property, and would not let the mission resume for safety
reasons, d) Mission Fault – the mission was erroneously set up to run, either with an undiagnosed
mechanical failure from the previous mission or administrative errors in data collection (faulted missions
were re-run).

Table 2 is a summary of the three field experiments by site and shows an ambitious schedule that produced
a comprehensive archive of performance data to assess the state of technology for autonomous mobility.
For each of the terrain types in which the XUV autonomous navigation was tested, the total number of
missions, as well as the distance traveled by the XUV and time required for accomplishing the missions is
listed in Table 2. Further detail is also provided in terms amount of autonomous navigation performed by
the XUV: number of kilometers that were driven autonomously (along with percentage of overall travel this
represented) and number of mission hours that were conducted autonomously (and corresponding
percentage of overall mission time). This comprehensive process clearly identified strengths and
weaknesses in vehicle capabilities. The approach taken, based on mission-relevant environment selection,
using statistically significant numbers of experiments, and bolstered by qualitative and quantitative data
that characterize the successful and unsuccessful trials, produced a body of data that could be analyzed to
understand the autonomous navigation subsystem’s capabilities under certain conditions. The subset of
capabilities that were identified as needing improvement can be re-evaluated on the same courses, at a
much-reduced overall cost, to quantify improvements as they occur. Such rigorous methods of evaluation
are necessary to objectively assess and improve upon the state of capabilities for autonomous ground
vehicles.

Table 2: Results of Field Experiment by Sites.

4.2 Terrain Characterization

The goal of terrain characterization is to provide quantitative evaluation of the paths traversed by vehicles
in carrying out their missions. This allows comparisons between autonomous vehicles and human drivers
and between different types of vehicles. To determine if autonomous mobility had reached TRL 6, some
measure was needed of vehicle performance over terrain of known difficulty. The selection of a particular
terrain on which to test the vehicles strongly affected the outcome of the tests. Characterizing the terrain
was also necessary in order to assist in the understanding of the types of environments that the vehicles are
able to deal with. The techniques that NIST has developed and applied to measure terrain are described
below.

Terrain was characterized using sensors on the NIST HMMWV and on a trailer that measures soil
mechanics. The trailer was developed by the Army Tank-automotive and Armaments Command Research
and Development Engineering Center Robotics Mobility Laboratory. For the TRL-6 terrain
characterization, the HMMWV was driven manually. Besides the high-precision position measurement
system described in Section 3, the HMMWV had several other sensors mounted onboard. Sensors included
a GDRS imaging LADAR mounted on a tilt platform, a color camera mounted on top of the LADAR on
the tilt platform, and a Riegl high-resolution scanning LADAR that provided the prime source of range data
for terrain characterization. In the initial phases of the program, a ring of cameras was mounted concentric
with the Riegl LADAR to provide color data, and in later phases, a digital camera attached to a pan-tilt unit
mounted above the Riegl LADAR provided panoramic images of the terrain. In some of the tests, a SICK
line-scanning LADAR was mounted on the back of the HMMWV pointing straight down at the ground to
provide a measure of the topography with precision sufficient to measure the depths of ruts in the ground
left by the HMMWV wheels.

In order to combine data from multiple sensors, it is first necessary to calibrate the sensors and register
them to a common coordinate system. Registration also enables the spatial relationships between
successive samples to be computed. Chapter 6 describes the registration process in more depth. Preparing
for data collection includes calibrating the sensors and accurately measuring their positions and orientations
on the vehicle.

Data were collected in two primary modes. One was while the vehicle was driving normally, and the other
was with the vehicle stationary. Some of the sensors did not run in real time, so could only be used when
the vehicle was not moving. The trade-off between the two modes was that while data acquired in real-time
approximated more closely the actual driving conditions, they were less accurate and usually of lower
resolution than data from the slower sensors when the vehicle was stopped.

A critical part of data collection for mobile vehicle applications is to record the vehicle’s position and
orientation (pose) and the time at which each sample is acquired. This enables data collected from multiple
sensors to be registered, and also allows the data for a complete mission to be compiled into a
reconstruction of all the terrain that was traversed (Figure 17). The Applanix system discussed previously
was used in this data collection.

 Missions
Terrain Type Total Autonomous % Autonomous Total Autonomous % Autonomous
 Rolling/Arid 177 203.8 199.3 97.8% 34.3 31.9 92.9%
 Rolling/Vegetated 181 203.4 188.1 92.5% 39.6 33.1 83.5%
 Urban 288 152.5 148.9 97.6% 25.5 22.7 89.0%

Total 646 559.7 536.3 95.8% 99.4 87.7 88.20%

RESULTS OF FIELD EXPERIMENT BY SITE
Distance (km) Time (hr)

Figure 17: An overhead view of the coarse ladar scans collected on the Black course at Tooele Army
Depot. The colors encode the height of the terrain.

Three sets of data were collected for each course. First, the vehicle was driven over the course collecting
data with the real-time sensors (real-time LADAR, color video camera, and, in some of the runs, SICK
LADAR data). Next, the vehicle moved to the first waypoint on the course. Starting from this point, and
moving 10 m to 150 m between samples, scans were taken of the terrain using the Riegl LADAR, GDRS
LADAR, panoramic digital camera and a set of six cameras arranged in a ring around the Riegl. The scans
were not taken at the highest resolution the Riegl LADAR can measure, but still provided much more
accurate information than the real-time sensors. The navigation data were also stored to provide the
position and attitude (roll, pitch, heading) of the data collection vehicle at the time the sample was
collected. The entire course was sampled in this way. Finally, a set of high-resolution scans was taken of
the difficult or interesting locations on the course.

To collect real-time data, the NIST HMMWV was driven over the course being characterized. A human
driver navigated by following a visual display of the course which shows the waypoints laid out for the
TRL experiment and the HMMWV’s trajectory. The sensors were started at the same instant in time and
navigation and timing data were collected with the sensory data. The sensors used for real-time data
collection were a GDRS LADAR (the primary sensor used by the XUV), a color video camera mounted on
top of the GDRS LADAR, and the INS/GPS position data from the Applanix unit augmented by a
differential GPS base station. In some cases, SICK LADAR data were also collected.

Non-real time data were collected for the entire course at a relatively coarse resolution. Higher resolution
data are gathered at locations that required an emergency stop for the XUV or where the vehicle displayed
“interesting” behavior, such as backing up, suddenly changing direction, or performing an unanticipated
intelligent maneuver.

Having captured copious amounts of data in order to characterize the terrain and understand the vehicle
behavior, a great deal of post facto analysis occurred in a qualitative manner through use of visualization
tools. The navigation data were post-processed to provide the highest accuracy in the position and
orientation of the HMMWV when each data sample was acquired. The real-time data were processed and
inserted into a world model that represented the terrain in a grid, with elevation values in each grid cell.
This enabled the data to be visualized in a form close to that available to the XUV. A movie showing the
terrain changing as the vehicle moved provided valuable insight into what the vehicle knew about its
surroundings at each point on the course. It must be noted, however, that the sensor data captured on the
HMMWV was only an approximation of that used by the XUV during its runs.

Additional analyses performed on the data included computation of vegetation density, ground surface
slope, and ground surface roughness for regions of interest. These analyses were based on data captured
from the onboard range and pitch (orientation) sensors as well as from the measurements taken from the
soil mechanics trailer. Figures 18 and 19 illustrate analyses that were performed of an area where the
vehicle had difficulty navigating autonomously. In the site where data were collected for arid rolling
terrain, there was a particularly difficult region at a dry dam. Figure 18 shows the dam region with the
locations where high-resolution LADAR scans were taken. Two scans were combined to give a high-
resolution topographic map of the region and a set of measurements was made to analyze the region.
Figure 19 shows a combined scan, annotated as follows. The dotted line shows two traversals by the XUV.
One ended in success and the other in failure. The failed path indicates that the XUV was misled by its
inability to see far enough ahead to choose a good path. The slope of the ground along the path it chose is
not as steep as the successful path near the top of the dam, but becomes steeper near the tree. When the
XUV approaches the steeper section, it is going sideways along the slope, and an emergency stop was
initiated to prevent it from tipping over.

The successful trajectory required the vehicle to take a path that initially appeared steeper than the
alternatives, but the vehicle could traverse it sine it did not have to travel sideways on the steeper slope.
The angles shown in the figure for the slopes on either side of the dam wall were computed by fitting
surfaces to the wall and measuring their slopes. The measurements match the pitch recorded by the
navigation system very well.

This example of the analyses performed in conjunction with the overall TRL experimental assessment
shows the type of insight that can be gained through the understanding of the environment in which the
vehicle must operate and of the data that are available to the vehicle in order to model its environment.
Performance evaluations are not just measures of success or failure, but rather windows into the algorithms
and components within a system and how they function in different circumstances.

Figure 18: Dam region, Tooele. Locations where high resolution LADAR scans were taken. The numbered circles are
waypoints on the black course. The circle near waypoint 8 corresponds to a tree that resulted in several emergency stops.

Figure 19: Dam region: Dotted lines show alternate paths taken by the XUV. One path ends in an emergency stop,
while the other traverses the region successfully.

8

Tree

View
Point 1

View
Point 3

View
Point 2View

Point 4

N

9 7

10

5

6

4

500 m
m

3

5. Performance Metrics for Intelligent Systems

The sections above have described examples of applied performance evaluations that were designed and
implemented following a NIST-developed process. There is additional work that extends beyond NIST and
looks at the problem of performance measurement in a more rigorous yet broader framework. One
particular effort that brings together a broader group of intelligent systems researchers and developers is
described briefly in this section.

As the community of engineers and computer scientists developing unmanned systems grows, it is
imperative to arrive at a common understanding of how to define the performance requirements for a
system and how to measure whether and how well the system meets the requirements. Alternative
approaches – both in terms of algorithms and in components such as sensors – must be characterized
through a commonly accepted method. To help address this need for a forum in which the unmanned
systems developers share results and move towards a common body of work, NIST initiated a workshop
series. With support from DARPA, an annual workshop series was launched in 2000 which convened
researchers and practitioners and allowed them to exchange ideas and results pertaining to how to measure
the performance of a variety of intelligent systems. Known as PerMIS (Performance Metrics for
Intelligent Systems), the proceedings from this series of workshops have documented the progression from
mostly theoretical views in the early years to more applied approaches that have been put into practice in
the recent past.

Especially in its earlier years, PerMIS provided a forum for publication of more theoretical aspects of
performance evaluation. Approaches to generic measures of intelligence through diverse schemes have
been presented over the years. Readers are directed to the proceedings for more information [16].

As the field matured, increasing numbers of presentations became more application-oriented. Analyses of
the performance of algorithms that underlie many mobile robot systems have been presented. These
include formal comparisons of several leading optimization algorithms (random search, simultaneous
perturbation stochastic approximation, simulated annealing, and evolutionary computation) [20],
establishing guidance to practitioners for when to use or not use a particular method. Balakirsky and
Kramer discussed various means for evaluating the performance of algorithms, using Dijkstra’s graph
search as an example, in [5] and [6].

Numerous papers have been presented that focus on evaluating the performance of mobile robots and are
directly pertinent to this book’s themes. For example, Albus explored the features of intelligence required
by unmanned ground vehicles [2]. Several sessions dealt with mobility, planning, human-robot
interaction, and simulation support for unmanned vehicles. Papers in the series also provided initial
impetus to the Autonomy Levels for Unmanned Systems (ALFUS) described in Chapter 8. See for example
[10].

6. Conclusions

The measurement of the performance of a ground vehicle, be it teleoperated, autonomous, or a combination
of both, is an essential part of the overall progress in the technologies pertaining to unmanned robotic
systems. A process for deriving the necessary measures, tests, and supporting infrastructure that is based
on cognitive foundations and on domain-specific task analysis has been developed over many years at
NIST. The key components within an overall testing program are

1. The development of the behavioral, knowledge, and sensing requirements for the system,
beginning with a definition of the system’s required application domain, tasks and missions.
Through analyses of these, performance specifications are developed in conjunction with the end-
user community.

2. Testbeds that provide situationally relevant as well as targeted challenges for the unmanned
system. Testbeds can include physical instantiations that range from simplified representations of
the target environment to realistic environments in which to test near-fieldable systems as well as
virtual instantiations that include sensor data and simulation testbeds.

3. An infrastructure that enables repeatable, controlled, and reproducible measurement procedures.
This infrastructure must support measurement of the vehicle and subsystem’s performance against
ground truth. Instrumentation that tracks mobile vehicles’ positions and orientations is critical.
Also important are advanced sensors that capture the environment in which the vehicle executes a
mission and can be used to characterize the environment and provide insight into the vehicle’s
functioning. High-resolution elevation and feature maps also provide means of evaluating the
vehicle’s performance by providing ground truth.

Much work must still be done. As the unmanned ground vehicles become more sophisticated, the testing
requirements become more elaborate. Additional instrumentation and more fully developed testing
scenarios and environments must be developed. As the expected functionality of the systems grows to
include more advanced mission-specific capabilities, the spectrum of contingencies that the systems have to
be able to handle grows exponentially. It will be much more challenging to capture all the possible
situations and test the vehicle against them. A solution may be to characterize the envelope of operation
within which the vehicle is expected to function and devise tests that target the extrema of the envelope to
measure where the points of failure are.

References

1. Alberts, D., Hayes, R., “Code of Best Practice for Experimentation,” Department of Defense
(DoD) Command and Control Research Program (CCRP) Publication Series, 2002.

2. Albus, J., “Features of Intelligence Required by Unmanned Ground Vehicles,” Proceedings of the
Performance Metrics for Intelligent Systems Workshop, NIST Special Publication 970,
Gaithersburg, MD, August 2000.

3. Albus, J. and Meystel, A., Engineering of Mind: An Introduction to the Science of Intelligent
Systems, Wiley and Sons, 2001.

4. Asada, M. et al. “An Overview of RoboCup-2002 Fukuoka/Busan” AI Magazine, 24(2): Summer
2003.

5. Balakirsky, S. and Kramer, T., “NOT(Faster Implementation ==> Better Algorithm), A Case
Study,” Proceedings of the 2003 Performance Metrics for Intelligent Systems Workshop, NIST
Special Publication 1014, Gaithersburg, MD, September 16-18, 2003.

6. Balakirsky, S., and Kramer, T.R, “Comparing Algorithms: Rules of Thumb and an Example,”
Proceedings of the 2004 Performance Metrics for Intelligent Systems Workshop, NIST Special
Publication XXX, Gaithersburg, MD, August 16-18, 2004.

7. Balakirsky, S., Scrapper, C., Messina, E., “Mobility Open Architecture Simulation and Tools
Environment,” Proceedings of the 2005 IEEE Knowledge-Intensive Multi-Agent Systems
International Conference, Waltham, MA, April 2005.

8. Camden, R., Bodt, B., Schipani, S., Bornstein, J., Phelps, R., Runyon, T., French, F., And
Shoemaker, C. Autonomous Mobility Technology Assessment Interim Report. Army Research
Laboratory (ARL-MR-565). 2003.

9. Camden, R., Bornstein, J., French, F., Shoemaker, C., Bodt, B., Schipani, S., Runyon, T., Jacoff,
A., Lytle, A., “Autonomous Mobility Technology Assessment Final Report,” Army Research
Laboratory Technical Report (ARL-TR-3471), April 2005.

10. B. Clough, “Metrics, Schmetrics! How the Heck do you Determine a UAV's Autonomy
Anyway?,” Proceedings of the 2002 Performance Metrics for Intelligent Systems Workshop, NIST
Special Publication 990, Gaithersburg, MD, August 2002.

11. Herman, M., Report of the ARPA/NIST Workshop on Performance Evaluation of Unmanned
Ground Vehicle Technologies, NISTIR 5237, National Institute of Standards and Technology,
Gaithersburg, MD August 1993.

12. Herman, M. et al., Recommendations for Performance Evaluation of Unmanned Ground Vehicle
Technologies, NISTIR 5244, National Institute of Standards and Technology, Gaithersburg, MD,
August 1993.

13. Jacoff, A., Messina, E., Evans, J., “Performance Evaluation of Autonomous Mobile Robots,"
Industrial Robot 29:3, May 2002.

14. Jacoff, A. and Weiss, B., Messina, E., “Evolution of Metrics and Performance for USAR
Competitions,” Proceedings of the 2003 Performance Metrics for Intelligent Systems Workshop,
NIST Special Publication 1014, Gaithersburg, MD, September 16-18, 2003.

15. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H., “RoboCup: A
Challenge Problem for AI,” AI Magazine 18(1): Spring 1997, 87-101.

16. Messina, E. and Meystel, A., PerMIS Proceedings 2000-2004 (NIST Special Publications 982,
990, 1014, 1036).

17. Murphy, R., Casper, J., Micire, M. and Hyams, J. “Assessment of the NIST Standard Test Bed for
Urban Search and Rescue,” Proceedings of the Performance Metrics for Intelligent Systems
Workshop, NIST Special Publication 970, Gaithersburg, MD, August 2000.

18. Oxford English Dictionary, Compact Edition.
19. Shoemaker, C. M. And Bornstein, J. A. The Demo3 UGV Program: A Testbed For Autonomous

Navigation Research. Proceedings Of The IEEE International Symposium On Intelligent Control.
Sept.,1998. Gaithersburg, Md.

20. Spall, J., Hill, S., Stark, D., “Towards an Objective Comparison of Stochastic Optimization
Approaches,” Proceedings of the Performance Metrics for Intelligent Systems Workshop, NIST
Special Publication 970, Gaithersburg, MD, August 2000.

21. Wang, J., Lewis, M., and Gennari, J. “A Game Engine Based Simulation of the NIST Urban
Search and Rescue Arenas.” Proceedings of the 2003 Winter Simulation Conference, New
Orleans, LA.

22. Wang, J., Lewis, M. and Gennari, J. (2003). Interactive Simulation of the NIST USAR Arenas.
Proceedings of the 2003 IEEE International Conference on Systems, Man, and Cybernetics,
Washington, DC, October 5-8.

23. Wheatley, T. and Michaloski, J., Configuration and Performance Evaluation of a Real-Time Robot
Control System: The Skeleton Approach, Proceedings of the IEEE International Conference on
Systems Engineering, Pittsburgh, PA, August 1990.

Chapter 10

Development of Semi-Autonomous Robotic Ground Vehicles: DoD’s
Ground Robotics Research Programs: Demo I through Demo III

Charles Shoemaker

Army Research Laboratory
cshoe@arl.army.mil

1. Introduction

The U.S. Army is actively engaged in developing and fielding its first generation of semi-autonomous,
fieldable, robotic ground robotic vehicles. This is arguably a revolutionary course of action which has
generated many new challenges and opportunities. This chapter will describe the research, technology, and
field exercises that cleared the way and provided foundation technology for the deployable system oriented
programs that followed. Specifically, the integrated research efforts in machine perception, intelligent
control, and man machine interface will be described.

The motivations for these investments in robotics evolved over the last 20 years influenced by growing
field experience with the technology and by the changing challenges faced by the United States Army.
From 1989 to 1999, the Office of the Secretary of Defense (OSD) directly managed the autonomous
mobility development efforts for Unmanned Ground Vehicles within the Department of Defense’s (DoD)
Joint Robotics Program (JRP). During this period it was said that robotics would address “dirty, dull and
dangerous jobs.” Current perceptions are that the use of robotics will have a major positive impact on the
Army’s ability to project force over long distances, save lives in hazardous missions, and permit troops to
control larger areas through use of semi-autonomous robots. In many instances the robots will operate
kilometers away from friendly ground forces; in others they may maneuver only a few meters away from
the ground forces. Disruption or removal of explosive devices is a major application for currently deployed
teleoperated robots. As autonomy is implemented reconnaissance applications, convoying of vehicles
enabling crew rest or logistics resupply, and use of robotic vehicles that could follow squads of soldiers
helping to reduce the amount and weight of equipment soldiers must carry (frequently exceeding 45 kg)
are additional major focal points of the current program. Placing significant machine intelligence and
through it, autonomous functionality, on robotic platforms enables equally important, but less obvious,
benefits such as increasing the survivability of systems through removal of the crew to a safe location. This
design approach will enable a single soldier or crew to control larger areas of terrain through supervision of
multiple vehicles.

Teleoperation (with a few innovative exceptions described later in this chapter) requires near real time
communication of very large amounts of information to the operator. Typically amounting to data rates of
megabits per second, even after compression, this ordinarily requires use of transmission wavelengths
shorter than 0.2 m that require the transmitter and receiver to stay within line of sight of each other. Other
alternatives include use of fiber optic tethers and satellite communications (SATCOM). When fiber optics
are used new challenges arise including the likelihood of damage to long tethers due to the potential for the
tether to be tangled or cut by other vehicles operating in the same area. Alternatively, SATCOM, at the
present time, is a very expensive option, which tends to limit its use to very low data rates more suited to
control of semi-autonomous systems. Further, data latencies in signals processed through networks of
multiple satellites (such as the TDRIS network in use by NASA) can be on the order of 250 to 750 ms.
Although this time lag does not present problems for autonomous mobility, it is problematic when an
operator is directly in the control loop.

On-board processing can dramatically reduce the amount of data which must pass through communication
links and can reduce the impact of latency on the operator’s ability to control the unmanned system(s).

Since the amount of data that must be passed is orders of magnitude lower than that in teleoperation, on-
board processing can enable use of secure tactical data links through use of longer wavelengths that provide
propagation beyond line of sight. Finally, the availability of systems with these capabilities may enable
entirely new tactics and operational capabilities such as the use of mobile unmanned systems inserted
behind enemy lines to collect information without risk to the armed forces.

2. Initial Technology and Programs

Some of the earliest programs in the modern era of Army autonomous UGV development were executed by
the Human Engineering Laboratory (HEL) at Aberdeen Proving Ground, by the Defense Advanced
Research Projects office (DARPA), and at TACOM, the Tank Automotive Command in Warren, MI.

From the robotics program’s inception in 1980, HEL robotics management personnel developed a strategic
alliance with the National Bureau of Standards (NBS) which in 1991 became the National Institute of
Standards and Technology (NIST). The early HEL/NIST efforts addressed logistics applications for
robotics while those at TACOM produced a prototype and type classified engineering package for a
Robotic Obstacle Breaching Assault Tank (ROBAT). The ROBAT was a 45 ton turret-less M60 tank with
a line charge mission package. A line charge is a linear array of explosives it is typically deployed (pulled
across) a section of minefield by a short-range rocket. Once deployed on a sector of minefield it was
remotely detonated, blasting a clear lane through the minefield. Once the cleared lane was produced, the
ROBAT vehicle was teleoperated through the lane “proofing it” using mine rollers that were the width of
the tank itself (i.e. proving that it is clear), and marking the edges of the cleared lane for following forces
that could now traverse the cleared, proofed, and marked lane. ROBAT was teleoperated via a fiber optic
or radio frequency communications link.

The HEL effort developed a vehicle equipped with a large powerful manipulator arm and wrist designed to
enable autonomous unloading and transfer of palletized loads of logistics materiel. In use, the vehicle was
parked in the center of an outdoor, “in the field” analog of an industrial “work cell”. This program, titled
the Field Material-handling Robot (FMR) developed a custom built, autonomous, 10 m long, manipulator
with 6 degrees of freedom and a maximum payload of approximately 1000 kg as shown in Figure 1.

Figure 1: Field Material Handling Robot with 10 m reach, 1000kg payload, and NBS Real Time Control
System for sensory-interactive control.

Martin Marietta Aero & Naval Systems located in Middle River, Maryland held the role of system
integrator. MM’s responsibilities also included manipulator design and fabrication, and system electronics
and software. MM’s subcontractor Moog Hydraulics designed the heavy duty, hydraulically actuated
manipulator “wrist”. The Standard Manufacturing Company provided the trailing arm-drive vehicle on
which the manipulator was mounted. A team led by NBS, developed the sensors and software enabling
autonomous control of the entire FMR system. Of greatest significance, the FMR represented the first
“beyond the factory floor” application of the NBS developed RCS, a hierarchically configured, sensory
interactive, intelligent system architecture employed state tables and a common sensory processing-world
model–behavior generation modular design [1].

The RCS software was used to autonomously guide the end effector’s fork tines into palletized materiel and
rapidly transfer the pallets onto other trucks moving into and out of the work cell. The FMR’s smart,
sensor-equipped, fork tine, end effector (which superficially resembled the front end of a forklift truck
typically used in warehouse environments) utilized ultrasonic, proximity, and optical sensors to identify the
openings in the pallets into which the tines of a conventional forklift are normally inserted to lift and
transfer pallets. In addition to the NBS leaders, the smart end effector development team included Tooele
Army Depot and the Human Engineering Laboratory who assisted in the development and testing of the
autonomous pallet engagement capability utilizing a very large industrial robot with a 200 kg payload (a
Unimate 4000 series industrial robot) as a stand-in for the much larger FMR. The FMR’s testing was
completed and the unit was accepted by the Army in 1989, but autonomous ammunition repackaging in the
field from long term inexpensive pallet storage configuration to expensive, precision magazines that would
fit directly into weapon systems is an approach that has yet to be adopted by Army logisticians. The FMR
was, however, the first successful military application of the RCS. As will be described later in this chapter,
this architecture, in a more evolved form, now forms the foundation for the Army’s first generation
intelligent autonomous ground vehicles.

3. New Direction: Autonomous Mobility

This period from the mid to late 80’s saw the initiation of autonomous ground vehicle technology
development and demonstration programs by 3 groups:

• Defense Advanced Research Project Agency (DARPA) – Developers of the Autonomous Land
Vehicle (ALV) with Martin Marietta Denver Aerospace and Carnegie Melon University (CMU)
and a number of other contractors and universities

• Tank Automotive Research Development and Engineering Command (TARDEC) partnering with
National Aeronautics Space Administration (NASA) Jet Propulsion Lab (JPL) from Pasadena,
California Carnegie Melon University of Pittsburgh, PA, and FMC Inc. of San Jose, California,
and

• Army’s Laboratory Command (LABCOM), the parent agency of HEL with NBS.

3.1. The ALV Program

During the mid 80’s DARPA initiated a set of programs to demonstrate the utility of a new generation of
advanced computing technology known as the Strategic Computing program. In the vernacular of the time,
the hardware component of this effort was referred to as developing “a super computer in a soup can.”
Three military applications programs were established to demonstrate the utility and progress of the high
performance products of this program against a background of extremely challenging applications for the
technology. These application programs addressed:

• global weather forecasting
• a virtual co-pilot for fighter pilots known as the Pilot’s Associate
• a program focused on autonomous mobility for land vehicles known as the Autonomous Land

Vehicle program.

ALV was the first program in DOD to focus major resources (exceeding $10 million) on autonomous
mobility. The DARPA assessment that autonomous mobility for unmanned ground vehicles was an

extremely challenging computational problem was borne out in the field. Martin Marietta was
competitively selected as the prime contractor. Although DARPA was the sponsor of the effort, the Army’s
Engineer Topographic Lab. was the Army contracting agent for the effort. Several universities e.g.
University of Massachusetts, Carnegie Mellon University, University of Maryland and several companies
such as Hughes Research Labs, Standard Manufacturing company and the Environmental Research
Institute of Michigan (ERIM) focused their energies on this program. The vehicle, a large (about half the
size of a school bus), very mobile chassis was developed by the Standard Manufacturing Company who
had used the same suspension approach “trailing arm drive” on the previously discussed FMR program.
Multiple Silicon Graphics workstations were employed for processing of images produced by stereo
cameras and an early LADAR that was 1.8 m (nearly 6 feet) in length was used as an obstacle detection
system (among other approaches such as stereo vision). The objective was to generate 3D images, and from
them accurate maps, of the terrain immediately ahead of the vehicles. Individual cameras on pan/tilt heads
were used to identify road edges for lane following. The vehicle was large enough to house researchers
along with the workstations and was able to traverse roads at speeds of approximately 11 km/h while
searching for obstacles about the size of hay bales. In addition to the early image processing technology,
the program did generate a research community focused on autonomous mobility which became closely
affiliated with the group associated with DARPA’s long term Image Understanding program.

3.2. LABCOM’s Team Program

The Army Laboratory Command was established in the mid 80’s and was comprised of a variety of Army
laboratories (exclusive of the Army’s Corps of Engineers Labs). The LABCOM effort establishing a team
comprised of HEL, the Ballistics Research Lab, the Harry Diamond Lab, Tooele Army Depot, Oak Ridge
National Laboratory (ORNL) and NBS. This program was termed the Technology Enhancements for
Autonomous Machines (TEAM) program.

Figure 2: Artist Concept of TEAM vehicle developed by LABCOM.

This team developed an all electric actuation and control package for HMMWVs which had the unique
design feature of selectable robotic control. The operator could sit in the vehicle and drive it as an ordinary
manned vehicle or he could install a few cotter pins, flip a few switches and convert it to teleoperated
operation. This system also utilized an inertial navigation unit from the Palladin howitzer, the Modular
Azimuth Positioning System (MAPS) which combined fiber optic gyros, accelerometers, and wheel

odometry to allow teach-playback mobility (the term “retrotraverse” was coined by LABCOM to describe
this function) with path retrace accuracies on the order of 0.1% of distance traveled.

Once again the TEAM vehicles (see Figure 2) were controlled using RCS now configured for control of
vehicles with autonomous mobility and automatic target acquisition (not manipulator control). This system
also provided a mode of teleoperated driving over compressed data links that allowed multiple “dialable”
control by the operator of a number of selectable data compression parameters including level of resolution,
frame rate and numbers of grey scales. This permitted experimental evaluation of the performance
decrements associated with various types and levels of data compression. Early results demonstrated that
compression down to levels near 60 kbps was highly desirable because it enabled use of communication
links with good propagation characteristics beyond line of sight. This technique however forced drivers to
slow down to 16 km/h or less due to the poorer image quality it afforded.

TARDEC efforts during this time focused on conventional stereo vision and computer assisted
teleoperation techniques, and autonomous control based on ALV technology. Each of these three
techniques was implemented on a separate HMMWV. The Computer Aided Remote Driving (CARD)
technique developed by JPL used stereo cameras to build a 3D model of the terrain ahead (acquired while
the robot was stopped). The operator could view the 3D scene using shuttered goggles providing him
“depth cues” and designate a string of way points for the vehicle. Because the waypoints were identified in
three dimensional space, enough information was available to allow the robot’s planning software to define
the path and allow the robotic HMMWV to drive through the trajectory linking the waypoints
autonomously. Much the same technique has been used on planetary rovers by JPL. For the NASA
missions the low speeds, comparatively short ranges and intermittent stops required to acquire data were
not a severe handicap. Alternatively, the ability to perform this function using only a pair of still frame
images enabled this mode of operation to be supported over NASA’s Deep Space Network.

3.3. The OSD Joint Robotics Program

As the 80’s ended, Congressional Language was created that vested OSD’s Land Warfare Office with the
responsibility for all ground robotics efforts in the Department of Defense. Approximately $20 million
were split between:

1. early efforts to develop and deploy a teleoperated weapon or reconnaissance package equipped
small wheeled vehicle less than 375 kg platform the Tactical Unmanned Ground Vehicle
(TUGV), and

2. research efforts focused on advancing technology required for autonomous robotic vehicles.

The original roadmap OSD created for the research component of the Joint Robotics Program
described a program to run between 1989 and 1991 titled Demo I and a second effort which would
ramp up as Demo I concluded termed Demo II.

4. DEMO I

In concept, Demo I merged the ongoing LABCOM and TARDEC efforts into a program that demonstrated
six robotic HMMWVs (see Figure 3) with three types of autonomous mobility, and in one instance with
automated reconnaissance and target acquisition [2]. The LABCOM group included the members of the
TEAM program described above (HEL, Ballistics Research Lab, Harry Diamond Lab, Tooele Army Depot,
ORNL and NBS). Each of the HMMWVs was controlled by a team member located in a large command
and control vehicle the Unmanned Ground Vehicle Control Testbed (UGVCT) built for TARDEC by FMC
Corporation. This system was also referred to as the Remote Command Center (RCC). The LABCOM
vehicles could also be controlled using a smaller operator workstation “the table top controller.” Their
technology was derived from LABCOM programs which had built an intelligence fusion station the
Combat Information Processor (CIP). Each approach to autonomous mobility was demonstrated on a
separate HMMWV platform.

Figure 3: OSD Demo I Robotic HMMWV technology testbeds; Testbed primary developers from left:
HDL, BRL, TARDEC, TARDEC, NIST, JPL

The HMMWVs were configured as follows:

HMMWV #1
All electric “optionally manned” robotics package the “LABCOM actuation package” which integrated
steering, brake, throttle, transmission, transfer case, and parking brake, all of the electronics for control
were located in an environmentally conditioned module located between the front seats, this HMMWV was
equipped with a video compression package allowing the operator to independently set, frame rate,
resolution, and color as opposed to black and white imagery for driving, Using this package the
HMMWVs could be driven in a low data rate (64 kbps Vs 60 megabits for uncompressed color video
teleoperation mode at low speed e.g. 16 km/h). The system also used an RCS implementation for vehicle
control developed by NIST. The Army provided funding for this extension of RCS sponsorship for semi-
autonomous robotic vehicle control [3] which included an automatic target acquisition module using 4
CCD cameras providing a field of view of 20 degrees. Operation of this module, which employed RCS,
required the HMMWV to be parked and used target motion as the discriminator for target detection.
Moving targets used for Demo I were located at modest ranges of up to 1 km.

HMMWV #2 was similar to HMMWV #1 and included a turret capable of pointing a Modular Laser
Integrated Engagement Systems on a separate turret that could “fire” a laser at distant targets equipped
with receivers capable of triggering a smoke charge to simulate an accurate target acquisition and
engagement.

HMMWV #3 was developed by FMC Corp for TARDEC. It used an actuation package developed by
Kaman Electronics originally developed for installation on target vehicles used on Army test ranges. It
employed, the previously described Computer Aided Teleoperation (CARD) developed by JPL.

HMMWV #4 used the same actuation design as HMMWV #4 but integrated early autonomous road
following technology derived from the ALV program to road identify edges.

HMMWV #5 was similar to HMMWV #1, used RCS, and integrated and featured a “retrotraverse” mode
of autonomous mobility that allowed an operator to drive a route up to a few kilometers and repeat it
autonomously on command. This system relied on a ring laser gyro/triad of accelerometer inertial

reference system which also utilized an odometry sensor to detect wheel rotation. A new experimental
turbine engine powered smoke generator developed by the Army was integrated into this system.

HMMWV #6 was similar to HMMWV #3 but used an improved version of CARD that supported longer
path lengths, and was integrated with an Army Single Channel Ground Air Radio System (SINCGARS)
tactical radio.

4.1. Control Stations

The control stations used for DEMO I included the Robotic Command Center (RCC) and the Table Top
Controller (TTC).

The RCC utilized an M109 Self Propelled Howitzer chassis as the vehicular platform. It integrated two
driver work stations and a commander’s station. It was designed to support all of the mobility modes
outlined for the previously described Demo I HMMWVs. Mission package software was included to
support reconnaissance and surveillance, decoy operations, chemical detection, battlefield obscuration
(smoke), convoy following and anti-armor weapon systems. Sun workstations were used to support path
planning performed on a digital terrain database. 3D goggles were also integrated to present stereo imagery
to operators for operational modes such as CARD. In the RCC, drivers used a workstation much like that
used to control a tank integrating a steering yoke and brake pedals for control. The Table Top Controller
was based on a Sun Single Processor Scalable Processor (SPARC) for a Combat Information Processor, for
data fusion and a “suitcase” controller for control of mobility functions.

4.2. DEMO I Conclusion

The OSD vision and that of the program management staff began with an array of individual robotic
vehicle programs along with many programs focused on robotic subsystems. At its conclusion in late
spring of 1991, Demo I presented the robotics community and Senior DoD officials with an integrated
review of the state of the art in mobile robotics. It allowed evaluation of several modes of vehicle control
including advanced, computer-aided teleoperation, semi automated control modes such as CARD, and
highly autonomous modes of control such as retrotraverse and autonomous road following. It also
presaged investigation of many of the most challenging issues the Army faced as it approached robotics for
Future Combat Systems including levels of autonomy, operator workload, efficient modes of human
intervention as a means to intervene in the control of autonomous vehicles experiencing difficulty, and
multiple vehicle control. Both the RCC and the table top controller supported simultaneous control of two
vehicles. The RCC added the dimension of controlling moving vehicles from a moving mobility platform,
within which the operators’ were located. This capability was demonstrated by TARDEC during trials at
Camp Roberts, California.

As the concluding event for Demo I, five demonstration days were held during a 2 week period on the
Army’s rugged hill test site in Churchville, Maryland. The individuals controlling the demonstration
vehicles were Army civilians and contractors. Many of the component technologies developed in Demo I
were transitioned some in integrated packages, others individually, to follow-on efforts. Project Mustang
(see below) was the best example of this type of program continuity. Demo I was declared a success by the
OSD sponsors who stated that it “set the standard for the next major robotics program Demo II”.

4.3. Project Mustang

From the beginning of Demo II through Demo A an Army officer stationed at DARPA served as the Demo
II Program Manager (PM). The Request For Proposal (RFP) issued by DARPA to select the Demo II
integration contractor included a requirement for a capstone demonstration at Ft. Hood, Texas. This
demonstration was originally envisioned as an event using a large amphitheater-like range as a setting
rather than a process involving military technology users in the effort. During 1992, the Demo II PM
position was vacated as the first PM retired from the Army. A second DARPA PM (who had been the
Demo I program manager) was selected by OSD and DARPA senior management. The positive
experiences connected with use of map based interfaces during Demo I resulted in a decision by the new

Demo II PM to seek a tighter connection with military subject matter experts. At the same time an Army
officer who had obtained a graduate degree in Mechanical Engineering with a concentration in Robotics
from the Massachusetts Institute of Technology was appointed as an Armored Battalion Commander at Ft
Hood. These two individuals working with the III Corps Commander LTG Paul Funk and Division
Commander BG Eric Shinseki (later the Chief of Staff of the Army and the chief architect of the robotics
intensive Future Combat Systems (FCS) Army transformation program) developed a program plan that
closely connected individuals with armored cavalry scout experience to the Demo II program.

This interaction involved two processes:

1. A near term effort (Project Mustang) that brought robotics capabilities into the field with Armored
Cavalry Scouts, and

2. Scout involvement in Demo II events and the culminating Demo II event at Ft. Hood.

For Project Mustang, Demo I assets were used to develop a testbed for an autonomous robotic scout.
Specifically a Demo I HMMWV (HMMWV #2) was equipped with improved acoustic based automatic
target acquisition. A laser engagement system was added (see Figure 4) and a simulated weapon system
was integrated onto the laser pointing turret.

Figure 4: Project Mustang configured HMMWV with SATCOM, laser engagement and a weapon system
visual modification.

The Demo I TTC was integrated into a HMMWV (ambulance configuration). An advanced Sun computer
was used for digital terrain data base planning tools. GPS technology was integrated with the Demo I
developed inertial reference system for an extended range retrotraverse capability. The first Project
Mustang experiment titled “Blackjack Challenge” took place in Spring 1993. The soldiers’ ability to
quickly adapt to the graphical user interfaces was very impressive and led to a decision in Fall 1993 to
conduct a second experiment “Blackwolf Challenge” to enable Armor Scouts to serve as the operators of
the robots instead of tactical advisors in Fall 1993. Mobile communications experts at NASA’s Jet
Propulsion Laboratory were brought in to integrate a Ka band satellite communications capability using
NASA’s Advanced Capability Technology- Satellite (ACTS).

During this period Army Scouts from Ft. Hood participated in several Demo II workshops (see below)
providing insights into the Army’s conduct of scout operations. These insights and the technology required

to enable them were subsequently integrated into the Demo II platforms. Two aspects of autonomous
control: inherently low data rate requirements and robustness to time lags in the SATCOM network
(latency) enabled the integration of the ACTS satellite data link with the HMMWV. At the operator
control unit end of the data link a satellite dish approximately 2 m in diameter was pointed at the
geosynchronous satellite. On the HMMWV vehicle a one degree of freedom tracking antenna was located
in a small plastic dome about 0.3 m in diameter and mounted on the highest point on the HMMWV. This
supported continuous tracking while the HMMWV was on the move and prevented structures on the
vehicle from interfering with the line of sight path required for signal transmission. The ACTS system
provided approximately 125 kbps of data rate with latencies in the system of as much as 1.5 s depending on
other users of the network and the location of NASA relay satellites in the Tracking and Data Relay
Satellite System (TDRSS).

A major improvement in operational utility resulted from the use of the ACTS system since line of sight
between two ground systems was no longer a communications constraint. There were relatively few tall
trees or structures in the test areas used at Ft. Hood. This enabled the military operators to place the robotic
HMMWV with near complete freedom.

The military operators found the operator control unit easy to use and with informal instruction could teach
the vehicle path segments to be repeated using retrotraverse, and adjust parameters in the RSTA system that
used a 3-5 micron Forward Looking Infra Red system (FLIR) as its primary visual sensor. This FLIR used
Indium Antinimide as the detector within the imaging detector element. The RSTA module also included
visual CCD cameras and a stepper motor driven pan tilt turret. A Northrop developed acoustic target
detection system was integrated and helped to cue the imaging RSTA sensors on the HMMWV.

In combination, these subsystems enabled an operator to plan a predetermined trajectory between
observation points as much as 1 km apart (limited by the “0.1% of distance traveled” limitation of the
MAPS system and the approximately 30 m accuracy of conventional (non-differential) GPS that was
integrated on the Blackwolf Challenge system to reduce the effects of drift on inertial sensor data [4]. The
retrotraverse capability was ideally suited to the dispensing of tactical smoke. Shifting winds create a need
to move smoke generators to alternate locations. Many modern tactical smoke systems employ particulates
added to the basic smoke. These provide rapid attenuation of signals within the visible spectrum, and also
interfere with signal transmission in many other areas of the electromagnetic spectrum. An ability to use an
onboard reference system for navigation which does not require imaging of local terrain features can be
very useful for tactical operations in battlefield obscuration missions. One major limitation of unaided
retrotraverse is the inability to detect changes in the environment since the original path was traveresed.
Movement of dismounted troops, vehicles and changes in the terrain caused by artillery and other weapon
systems create real limitations for unaided retrotraverse.

In order to execute the RSTA mission the operator identified targets of interest on the ground using
knowledge of the vehicle’s orientation and pointing of the turret housing. Once oriented, the sensors
enabled a systematic search of areas of interest using a combination of change detection, moving target
detection, and high thermal contrast as automatic target acquisition strategies. Since the vehicle was being
used in a tactical exercise it was essential that it be both detectable by opposing force “players” and have a
realistic signature equating to its use of a simulated 40 mm cannon. The use of a Modular Integrated Laser
Engagement System (MILES) provided this capability. The vehicle could be knocked out of action by
other systems firing coded laser energy at an array of MILES detectors mounted around the vehicle.
Similarly, it could fire its own laser (boresighted with the FLIR) at targets, triggering a flash and smoke
signature on the HMMWV intended to represent the type of signature a weapons system of that caliber
selected would possess. This replicates the potential for the vehicles location to be disclosed once it fired;
and, indeed, during the actual “engagements” carried out during several nights of BlackWolf challenge it
was quickly determined that if the HMMWV fired it was quickly detected and “killed”. On the other hand,
if it was used as a forward sensor to detect and relay information including location and type of probable
targets it was found to be a valuable asset, frequently the first to identify incoming targets. The soldier
operator was signaled when a likely target was detected. He was shown a still frame target since the 150
kbps data rate supported by ACTS was much lower than that required for live video.

This exercise and the soldiers’ demonstrated aptitude to quickly learn to control the system resulted in a
unanimous agreement among the Demo II principals to fundamentally change the nature of the interaction
planned for Demo II at Ft. Hood. Rather than a demonstration being manned by expert contractors at Ft.
Hood, a three year long interaction was planned and executed with military scouts attending major Demo II
workshops and providing insights regarding their tactical skill and experience. When Demo II was
conducted at Ft. Hood during the Summer of FY96 the soldiers were the operators of the robotic systems
rather than spectators.

5. DEMO II

5.1. Introduction-Through Demo Alpha

The Demo II program was the second element of the original OSD vision for robotics research [5]. Its
primary focus was autonomous mobility. OSD developed a teaming relationship with DARPA for this
program with OSD and DARPA each contributing funds (in the ratio dollars of approximately $2 of OSD
funds for each $1 of DARPA funds). A Memorandum of Understanding (MoU) was entered into between
the two agencies specifying the shared investment approach along with a stipulation that the Demo II
Program would be managed by a DARPA Program Manager in that agency’s Software Intelligent Systems
Technology Office. Management of Demo II began at about the same time period as Demo I but its
funding profile was the inverse of that for Demo I.

While Demo I made extensive use of existing robotics assets and used a group of Army Labs as the
integrator, Demo II followed a much different and more traditional industry approach in that a major
aerospace contractor, Martin Marietta (the ALV lead contractor) was competitively selected as the
integration contractor. However, in a major departure from the aerospace model, many other organizations,
that were perceived to have valuable technologies to contribute were selected as “co-contractors” (in
contrast to sub-contractors). Many had been principals in ALV. Significant contributors to the program
included:

• Academic co-contractors e.g. Carnegie Melon University, Colorado State University, University
of Maryland, University of Massachusetts, University of Michigan, Georgia Institute of
Technology, University of Pennsylvania, and Cornell University;

• Corporate organizations e.g. STA Inc., Jet Propulsion Lab, AAI, Odetics Corporation, Sarnoff
Research Center, Amber Corporation, Hughes Research Labs, Lear Astronics, Rockwell,
Environmental Research Institute of Michigan, Honeywell, Advanced Decision Systems, and
Alliant Tech Systems; and

• U.S. Government agencies e.g. Engineer Topographic Lab, Army Night Vision Electro-optics
Sensors Directorate, TARDEC, and ARL.

Although many of the ALV team members contributed to Demo II there was very little reuse of Demo I
assets or technology. New actuation and control approaches were adopted; RCS was not used as an
integrating architecture. A Demo II “tiger team” developed a software architecture the team described as
incorporating hierarchical and “reactive” behavior based characteristics.

Demo II organized its primary schedule milestones into a series of technology demonstrations termed
Demo Alpha (A) (1993), Bravo (B) (1994), and Charlie (C) (1995) conducted at the Martin Marietta
facility and test site at Waterton, Co. The culminating Demonstration, Demo II, was held at Ft. Hood
Texas in 1996.

Demo Alpha’s milestones were closely tied to development and demonstration of the basic automotive
infrastructure for the Demo II mobile robotics testbed vehicles designated the Surrogate Semi-autonomous
Vehicles or, more simply the SSVs. The first SSV was developed and demonstrated at this time. During
Demo Alpha the first SSV was demonstrated in a teleoperated mode without autonomous functionality.
Basic RSTA camera pointing was demonstrated. The Waterton, Colorado site was an outstanding

demonstration venue. It included a dedicated building for the Martin Marietta personnel involved in Demo
II which included a high bay area for vehicle assembly, and integrated testing. Moreover there was nearly
a square mile of spectacular rugged terrain located within a short distance of the integration building and a
viewing area from which much of the site could be seen by VIPs.

The terrain included dirt and paved roads, rugged hills, meadows, and enjoyed microwave relay data links
through the site that had originally been installed in support of ALV. The vehicles’ location throughout the
Waterton site tracked on a high resolution Digital Terrain Elevation Database (DTED V) 1 m resolution
database originally generated for ALV this terrain had also been digitized to levels of resolution below 1 m
and placed in a digital terrain database. Much of the perception, and intelligent control technology used
throughout Demo II was developed by a team from CMU’s Robotics Institute. During Demo A,
autonomous road following was demonstrated using a subsystem termed Autonomous Land Vehicle in a
Neural Network (ALVINN). The SSV was teleoperated onto a road (dirt or paved) and the ALVINN
modes was manually selected. The vehicle would then drive autonomously down the road using images
collected from a single camera. Images were grabbed using Datacube vision processors and processed
using the ALVINN software. Between the on-road segments, Demo A used a low data rate teleoperation
technique developed by CMU. This mode of control, Supervised Telerobotics Incremental Polygonal Earth
Geometry, was more frequently referred to as STRIPE.

STRIPE provided the operator a still frame image of the scene ahead of the vehicle. Lacking stereo or
other range data, only a 2D view was available. Data integrating the missing range information became
available once the vehicle mounted cameras were displaced as the vehicle drove from point to point
following the points the operator designated. The vehicles planning software was utilized to build a
trajectory between the points once the vehicle (and cameras) had displaced. STRIPE used a single camera
and a single still frame requiring only very limited incremental data rate capacity for the operator to
generate the original waypoints. The operator manually switched back and forth among the mobility
modes in Demo A. Demo A also used a GPS system integrated through a Kalman filter integrating
odometry, and inputs including data from a flux gate magnetometer compass and two inclinometers.

Demo A also served as a significant “rallying point” for members of the Image Understanding community
developed by DARPA over many years. Indeed a parallel program DARPA’s BAA 93-01 Advanced
RSTA Technology Effort was put in place as a funded effort during Demo Bravo. This effort brought forth
a new group of “co-contractors” focused specifically on RSTA technology; this effort developed techniques
for motion stabilization (RSTA) on the move, adaptive Forward Looking Infra Red system (FLIR), target
detection, advanced sensor fusion including FLIR, targeting LADAR, video, and polarization with
advanced senor based planning. Although not covered in detail in this chapter, these efforts provided
significant new options to the MM system integrator [6].

5.2. Demo Bravo

A major focus of efforts leading up to Demo B held in Summer 1994 was to enable basic autonomy over
cross country terrain using stereo vision, to upgrade planning capabilities enabling the vehicle to shift
among the various modes of control automatically, to integrate a much improved Operator Control Unit,
and to provide significantly upgraded RSTA capabilities. The Demo Bravo vehicle was a standard “slant
back” four seat HMMWV modified to increase available volume for onboard computing by nearly an
additional 20% [7] (see Figure 5).

Figure 5. A pair of Demo II robotic HMMWV testbeds (Demo Bravo-Charlie configuration).

Demo II Bravo comprised a two day demonstration which for the first time included significant
participation by officers and Non-Commissioned Officers (NCOs) from Ft. Hood based on the Project
Mustang initiative.

A single robotic HMMWV was controlled by an NCO supported by a MM engineer. The OCU was
located in an S-250 communication shelter (Figure 6) mounted in the cargo bed of the HMMWV which
was used from Demo B throughout Demo II as a dedicated OCU vehicle, i.e. it did not support
conventional tactical functions.

Figure 6. Interior of Demo II operator control unit located inside an S-250 communications shelter carried
on a manned HMMWV.

The OCU used Sun workstations complemented by an array of smaller monitors. For the first time in the
OSD managed robotics program, the OCU developed for Demo B incorporated a graphical user interface
integrated into a digital terrain database. The symbology displayed was identical to that used by the Army
to plan manned scout missions. Typically, a military mission is planned on a map, employing a symbol
known as a Phase Line, to synchronize movements of multiple elements of a maneuver force. At this
location manned forces wait until other elements catch up or move to previously designated locations. In
the Demo B OCU, the phase line was identical pictorially to that used by the military and could trigger a
similar pre-programmed wait function.

Demo B took place on a route nearly 3 km in length. During the first kilometer, three types of sensor based
mobility were demonstrated during clear-weather daylight conditions. The first two modes included dirt
and paved road following using a single black and white Charge Coupled Device (CCD) daylight camera.
In this instance single lane roads were traversed. No lines of any type were painted on the road. The
camera’s output was processed to identify the road edge. Contrast between the road and the surrounding
terrain was the primary information used to detect the edge. This type of processing enabled the robotic
HMMWV to move along the road at a maximum of 25 km/h. The system shifted smoothly from movement
on the dirt section of the road to the paved section. A third transition took place as the HMMWV drove off
the road at a location coincident with a previously identified GPS location. The vehicle drove sequentially
through multiple way points. This was the third mode of control. At the beginning of the run landmarks on
the horizon were matched with those generated during a previous run. Because GPS (when the location of
the receiver is not moving) provides only location data and not orientation data, this initial matching was a
valuable source of calibration information. During this period the vehicle was not performing obstacle
detection and could easily collide with an object such as a fallen tree or another vehicle on the road. Once
the initial mobility modes were demonstrated, basic RSTA capabilities using the FLIR as the primary
sensor were performed. An extended mobility run using only Global Positioning System waypoints as a
reference was also demonstrated. The vehicle was directed to return to the road as the next element of the
demonstration.

The demonstration continued employing a mode of control enabling the operator to intervene to assist the
autonomous vehicle if it encountered difficulties or if the operator wished to make a decision based on
information not processed by the SSV e.g. selecting a fork in the road based on the operators perception of
road surface qualities. STRIPE was used to support this mode of control. Depending on sight lines this
information could be used to drive the robot distances up to 25-40 m.

The next demonstrated mobility mode utilized stereo vision to detect obstacles and place them in a “map”
structure. This subsystem, developed by JPL, was part of the research it was pursuing for implementation
on planetary rovers. The Demo II system used two fixed camera’s for stereo; they were based
approximately 30 cm apart (the stereo baseline) on a bar located above the HMMWVs windshield.
Potential obstacles were detected using disparity information resulting when the two images were
registered. Trigonometric analysis of this information was used to generate obstacle maps. Artificial
intelligence based planners were used to modify the vehicle trajectory as required, departing from the
baseline path only to the extent required to avoid the obstacle and return to the original trajectory generated
by the operator’s initial planned path.

In Demo B processor implementation, the considerable computational load entailed by these processes
resulted in processing rates on the order of 3 frames per second. For a vehicle of the size of the HMMWV
these experiments resulted in vehicle velocities less than 10 km/h. Obstacles 1-2 m in diameter (simulated
boulders made of fiberglass) were used to allow rapid repositioning and prevent damage to the vehicle if
stuck. During Demo B obstacle detection ran only when the vehicle was moving cross country.

Several basic modes of RSTA capability were performed using a FLIR developed by the Amber
Corporation known as the Radiance model. These FLIR approaches used thermal contrast and target
motion as the two primary discriminators and as was the case in Project Mustang the vehicle had to be
stationary in order to use the RSTA capability.

5.3. Demo C

This group of events took place during July 1995. From a program standpoint this effort focused on
demonstration and evaluation of subsystem capabilities to enable decisions regarding the culminating
demonstration at Ft. Hood a year later. Although the majority of the technologies demonstrated represented
efforts to make the B component technologies more robust, several new capabilities were integrated and
shown especially those involving multiple (two) vehicles. Formation control was shown that utilized GPS
integrated with an inertial reference system as a reference (not local sensing). This technique would
maintain relative vehicle positions with precision and distance controllable independently. A second new
capability termed “map sharing” allowed the obstacles located in the map framework of the lead HMMWV
to be communicated to a second HMMWV. This capability allowed the lead vehicle’s “experience” to
benefit that of subsequent followers. For example, if the lead vehicle encountered a dead end situation the
followers could avoid the problem area. This second new capability was the first demonstration in a
military ground robotics program of an emergent “tactical behavior.” This movement termed “Hill
Cresting” was invoked to provide a level of capability beyond movement from point A to point B (Point B
was typically selected through a line of sight analysis based on the digital terrain database).

In a true tactical operation, it is frequently undesirable to move to the crest of a hill. In that situation a
vehicle could be silhouetted against a high contrast sky background. In the hill cresting mode a point an
arbitrary distance (typically 20 m) short of the desired observation point, was selected. The SSV moved to
that location and began to pulse its laser rangefinder in the direction of the expected target. Short distance,
incremental, vehicle displacement continued resulting in relatively short range distances being read by a
laser rangefinder. As the vehicle neared the top of the hill a suddenly shift to distant ranges roughly
equivalent to the range of the notional targets is detected. The point at which the rapid shift takes place
represents the location of the vehicle at what is termed the “military crest” of the hill. This integrated use of
mobility and RSTA sensors (in Demo II comprised of the Amber FLIR, a visible zoom camera, and laser
rangefinder) was unprecedented and presaged later developments with similar objectives.

DEMO II Charlie included three days of subsystem evaluations in preparation for a critical downselect to
the technology components of the concluding DEMO II event in 1995. It concluded with an integrated
demonstration similar to that performed in Demo Bravo. The integrated demonstration was under the
control of a military scout from III Corps at Ft. Hood, but included simultaneous control of two HMMWVs
from the HMMWV mounted OCU. The culminating Demo Charlie demonstration was observed at close
range (from a following HMMWV) by senior personnel from the US Army’s Infantry School at Ft.
Benning, Georgia. The demonstration was compelling enough to cause skepticism to shift to advocacy
from this important organization during the span of the 45 min. demonstration. The Demo II robotic SSVs
were configured so that there was room for a driver and passenger in the front two seats of the vehicle.
Since the vehicles were, in essence, rolling laboratories there was every expectation that during the testing
of the vehicles personnel would be located in the driver and or passenger seat. This was not unique to
Demo II but it had been true of ALV, Demo I and Project Mustang. While Demo B had been performed
with the Robotic HMMWV unmanned, Demo C was conducted with a person in the passenger seat. This
individual could not steer the vehicle even if he wished to but the passenger could hit a safety kill switch or
rapidly reboot electronics if necessary. As Demo II C concluded the program manager solicited concepts
for candidate demonstration “vignettes” to be performed at Ft. Hood the following summer. This was the
first use of the term vignette associated with a robotics demonstration and related to an approach that
integrated significant new technical capabilities into a representative tactical scenario.

The culminating demonstration for the Demo II program took place at Ft. Hood, Texas during July 1996
under the supervision of a second program manager from ARL (The first ARL PM had been tasked by
OSD to develop plans for Demo III). Three demonstration vignettes based on activities during Demo C
were selected, implemented and conducted. Significantly, the early interactions with the scouts of Ft. Hood
had matured into a longer term teaming relationship with the Mounted Maneuver Battle Lab at Ft. Knox,
KY.

Demo II was more than a technology demonstration (see testbeds in Figure 7). Close interaction with the
Army’s Training and Doctrine Command (TRADOC) had changed what was planned as a technology

demonstration into a Battle Lab Warfighting Experiment. This involved significantly more structure,
preparation, and sophisticated data analysis than a typical technology demonstration. The summer heat at
Ft. Hood which on occasion exceeded 104 degrees F, proved to be a significant new challenge to test
personnel and the robotic equipment. The electronics on the vehicle were comprised primarily of
commercial grade components placed in environmentally controlled shock, and electromagnetic
interference isolated enclosures. The three vignettes selected for demonstration were an Urban Assault
mission, a Forward Observer mission, and a mounted Scout operation.

Figure 7: DEMO II HMMWV technology testbeds. From left: Demo II-A. SSV, Demo II-OCU
workstation in S-250 shelter mounted on HMMWV, Demo II-C SSV, Demo II-C SSV, Demo II-C SSV.

The Urban assault mission required the simultaneous deployment of all 3 SSVs around the perimeter of the
Ft. Hood Military Operations in Urban Terrain (MOUT) site. From vantage points originally selected using
the digital terrain display on the operator interface, FLIRs were utilized to detect and pass information
regarding the location of “enemy” soldiers in the town.

The Forward Observer mission required a single unmanned SSV to move to a previously selected location
inside an Artillery impact area for a mission that would call in live fires on a target selected by the operator
of the SSV. The vehicle operated in the obstacle detection mode during the mission and successfully
detected and negotiated a difficult (negative obstacle) dry stream bed as it moved to the GPS location
designated by the operator. The Amber FLIR was used to detect difficult non-moving targets. It was used
in conjunction with the vehicle’s GPS unit was used to generate data required for a “call for fire.”

The mounted scout mission was the most complex of the three missions. It was performed in a “force-on-
force” mode meaning that the robotic vehicles were utilized by a friendly “Blue” manned scout force which
employed them against a “Red” or enemy force. The exercise was conducted in a fairly flat maneuver area
containing scrub trees up to 2.5 m in height and brush. This terrain was typical of that found in many of Ft.
Hood’s maneuver areas and was used for manned vehicle training operations. Observers from OSD and
many other Government agencies observed the exercise from a nearby mesa.

The terrain analysis tools developed as part of Demo II proved highly effective in enabling the Blue Force
to maneuver the SSVs to positions of tactical advantage. The Blue Force used the SSVs to “probe” the
enemy force using routes that were concealed from the view of the Red force by fairly subtle terrain
features. The SSVs were employed with obstacle detection functioning full time. Improvements in

processing algorithms and hardware enabled the SSVs to operate at speeds up to a maximum of
approximately 8 km/h when the obstacle avoidance subsystem was in use. Obstacle detection based on the
previously described stereo vision system proved capable of detecting the trees that were the primary
mobility challenge.

Seen from a distance 1 km away by the observers, the outlines of the SSVs were virtually indistinguishable
from the manned HMMWV scout vehicles. However, the difference in movement between manned and
unmanned HMMWVs was readily observable. The experienced scouts tended to move rapidly from one
position of concealment to the next using bursts of speed (only marginally faster than the SSV robotic
vehicles). In contrast, the SSVs moved with a relatively linear velocity profile. Negative obstacles such as
holes, ditches etc. proved much harder to discriminate with the stereo technology. Not withstanding these
limitations, the SSVs were believed to be very useful by the Blue Force whose only real “complaint” was
that the FLIRs on the SSVs did not have adequate range. They were limited to detecting red force vehicles
at 600-750 m and had definitely not been a major area of technical emphasis within the program.

The Commanding General of Ft. Knox’s U.S. Army Armor Center found, in the preface to the
experiment’s final report, that “This experiment found significant potential value added to the warfighter in
increased situational awareness, reducing risk to manned platforms, increasing the tempo of operations and
protecting the force”. A corollary finding by the Integrator of Mounted Battlespace was that the “Biggest
payoff for “the” maneuver force is “a UGV that requires minimal (near zero) involvement after mission
assignment”.

6. DEMO III

During the concluding year of Demo II OSD tasked the Army Research Lab’s Robotics Program Office
(RPO) to formulate a proposal for the next technology development and demonstration in robotic vehicle
evolution namely Demo III [8]. A workshop to assist in this process was held at the Institute for Defense
Analyses in Alexandria, Virginia. This meeting was hosted by the ARL RPO and was part of an effort to
develop an updated, long range strategic technology vision for the OSD Joint Robotics Program. ARL
sought and received participation from the DoD “user” community with representation from each of the
three Services and the Marine Corps. Army participants included ARL, TARDEC, the Aviation and
Missile Command (AMCOM), NASA’s JPL, NIST, DARPA, and Academia [9].

The group identified a number of technology challenges believed to be critical for future DoD application
of robotics. These included:

• the need for UGVs to be able to keep up (speed-operational tempo) with maneuver units,
• obstacle detection and avoidance,
• image stabilization,
• image understanding,
• situation awareness,
• navigation and landmark recognition,
• cooperative target detection,
• dynamic world modeling,
• reactive behavior and re-planning,
• system architecture standardization, and
• communication with robotic vehicles.

This information in concert with extensive prior experience applying the technology through Demo I,
Project Mustang, and Demo II, was integrated into a proposal to OSD for a new effort titled by OSD as
Demo III. Specifically, the program’s technical objectives were aligned against the following challenge
areas:

• autonomous mobility,
• intelligent system architectures,
• man machine interface,
• mission packages (reconnaissance and target acquisition to permit realistic field exercises),

• communications, and
• mobility platforms.

Target capabilities of the program as proposed by the RPO to OSD were:

• autonomous scout vehicles with off-road cross country speeds of 25 km/h in daylight conditions
and 16 km/h at night,

• an operational focus on the scout mission,
• a robotic scout vehicle smaller than a HMMWV (based on user feedback from Demo II),
• multiple vehicle control with levels of autonomy enabling one operator to control 4 platforms,
• in order to focus maximum resources on critical technology development, selection of mobility

platforms was limited to off the shelf commercial or military vehicles or an adaptation of an
existing platform,

• similarly options for actuation and low level control system were limited to adaptations of existing
systems,

• use of the 4D/RCS. Alternatives to this architecture were considered if documentation supporting
alternate selections was provided

• use of digital terrain not to exceed DTED II i.e. levels of terrain resolution limited to (30 m
postings), and

• use of tactical radio systems with data rates not to exceed 125 kbps. Typical ranges for the tactical
radios were required to be in the 15-25 km range.

The ARL RPO developed a plan to place resources for a competitive procurement for Demo III at the
Army’s TARDEC. TARDEC is the Army’s land vehicle system integrator. RPO personnel believed that a
renewed involvement of that group in robotics was critical to enable the transition of Demo III component
technologies to eventual deployment. (At the conclusion of Demo I, TARDEC activity in robotics was
significantly reduced for the duration of Demo II). Senior TARDEC personnel supported this proposal and
assisted in the development of the required procurement documentation and processes. Over the life of
Demo III ARL transferred approximately $22 million to TARDEC.

A Request for Proposals (RFP) was published in 1998 to begin the competitive procurement process for
Demo III. In November 1998, TARDEC awarded the Demo III contract to a team led by Robotic Systems
Technology, teamed with SAIC (the SAIC team included many of the Lockheed Martin Demo II group),
Sarnoff Labs, and Perceptek. RST was acquired by General Dynamics Robotic Systems during 1999.
Demo III’s Preliminary Design Review (PDR) was held on 28-30 July 1998. Between the contract award
and the PDR tight connections were established between the Demo III contractor team and ARL’s
separately funded Concerted Technology Thrust (CTT). CTT members included ARL, NIST, JPL, and Ft.
Knox’s Mounted Maneuver Battlespace Battle Lab. Approximately 12 months after the Demo III contract
award the program’s Critical Design Review (CDR) was held from 17-19 November 1998.

Demo Alpha utilizing 2 XUVs was conducted less than 10 months after the CDR. Given the complexity of
the technology development and integration this was an exceedingly short period of time to build the first 2
prototype vehicles and demonstrate them before a VIP audience. The XUV platforms, true to the
requirements in the original RFP, were adaptations of an existing platform. This vehicle the Modular
Detection and Response-External (MDARS-E) platform had been developed for PM Physical Security
Equipment.

6.1. Demo III Technical Characteristics

6.1.1. Demo III Robotic Platforms

The Demo III vehicles known as eXperimental Unmanned Vehicles (XUVs shown in Figure 8) utilized 4
wheel drive and 4 wheel steer (to meet the tight turning radius requirements). The wheels were
hydrostatically driven by a hydraulic pump powered by a VW NATO spec Turbo-Diesel engine. The
platforms were Ackerman steered. Each wheel had independent suspension. Six sealed electronics

enclosures, cooled using folded fin technology were placed in a configuration with 3 on each side of the
vehicles. Total XUV weight was between 1150 and 1300 kg (approximately 2500 and 2800 lb).

Figure 8: XUV Chassis.

6.1.2. Demo III Autonomous Mobility

The Demo Alpha XUV configuration utilized daylight CCD and cooled thermal imagers (FLIRs) in a
stereo configuration to meet day and night requirements. Demo’s Bravo and Charlie included a custom
built LADAR. The first generation of the Demo III LADAR utilized scanner components developed by
Schwartz Electro Optics. Much of the design expertise and all of the software for processing LADAR
information was developed by NIST and GDRS using, respectively NIST’s experience with the Dornier 1
Hz EBK LADAR acquired in 1995 by ARL, and GDRS’ MDARS-E experience with a laser line scanner.
While early versions of the LADAR were mounted, shock isolated but fixed, to the chassis, later versions
were mounted on a dedicated pan and tilt head. Stereo sensors were mounted on an independent pan and tilt
platform. Still later, LADAR, stereo CCD and stereo FLIR were all integrated into a single enclosure with
pan and tilt motors.

6.1.3. Demo III Software Control Architecture

Five levels of the 4D/RCS were implemented during Demo III. This system provided the onboard
“intelligence” for the vehicle to react appropriately in complex, dynamic situations. It combined existing, a
priori information, primarily map and operator control unit inputs, with real time feeds from multiple
sensors. Real time information from sensors included data from navigation sensors including INS/GPS,
inputs from the vehicle sensors e.g. steering angle and wheel slip/odometry, speedometer, LADAR data,
stereo vision data, CCD, FLIR, and radar data for obstacle detection and collision avoidance. A critical
dimension of this control schema is the task decomposition which takes place at each level of the system.
This breaks down extremely complex problems such as maneuvering a group of unmanned system through
unknown, changing terrain and situations in building block fashion into solvable problems. This
decomposition makes complex problems tractable and supports the superimposition of order in the form of
rules of engagement, and relationships between events including cause and effect relationships. Relative
priorities for mission objectives and the scheduling of events necessary to accomplish them are integrated
as well. The development of multi-resolution maps, corresponding to different levels of the control
hierarchy, is a critical mechanism for integrating real time information with pre-existing data.

 The 4D/RCS system, and the maps and planning tools it integrates, support reasoning through multiple
scales, temporally, spatially and tactically [10]. This means that in the future high levels of 4D/RCS
implementation will enable the development and execution of “big picture” plans supporting combined
operations of humans and robots over tens of kilometers, through hours of operation, involving large

numbers of men and machines e.g. Battalion level exercises might include 400-600 men and dozens of
manned and unmanned vehicles. At the other end of the time horizon the robotic vehicles have to generate
commands with time horizons measured in milliseconds and provide the data necessary to control actuators
e.g. steering and brakes, to avoid obstacles that appear as the vehicle is traveling along at high speed.
Between these two extremes, 3 or 4 intermediate levels of control levels are required to control a single
platform. As one goes up the levels of the control hierarchy vehicles may be controlled individually or in
groups. The groups need not be heterogeneous i.e. they can span UAVs and UGVs. By Demo Charlie in
Oct 2001 the five levels that were controlled using the RCS framework included the:

• Servo level
• Primitive level,
• Subsystem planner e.g. mission package,
• Vehicle planner, and
• Section planner.

Within each level of the 4D/RCS architecture, a WM exists that includes all of the a priori information
appropriate to that level’s time and distance horizon. A Sensory Processing module interprets raw sensor
data needed for decisions at the specified level, and finally, a Behavior Generation Module accesses all of
the available information within the World Model including that from real time sensory interaction with the
surrounding terrain, other vehicles, and the robot’s own state to make decisions as appropriate.
Significantly, for the operator interface discussion to follow all of the information at each level of the
hierarchy is readily available in state-table form for operators who (figuratively) need to enter into the
system to understand the present situation.

In the years prior to Demo III, interactions among NIST, ARL and later the Bundeswehr University (UBM)
[11] in Munich (the German Defense University), the RCS architecture had been application engineered to
become well matched to requirements for a robotic scout vehicle. Prior to DEMO III there was a working
vision tested on the Demo I HMMWV at NIST and on German autonomous navigation (AUTONAV)
testbed vehicles at UBM and Dornier Aerospace as to how to support “tactical behaviors” in the RCS and
later the 4D/RCS architecture [12]. General Dynamics Robotics Systems too had in-depth experience with
4D RCS, one of the company’s principals had been a research associate at NIST. The company had
applied the architecture effectively in prior programs. Through the previously described CTT program,
ARL supported a dedicated tech transfer effort to enable implementation of 4D/RCS into Demo III and
provided the means for NIST and ARL to collaborate on the development of the Demo III LADAR.
Because of the first experience with the Dornier LADAR the first generation LADAR developed under
Demo III is frequently referred to as the Gen. II LADAR.

Although much of Demo III was oriented on autonomous mobility involving movement from point to
point, the vision of tactical behaviors would later be used to expand upon tasks such as the aforementioned
“hill-cresting” of Demo II and the later much more complex “route reconnaissance” mission capabilities
developed by NIST in conjunction with ARL and Ft. Knox.

6.1.4. Man Machine Interface

The man machine interface, frequently referred to as the Operator Control Unit (OCU), as seen in Figure 9,
used throughout Demo III was based on the “look and feel” of the Demo II interface. For Demo III, the
interface was reduced in size to fit in the front passenger seat windshield area of a HMMWV, with a
couple of suitcase sized enclosures containing additional computing hardware in the cargo area of the
HMMWV as opposed to the S-250 communications shelter configuration used in Demo II. As specified in
the RFP, the primary objective for the Demo III interface was to support the simultaneous mobility and
mission control of four XUVs. This was consistent with the tactical doctrine which was at the time
projected for future operations. There was, therefore, minimal emphasis on providing the means for an
operator to intervene in a mission. This situation was to change significantly with the new doctrine
envisioned by FCS (to be described later in this chapter).

Figure 9: Demo III Operator Control Unit mounted in front passenger windshield area of HMMWV.

The emphasis on planning and executing a mission for 4 XUVs based on a DTED II database, and
conducted over a 56 kbps communication link had profound implications for the Demo III OCU. Section
level planning (as specified in the 4D/RCS hierarchy) enabled simultaneous control of multiple XUVs.
The interface used was a reconfigurable, multi-function display that utilized touch screen inputs with
context sensitive map and planning features so that at any point in a mission the screen specific to that
mission presented the operator with appropriate data interpretation, control, and display and replanning
tools. This type of interface used to advantage the state table base of 4D/RCS. Once again, military
symbology was used to facilitate transfer of the mission planning skills soldier operators already possessed,
to the control of autonomous UGVs. A ruggedized keyboard was also present for the use of the system in
the field as a research testbed.

Forewarned of hazardous situations resulting from other military systems that inadvertently blocked the
OCU HMMWV driver’s vision through the windshield, the Demo III OCU designers enabled the entire
OCU to be pivoted out of the way and stowed in a compact configuration between the driver and passenger
seats which would not block lines of sight. As was the case for the ARL components of Demo I, Project
Mustang, and Demo II, operator inputs to the OCU were made only when the OCU HMMWV was parked.
(TACOM’s Robotic Command Center component of Demo I was unique in that it did support teleoperation
and semi-autonomous control of UGVs while the command center was on the move). Later programs such
as ARL’s Collaborative Technology Alliance in Robotics (R-CTA) specifically emphasized control while
on the move.

6.1.5. Navigation References

DEMO III used navigation references combining military GPS units known as Precision Lightweight GPS
Receiver (PLGR) with a Smith’s Industry inertial reference unit that used tuned mechanical gyros as the
inertial reference. These navigation references were combined though a Kalman filter to improve the
accuracy, update rate, and resistance to drift of the system beyond that available individually from these
components.

6.1.6. Communications System

All communications to and from the XUVs (with the exception of redundant safety radios developed by
Tooele Army Depot near Salt Lake City, Utah) were performed using the Army’s Near Term Digital Radio
Systems (NTDR). This was a packet switched digital radio operating in the UHF frequency band. As used
in Demo III’s final Charlie configuration the network topology of this radio system provided each of the 4
platforms with approximately 60 kbps of data rate. The UHF propagation characteristics of this radio
provided superior communication over long distances (up to 15 km) on sparsely foliated terrain. In the
deciduous forest area of Ft. Indiantown Gap PA where the final Demo III demonstration took place,
communication of 3-5 km was a dramatic improvement over the line of sight limited digital modem radios
(1-2 GHz frequency) that had been used earlier during Demo Bravo and Demo Alpha.

6.1.7. RSTA Mission package

As mentioned earlier, the scouts operating Demo II vehicles during the Battle Lab. Warfighting Experiment
were clearly disappointed in the capabilities the Demo II RSTA sensors had provided them. This problem
tended to mask the performance of the vehicles when used in a scout mission. In response to this, the
government RFP for Demo III specified a RSTA package capable of acquiring and classifying vehicles and
dismounted personnel at long distances, while the XUV was stationary and on the move. This chain of
events and GDRS’s market survey led them to specify the WESCAM 14QS (WESCAM is a trademark
product name…the company is now a business unit of L3 communications) a fully gimbaled and stabilized
RSTA package for the purpose of meeting these requirements. This was a high-end system originally
designed for use in manned and unmanned aircraft.

For the ground mobility application planned for DEMO III the manufacturer recommended an additional
level of shock and vibration isolation. This RSTA system included an InSb FLIR, laser rangefinder and
color camera with zoom lens. To the optical sensors GDRS added acoustic target acquisition capabilities
which were incorporated with active noise cancellation technology to reduce the ambient noise floor and
increase the sensitivity of the acoustic array for targets generating steady state e.g. the roar of a tank engine
and the sound emitted by its road wheels, or impulse noise signatures e.g. noise pulses generated when a
weapon is fired. The acoustic sensors aided with target classification (e.g. is the moving target a tank or a
truck?) and could be used to generate target location information which could be used to slew the optics
toward the general area of a target.

7. DEMO III Performance

Demo Alpha was conducted in October 1999 at the Perryman test area of Aberdeen Proving Ground [13].
Perryman is flat with long (5 km) straight high speed paved roads and multiple dirt roads and trails that
wind through dense stands of trees and brush. Stereo implemented by JPL was the obstacle detection mode
available at the time and vehicle speeds were approximately 8-12 km/h while in this mode. As originally
programmed in preparation for the Alpha exercise, the vehicle would come to a stop if it could not perceive
a clear route forward. As a response to this frequently encountered problem a code change was made that
caused the vehicle to back-up an arbitrary distance and take a new “look” at the terrain. The back-up
distance could be specified. Ten meters was a frequently specified distance. In many instances, this simple
maneuver provided the vehicle a slightly different “look” at the terrain than did the original route.
Frequently (obviously dependent on the terrain) this enabled the vehicle to find a clear way forward
without any input from the operator.

Negative obstacles such as holes and ditches were quite difficult to detect with the stereo technology.
During Demo Alpha, two vehicles maneuvered simultaneously and independently. Unlike Demo I and II
before it, the XUVs were not designed to carry a passenger, so each vehicle was truly unmanned, although
chase vehicles with people onboard followed behind the XUVs for safety purposes. Basic RSTA was
demonstrated as were OCU screens. This demonstration served primarily as an integration point forcing
basic system integration to take place early in the program allowing more time and resources for Demo
III’s primary research tasks. Remarkably, GDRS and the team had two vehicles designed and built, with

basic functionality operational in front of a VIP audience approximately twenty one months after contract
award.

Demo Bravo was conducted at Ft. Knox, KY on Range 10. This terrain was used to train tank crewman
and had been significantly eroded by many years of 70+ton tank maneuvers. Additionally, the course was
also characterized by significant elevation change. Despite the much more difficult terrain, major
performance improvements were seen in the autonomous mobility demonstrated at Demo Bravo. These
improvements were directly attributable to the use of the new LADAR and its key processing software
populating obstacle maps with data, much higher in resolution, and more frequent in update rate, to the
4D/RCS architecture. The increasing complexity and volume of the data generated by sensor systems such
as the LADAR imposed new burdens on the planners used to select appropriate routes for the vehicle.
Research in this area [14] also addressed optimality across multiple levels in the multi resolution system
used to describe the vehicles world model. The LADAR (a Gen. II model with the Gen. I designator being
reserved for the Dornier EBK system used within the ARL/NIST/UBM AUTONAV program) provided
rapid update (10 Hz as compared to the 1 Hz stereo and EBK systems) and provided accurate,
unambiguous range data. The autonomous mobility planning software which combined perception data,
the vehicle’s location, the on board digital terrain model, and the nominal path originally planned for the
mission with other operator selectable parameters had also been considerably improved since Demo II.
This resulted in improvements in vehicle speed of up to 15-20 km/h with the obstacle detection and
avoidance perception system functioning.

Demo Bravo also demonstrated perception based vehicle following on and off road. Adaptive velocity
control with the vehicle adjusting its speed based on its initial mission plan and the local environment was
also demonstrated for the first time. The WESCAM units were also demonstrated in an early high data rate
mode of operation and although there were some cooling problems observed during the trials in late
summer heat at Ft. Knox, moving target detection capabilities were impressive.

Demo Charlie took place during October 2001, on schedule, as outlined in the original RFP to industry.
Six days of demonstrations were performed at Ft. Indiantown Gap, PA. Fort Indiantown Gap was selected
for the demonstration due to the wide variety of rugged Appalachian foothill terrain it encompassed [15]. It
was also accessible from the Pentagon, approximately an hour and a half by military helicopter and four
hours by car. The terrain included significant relief with open and densely vegetated fields, multiple dirt
roads, trails and tree lines. There were also several one lane bridge stream crossings. Each day of
demonstrations featured what came to be called the “ride-behind experience” during which an observer was
placed in a HMMWV that closely followed the maneuvering XUVs as they crossed the terrain (see Figure
10). From this vantage point one could appreciate the challenges of the terrain while simultaneously
viewing an engineering display in the HMMWV that provided a visualization of the terrain as detected by
the autonomous mobility sensors. The operator’s planned path and the instantaneous path generated in
response to obstacles could also be seen allowing visitors to anticipate the XUVs next move. This
visualization developed during the Demo Bravo time period was especially useful to the team members
who would integrate and evaluate new software and sensors into the system.

At the beginning of each demonstration, plans for 4 vehicle XUV missions were generated in the operator
interface by a soldier operator. All 4 XUVs were operated simultaneously by this single soldier. Vehicles
were assigned several waypoints corresponding to the path the operator selected. Frequently the planning
tools themselves would generate the necessary waypoints if the operator chose to identify only a few points
(such as the end point of a mission). In this instance the operator chose an endpoint for the mission and
assigned weighting factors to a number of planning constraints to actually generate the planned trajectory.
Typical weighting factors could include parameters such as “prefer road” or avoid slopes exceeding X%.
Named Areas of Interest (NAI) for reconnaissance were also identified during this process. This generated
the requirement to define Observation Points (OP) and led to the demonstration of a new tactical behavior
that utilized a three step process, extending the hill cresting maneuver of Demo II, to identify and then
maneuver to an OP. Initially terrain analysis was performed at the OCU to identify positions with
appropriate sight lines and ranges from the target. Once the vehicle approached the designated location, it
would survey the direction of interest with the LADAR to determine if any brush was in evidence, once
that eventuality was ruled out the vehicle would fire a laser rangefinder in the direction of the target and if

an appropriate range return was seen the OP location would be considered confirmed. Fully autonomous
RSTA capabilities were demonstrated at Demo Charlie.

Once autonomous mobility brought the XUV to the planned location, the system would generate multiple
high magnification narrow field of view still frames, within a specified area of regard. These would be
reconstituted as a wide field of view image “mosaic” back at the operator interface. This capability
combined a combination of terrain reasoning, motion detection, and continuous tracking of multiple
“targets” moving and stationary, with an ability to provide the operator a still frame “image chip” of the
target allowing him to make a positive identification of a target. While he was assessing the target the
system would continue to track it and other targets. This entire sequence was performed over the low data
rate communications link. The significant amount of on-board XUV image processing necessary for these
functions was performed using specialized image processing hardware and software developed by the
Sarnoff Corporation.

7.1. Mobility Performance

Individual vehicle runs during a demonstration were on the order of 2 km in length. Obstacle detection ran
continuously during these exercises and the adaptive velocity control of the vehicles enabled them to
increase speed in open areas where a path could be followed that closely corresponded to the intended route
of the system. Similarly, if the terrain did not allow movement in open areas in the direction of the next
waypoint forcing the XUV to move through more difficult terrain, its speed would be reduced. Once
diverted from the nominal trajectory generated by the planner the LADAR would actively “look” at the
terrain near the robot to identify paths enabling a return to the original trajectory. In general, the XUVs
were programmed not to move into areas they could not “see” (generate obstacle detection data.) After the
primary “runs” of Demo III were completed, the vehicles were shown in a leader-follower move. These
runs were based on a string of GPS waypoints generated by the leader. The following XUV would
maneuver through these points. Since obstacle detection mode was operating, if a vehicle or some other
barrier was put in place to block the path generated by the leader, the follower would autonomously depart
from the original path, maneuver around the obstacle and return to the leader’s path in as short a distance as
the local topography allowed [16].

During 2001, senior Joint Robotics Program technology managers in the Office of the Secretary of Defense
decided to transfer JRP resources for technology development to the Army. Based on the results of the
robotics research programs described earlier in this chapter and early results from Demo III the decision
was made by OSD to place these funds under the control of ARL which in turn placed these resources
under the management control of its Robotics Program Office. Senior Army research management further
committed to provide an equivalent amount of Army funds to underwrite the Army’s robotics program.
The agreement between the Army and OSD specified that these resources be used to support research
providing autonomous mobility capabilities to the Army, Navy, Air Force, and Marine Corps.

Figure 10: Demo III XUV Demo III Charlie configuration-2001.

7.2 Results of Demo III

Demo III, and its constituent technology and team members have had a significant impact on military
robotics. From its inception, government and industry program management worked to make good use of
prior, relevant work in the field. This and the enduring efforts of the Demo III and CTT team members
enabled the rapid development of capable testbed vehicles and core technology in perception, intelligent
control, and man machine interface that has been the foundation for the ongoing Collaborative Technology
Alliance in Robotics. XUV testbed vehicles are in use not only by ARL, but by CERDEC for countermine
research, AMRDEC for weapons integration activities, by NIST, and by TARDEC for advanced mobility
applications such as Leader-Follower applications (see Figure 11).

Perhaps most significantly, during the 2003-2004 period, the platforms and technology were used in the
conduct of an intensive series of field exercises, which characterized with unprecedented experimental
rigor the performance of its autonomous mobility functionality on three different terrain sets. These terrain
sets included high desert, Appalachian foothills in the dead of winter, and maneuvers in military housing
areas configured to represent many of the mobility challenges associated with operations in urban areas.
Moreover, the experimental results of over 600 mobility runs demonstrated that the technology was capable
of operating nearly 90% of the time in an autonomous mode. These experiments also addressed the
workloads associated with operator interventions when the XUV technology could not cope with a
particular challenge triggering the vehicle to contact the operator. During the remaining 10% of the time
(and distance) of the experimental runs, the remote operator was able to extricate it from difficulty over a
low data rate communications link, essentially teleoperating it for distances on the order of 50 m. These
interventions produced modest operator workloads as rated by the operators on NASA’s TLX workload
scale. A discussion of the TRL exercises is included in Chapter 9. The reader is referred to an ARL Report
titled “Autonomous Mobility Technology Assessment Final Report” for a much more complete description
of the experiment and its results [17].

During 2004, the vehicles were independently tested by the Army’s Lead System Integrator (LSI) as an
element of the FCS program. The LSI test results buttressed the experimental conclusions that the
technology had reached a level of robustness that merited significant new Army investment. At this writing
the Army is making the largest investment in its history in tactical autonomous robotic systems. Moreover,
it has committed major investment in the Autonomous Navigation System (ANS). A major contract
addressing the development of a true military system for application to a variety of Army vehicles was
awarded to GDRS in 2004. This effort builds directly on the technology developed the long term
Army/OSD research investment in the 4D/RCS system and multiple generations of LADAR that were
matured through Demo III, its companion integration contract, the concerted Technology Thrust, and the
Robotics-CTA.

The ANS program is designing, building and evaluating a new generation of autonomous mobility sensors
and software configured in a fully ruggedized “Mil-Spec” package. The fundamental technology built
through the OSD-Army program from Demo III to the present CTA is the backbone of the ANS. It is
seeing reuse in the architecture, perception and intelligent control baseline for ANS. The ANS will provide
perception and intelligence to three vehicles in the FCS era, the robotic MULE, the Armed Robotic Vehicle
and a number of variants of the Manned Ground Vehicle. Other programs such as MDARS are moving the
technology forward toward early deployment this decade. These developments will carry autonomous
mobility forward in a pivotal role in response to the defense challenges this nation will face in this new
century.

Figure 11. View of Current Generation XUV-2006.

References

1. J. S. Albus, C. McLean, A .J. Barbera, and M .L. Fitzgerald, An architecture for real-time sensory
interactive control of robots in a manufacturing environment, 4th IFAC/IFIP symposium on Information
Control Problems in a manufacturing environment, Gaithersburg, MD, October 1982.
2 C.M. Shoemaker, Robotic Vehicle Mobility: Technology and Research Testbeds, IVHS America, 1993.
3. Szabo, S., Scott, H., Murphy, K., Legowik, S. A., and Bostelman, R. A., (1992) “High level mobility
controller for a remotely operated unmanned land vehicle”, Journal of Intelligent and Robotic System, 5,
pp. 63-77.
4. Murphy, K. N., Juberts, M., Legowik, S., Nashman, M., Schneiderman, Scott, H., and Szabo, S. Ground
Vehicle Control at NIST: from teleoperation to autonomy, Proceedings of the 7th Annual Space Operations,
Applications and Research Symposium, Houston, TX, August 3-5, 1993.
5. Munkeby, S., Shoemaker, C., Chun, W., “Unmanned Ground Demo II Program”, 1994 IEEE National
Telesystems Conference, San Diego, CA, May 1994.
6. Chun, W., and Jochem, T., “Unmanned Ground Vehicle Demo II: Demonstration A”, Unmanned
SYSTEMS: The Magazine of the Association for Unmanned Vehicles Systems, Volume 12, Number 1.,
Winter 1994. Also in SPIE Volume 2352, Mobile Robots IX, Boston, MA, Nov. 1994.
7. Chun, W., Lynch, R., Shoemaker, C., and Munkeby, S., “UGV-Demonstration B”, Unmanned
SYSTEMS: The Magazine of the Association for Unmanned Vehicles Systems Volume 13, Number 3,
Summer 1995.
8. C. M. Shoemaker, The Use of Unmanned Ground Vehicles: Demo II Lessons Learned, Unmanned
Vehicles Symposium, Paris, France 1997.

9. C .M. Shoemaker, J. Bornstein, Demo III Program: A Testbed for Unmanned Ground Vehicle
Autonomous Navigation, IEEE Symposium on Intelligent Control 1998.
10. Albus, J., Lacaze, A., and Meystel, A. Multiresolutional planning with minimum complexity,
Proceedings of the 1997 International Conference on Intelligent Systems and Semiotic, Gaithersburg, MD,
pp.151-156, 1997.
11. E. Dickmanns, “Vehicles capable of dynamic vision,” in Proceedings of the International Conference
on Artificial Intelligence, pp.1557-1592, 1997.
12. Albus, J. (1998) “4D RCS: a reference model architecture for Demo III”, Version 0.1, NISTIR 5994,
National Institute of Standards and Technology, Gaithersburg, MD.
13. Shoemaker, C., Bornstein, J., Myers, S., Brendle, B., “Demo III: Department of Defense Testbed for
unmanned ground vehicle mobility”, Proceedings of the SPIE Col. 3693, AeroSense Session on Unmanned
Ground Vehicle Technology, Orlando, FL, 1999.
14. Lacaze, A., (2002) Hierarchical Planning Algorithms, Unmanned Ground Vehicle-IV, Proceedings of
SPIE Vol. 4715.
15. Murphy, K., Abrams, M., Blakirsky, S., Chang, Tommy., Hong, Tsai., Lacaze, A., and Legowik, S.
“Intelligent Control for Off-Road Driving” First International NAISO, Congress on Autonomous Intelligent
Systems, Deakin University, Geelong, Australia, 2002.
16. Bornstein, J.A., “Army Ground Robotics Research Program”, Unmanned Ground Robotics IV-
Proceedings of SPIE Volume 4715, 2002.
17. Camden, R., Bodt, B., Schipani, S., Bornstein, J., Runyon, T., French, F., Shoemaker, C., Jacoff, A.,
and Lytle, A., “Autonomous Mobility Technology Assessment Final Report”, (2005) Army Research
Laboratory Technical Report ARL-TR-347.

1

Chapter 11

Epilog

The fundamental processes of cognition, perception, knowledge representation, reasoning, decision
making, planning, and control are understood, at least in principle. There is a large and growing community
of researchers in the cognitive sciences. The computational mechanisms of the brain and the mental
processes of mind are the subject of intensive scientific investigation.

A number of futurists [1,2] have predicted that machine intelligence comparable to that of the human brain
will be available on laptop-equivalent computers before the middle of this century. The development of
human level intelligence in machine systems for manufacturing, transportation, construction, agriculture,
mining, and health care will dramatically improve productivity, increase quality, reduce costs, and
accelerate the rate at which goods and services can be produced. Intelligent weapons systems will
revolutionize warfare. Truly intelligent machine systems will enable a new industrial revolution that will
transform the modern socio-economic system. The potential benefits are inestimable. Intelligent systems
may become the signature technology of the 21st century, comparable in importance to the automobile,
airplane, and nuclear power in the 20th century.

There are good reasons to believe that research in autonomous vehicle systems is an important waypoint on
the path to human equivalent machine intelligence. There are a number of reasons for this:

First, autonomous driving is a problem domain for which there is a large potential user base, both in
the military and civilian sectors. This translates into significant and sustained funding for research and
development.

Second, autonomous driving is a problem domain where physical actuators and power systems are
readily available. Wheeled and tracked vehicle technology is mature, inexpensive, and widely
deployed.

Third, autonomous driving is a problem domain for which the technology is ready. The development
of real-time LADAR imaging makes it possible to capture the 3D geometry and dynamics of the
environment. Combined with video cameras and radar technology, LADAR imaging enables a
solution to the perception problem. The continued exponential growth rate in computing power per
dollar cost is bringing the necessary computational power within the realm of economic practicality.
This enables a solution of the computational problem. Cognitive modeling and intelligent control
theory has advanced to the point where a scientific understanding of intelligent systems is emerging.
This enables a solution of the system engineering problem.

Finally, autonomous driving is problem domain of fundamental scientific interest. Locomotion is
perhaps the most basic of all behaviors in the biological world. Locomotion is essential to finding food
and evading predators throughout the animal kingdom. The brains of all animate creatures have
evolved under the pressures of natural selection that rewards successful locomotion behavior. It is
therefore, not unreasonable to suspect that building intelligent mobility systems will reveal
fundamental new insights into the mysteries of how the mechanisms of brain give rise to the
phenomena of intelligence, consciousness, and mind.

There are, of course, contrary opinions. There are some who contend that autonomous driving does not
involve a significant cognitive component. The argument is sometimes heard: “How hard can it be? My
sixteen-year-old daughter can do it.” True, but this grossly underestimates the cognitive capabilities of the
sixteen-year-old human brain. A sixteen-year-old human has phenomenal capabilities for perceiving the
world, understanding complex situations, judging distances and velocities, comprehending signs and
signals, and performing maneuvers such as changing lanes, passing, merging, and negotiating intersections.

2

These are significant cognitive capabilities. To fully understand how the sixteen-year-old human brain
works would be a scientific breakthrough of the first magnitude.

Other say “Driving is simply getting from point-A to point-B.” True, but this is not simple. Between
point-A and point-B there are many uncertainties, and many complex and potentially lethal situations that
require mature judgment and robust rapid-fire decision-making. The driver of a car must have the ability to
focus attention, sense the environment, segment objects of interest, track moving objects, and avoid
collisions. For example, cars on a typical two-lane country road routinely pass within two meters of each
other traveling at high speeds in opposite directions. Every such encounter involves the potential for a fatal
crash. Every curve and hill requires the ability to assess road conditions and judge the speed at which the
vehicle can safely travel. One of the reasons many inexperienced drivers are involved in traffic accidents is
that they have not yet fully mastered these cognitive skills. Among the reasons that even experienced
drivers have accidents is that their attention wanders for only a moment.

Still others contend that there is no cognitive component because “Driving is something I can do without
thinking”. However, this fact in itself opens a window onto one of the great mysteries of cognition. That a
complex task such as driving a car appears easy to an experienced driver, and can be accomplished without
significant cognitive workload, is among the most important features of the human brain. Once a skill is
thoroughly mastered, it requires minimal attention, and the conscious mind is free to focus on other things.
The brain pushes well-learned cognitive functions down to computational modules that reside below the
level of conscious attention. This gives the impression that the computational load has disappeared. But
this is an illusion. The computational load has simply been shifted downward in the control hierarchy to
echelons that that are below the level of conscious attention. All of the computations must continue to be
done. They are simply done at control echelons that do not burden the higher centers of consciousness.
Understanding how the brain accomplishes this push-down feat is one of the most important research
problems in cognitive science. Solving this problem will enable new theories of learning, knowledge
representation, decision-making, planning, and control.

Current research at NIST is focused on the following three aspects of autonomous vehicle research:

1) Autonomous driving on normal roads and streets, e.g., driving on country roads and city streets
with on-coming traffic, negotiating intersections with traffic signals and pedestrians, and
maneuvering in and out of parking spaces,

2) Autonomous tactical behaviors for teams of real and virtual autonomous military ground and air
vehicles cooperating in the performance of elements of a route reconnaissance mission, and

3) Performance measures, testing, and evaluation of sensors, algorithms, and performance of
intelligent systems and subsystems in real and virtual environments.

Elsewhere in government and industry laboratories around the world, major research programs are focused
on building machines that are capable of flying airplanes, driving ground vehicles, and navigating undersea
vehicles. Well funded military programs are addressing not only the mechanical and low level control of
mobility systems, but the higher level functions of mission planning and tactical behaviors that involve
collaboration between multiple manned and unmanned systems engaged in deadly competition with
intelligent and determined enemy forces. Both military and commercial efforts are addressing the problem
of driving autonomous vehicles safely and efficiently in traffic on city streets and highways while
observing rules of the road, obeying traffic signs and signals, and avoiding collisions with other vehicles,
pedestrians, animals, and road debris.

Progress is rapid. Capabilities of autonomous vehicles are advancing dramatically. New sensing
technologies, increasing computational power, better understanding of the fundamental processes, and
system architecture of intelligent systems are developing at an astonishing rate of speed. Significant
economic and military applications will emerge in the next 10 to 15 years. For the military, autonomous
vehicles will save lives, provide force multiplication, reduce training costs, improve operational readiness,
and enable performance that exceeds human limitations. In the civilian sector, intelligent vehicle
technology will reduce traffic fatalities, reduce the cost of accidents, increase traffic throughput, and
improve transportation services.

3

To date, experimental unmanned ground vehicles have demonstrated the ability to follow a series of widely
spaced GPS waypoints to destinations many kilometers away, and to do so in a way that avoids obstacles
and driving hazards, while satisfying constraints and minimizing cost and risk along the way.

Current autonomous capabilities for off-road driving include:
• Driving on trails through the woods
• Driving cross country through rolling hills and fields of tall grass and weeds
• Planning routes that uses military maps to minimize cost and risk, and satisfy spatial and temporal

constraints

Current autonomous capabilities for on-road driving include:
• Driving on well-marked freeways at high speed
• Driving on road through urban areas with rubble and parked cars
• Driving on dirt roads through the desert following GPS waypoints
• Driver warning of lane departures and impending collisions
• Planning routes that uses commercial road network databases to plan routes to distant destinations

Current autonomous driving capabilities do not yet include:
• Driving safely at normal speeds in the presence of moving objects, such as cross-traffic, on-

coming traffic, pedestrians, and animals
• Obeying rules of the road in complex situations
• Negotiating intersections with traffic signals and 4-way traffic
• Understanding and obeying hand signals from human police
• Understanding complex military situations and responding with appropriate tactical behaviors

(e.g., run, hide, communicate, attack, or continue current task)
• Learning from experience or take advice from subject matter experts

These capabilities will require considerable further research and development. The ability to drive safely in
the presence of moving objects will require advances in sensors, that can enable autonomous vehicles to see
100 m or more with sufficient angular resolution to recognize human forms, and sufficient range resolution
and frame-rates to track high speed on-coming traffic on narrow, winding, and hilly roads. It will require
the ability to recognize and reason about traffic situations that include intersections, traffic signs and
signals, other vehicles, pedestrians, animals, other vehicles, construction barriers, and on-road debris. It
will require the ability to focus attention on what is important, and to segment objects of interest from a
background of clutter under weather conditions that include rain, snow, ice, and road spray; and under
lighting conditions that include daylight and darkness, glare from on-coming headlights, a background
filled with clutter such as lighted advertisements, and rising or setting sun. It will require advances in
world modeling to enable simultaneous tracking and prediction of the probable future trajectories of 30 or
more moving objects. And it will require situational awareness, cognitive understanding, intuitive
reasoning, and robust decision-making in a complex environment that is filled with fast-moving, potentially
deadly encounters that can occur unexpectedly at any time.

Both autonomous driving and tactical behaviors require an enormous amount of a priori knowledge and
skill, combined with the ability to sense and react to unexpected events in the environment. They require
the ability to perceive the current situation, to build and maintain an internal model of the external world, to
reason about what is represented in the world model, to imagine and anticipate the future, to make
decisions under uncertainty, to formulate plans, to react to unanticipated situations, and to learn from
experience. Autonomous driving on normal roads requires the ability to read signs and symbols, to
understand traffic signals, and to interpret gestures by traffic police. Autonomous tactical behavior of teams
requires the ability to perceive and understand the tactical situation, to know the roles, responsibilities, and
capabilities of other team members, and to decide what appropriate action to take under the circumstances.
Understanding how the human brain performs these tasks will provide deep insight into the fundamental
elements of cognition.

4

Autonomous driving and tactical behaviors represent a major scientific and engineering challenge. Yet,
there appear to be no fundamental scientific barriers. As we noted at the beginning of this chapter, the basic
processes of perception, knowledge representation, reasoning, decision-making, planning, and control are
understood, at least in principle. Sensing and perception capabilities are developing rapidly. Computational
power is available. And a solid understanding of architectures that enable robust system design,
engineering, and testing have been achieved.

What remains is a monumental effort in terms of scientific and engineering manpower, supported by large
amounts of funding over a period of decades. The level of effort may be comparable to that required for
building the atom bomb, or sending men to the moon. But these are well within the capability of the nation
and the world to afford. Given the potential benefits of both military and civilian application, it seems
likely that the necessary resources will be forthcoming.

References

1. Moravec, H. “Towards Automatic Visual Obstacle Avoidance”, Proceedings of the Fifth International

Conference on Artificial Intelligence, Cambridge, MA, pp. 584, August, 1977.
2. Kurzweil, R., “The Singularity is Near: When Humans Transcend Biology”, Viking Adult, September,

2005.

Intelligent Vehicle Systems: A 4D/RCS Approach
Glossary

1) An Architecture is the structure that identifies, defines, and organizes components, their
relationships, and principles of design; the assignment of functions to subsystems and the
specification of the interfaces between subsystems.

2) A Bayer filter is a color filtering array for arranging RGB colors on a monochromatic grid. The

term most often refers to a common mosaic of color filters used on many single chip digital
cameras. Each sensor pixel is covered by red, green and blue colored filters. The Bayer filter has
twice as many green pixels as red or blue because of the human eye's greater resolving power
with green light.

3) Behavior Generation (BG) is planning and control of actions designed to achieve behavioral

goals.

4) Classification is the categorization of objects according to measured features or a priori
knowledge.

5) Global Positioning System (GPS) is a satellite-based system that works with ground based

receivers to provide time, velocity and position information at the receiver at various levels of
service quality.

6) Ground Truth is a reference data set, describing locations or objects in the world, used for

comparison with data collected from a system-under-test in order to establish performance
attributes of the system.

7) A Histogram is the result of a data transformation in which each

data element is added to a cell in an array based on one or more measured
features. The cells in the array contain a count of the number of elements
that match a particular feature set.

8) An Intelligent System is a system with the ability to act appropriately in an uncertain

environment.

9) Intelligent Vehicle Systems typically consist of a variety of sensors, actuators, navigation and

driving systems, communications systems, mission packages, and weapons systems controlled
by an intelligent controller.

10) Knowledge Database (KD) is the data structures, the static and dynamic information that

collectively form the world model.

11) LADAR is an acronym for LAser Detection And Ranging. A LADAR is an active optical
sensing system that is used to obtain multiple distance measurements of a scene either in a
scanning or scannerless mode. Individual distances are obtained by measuring the time-of-flight
(TOF) of a laser pulse or from the phase difference of an Amplitude Modulated (AM) or
Frequency Modulated (FM) Continuous Wave (CW) laser or other light source.

12) Learning is the process of acquiring knowledge or skill through

study, experience or teaching. It is a process that depends on experience
and leads to long-term changes in behavior potential. Behavior potential
describes the possible behavior of an individual (not actual behavior) in a
given situation in order to achieve a goal.

13) A Map is a simplified depiction of a space, a navigational aid which highlights relations
between objects within that space. Most usually a map is a two-dimensional, geometrically
accurate representation of a three-dimensional space. In this book, a map is usually represented
by a two-dimensional array projected onto a surface in the world, with cells in the array
containing information about the associated region of space in the world.

14) A Mission is the highest level task assigned to the system.

15) Mission Planning is the process to generate tactical goals, a route (general or specific),

commanding structure, coordination, and timing for one or teams of unmanned systems. The
mission plans can be generated either in advance or in real-time. The mission plans can be
generated either by operators or by the onboard software systems in either centralized or
distributed ways. The term dynamic mission planning refers to onboard, real-time mission
planning.

16) Modes of Operation

• In the fully autonomous mode of operation, the unmanned system is expected to
accomplish its mission, within a defined scope, without human intervention.

• In the semi-autonomous mode of operation, the unmanned system and/or a human
operator conduct a mission which requires various levels of human-robot interaction.

• In the teleoperation mode of operation, the human operator, using video feedback
and/or other sensory feedback, either directly controls the actuators or assigns
incremental goals, waypoints in mobility situations, on a continuous basis, from off the
vehicle and via a tethered or radio linked control device. In this mode, the unmanned
system may take limited initiative in reaching the assigned incremental goals.

• In the remote control mode of operation, the human operator, without benefit of video
or other sensory feedback, directly controls the actuators of the unmanned system on a
continuous basis, from a location off the vehicle and via a tethered or radio linked
control device using visual line-of-sight cues. In this mode, the unmanned system
takes no initiative and relies on continuous or nearly continuous input from the user.

17) A Neural Network or an Artificial Neural Network is an information processing paradigm

loosely modeled on the way biological systems, such as the brain, process information.

18) Obstacle Any physical entity that opposes or deters passage or progress, or impedes mobility in
any other way. Any obstruction designed or employed to disrupt, fix, turn, or block the
movement of an opposing force, and to impose additional losses in personnel, time, and
equipment on the opposing force. Obstacles can be natural, manmade, or a combination of both.
They can be positive, negative (e.g., ditches), or groupings (e.g., areas with high security alert)
and can be moving or stationary.

19) An Ontology is a controlled vocabulary that describes objects and the relations between them in

a formal way and has a grammar to allow using these terms to express something meaningful
within the specified domain of interest. The potential of an ontology is to be able to store the
entire set of task knowledge on a computer in a computer interpretable format to support human
and automated inquiries and builds of simulators and controllers.

20) Perception is the capability of unmanned system in sensing and building an internal model of

the environment within which it is operating, and assigning entities, events, and situations
perceived in the environment to classes. The classification (or recognition) process involves
comparing what it observed with the system’s a priori knowledge.

21) Performance Evaluation is the process of data collection and analysis to determine

quantitatively and unambiguously how well a system or component meets the operational,
computational, or functional requirements.

22) A Pixel is a shortened form of “picture element”. The smallest unit of a digital picture.

23) Planning is a process of generating and/or selecting a plan to accomplish a task.

24) RCS Methodology is a formalized set of analysis procedures used to identify the relevant
knowledge about multi-resolutional task decisions, their conditional situations/world states, and
their measurable real world entities in a manner so that this knowledge set can be represented in
a format conducive to implementation in a hierarchical real-time control system.

25) A Reference Model Architecture is an architecture in which the entire collection of entities,

relationships, and information units involved in interactions between and within subsystems and
components are defined and modeled.

26) Registration is the process of transforming different sets of data, in different coordinate

systems, acquired by sampling the same scene or object at different times, with different
sensors, or from different perspectives, into one coordinate system. Registration is necessary in
order to be able to compare or integrate the data obtained from different measurements.

27) A Saccade is a term used to describe rapid intermittent eye movement (changes in eye position)

which occurs when the eyes fix on one point of interest after another in the visual field. This
term can also be applied to describe the rapid pointing (usually with a pan-tilt platform) of an
electro-optical visual perception system.

28) Sensor is taken to mean a device that responds to a stimulus, such as heat, light, or pressure,

detects and/or generates a signal measures, and/or records physical phenomena, and indicates
objects and activities by means of energy or particles emitted, reflected, or modified by the
objects and activities.

29) Sensor fusion is the process of combining sensory data or data derived from sensory data from

disparate sources such that the resulting information is in some sense better than would be
possible when these sources were used individually. The term better in that case can mean more
accurate, more complete, or more dependable, or refer to the result of an emerging view, such as
stereoscopic vision (calculation of depth information by combining two-dimensional images
from two cameras at slightly different viewpoints).

30) Sensory Processing (SP) is a set of processes that operate on sensor signals to detect, measure,

and classify entities and events and derive useful information about the world.

31) A Situation is the identified pattern of entities/world states that the World Modeling has
computed that matches or is a precursor to one of the relevant input conditions of a rule in a
state table. It usually implies a value judgment operation in the context of the task to determine
its existence, for e.g., the situation of Conditions_Good_To_Pass is an evaluated situation that is
relevant to the task to Pass_Vehicle_In_Front and it is dependent on a great number of entities
and world states.

32) A State Table is a structured mechanism used within the Behavior Generation component of an

RCS node that groups all of the procedural rules relevant to a particular input command for this
node. These rules are ordered in their execution by the addition information of states which
encode the execution sequence history.

33) A Task is named activity performed to achieve or maintain a goal. Mission plans are typically

represented with tasks. Task performance may, further, result in subtasking. Tasks may be
assigned to operational units via task commands.

34) Task Decomposition is a process by which a task given to a BG process at one level is
decomposed into a set of sequences of subtasks to be given to a set of subordinate BG processes
at the next lower level.

35) Technology Readiness Level (TRL) is a measure used to assess the maturity of evolving

technologies prior to incorporating that technology into a system or subsystem.

36) Terrain refers to the physical features of the ground surface, including the subsurface. These
physical features include both natural (e.g., hills) and manmade (e.g., pipelines) features. Major
terrain types are delineated based upon local relief, or changes in elevation, and include: flat to
rolling, hilly and mountainous. Other important characteristics used to describe the terrain
include: hydrologic features (e.g., swamps), vegetation characteristics (e.g., forests) and cultural
features (e.g., cities).

37) An Unmanned System is an electromechanical system, with no human operator aboard, and is

able to exert its power to perform designed missions. May be mobile or stationary. Includes
categories of Unmanned Ground Vehicles (UGV), unmanned aerial Vehicles (UAV),
Unmanned Underwater Vehicles (UUV), Unmanned Surface Vehicles (USV), and Unattended
Ground Sensors (UGS).

38) Urban Search and Rescue (US&R, USAR) (A) The term used to define the strategy, tactics,

and operations for locating, providing medical treatment, and extrication of entrapped victims.
(B) A task force equipped with necessary tools and equipment and the required skills and
techniques for the search, rescue, and medical care of victims of structural collapse.

39) Value Judgment (VJ) is a process that computes value, determines importance, assesses

reliability, and generates reward and punishment.

40) A World Model is an internal representation of the world.

41) World Modeling (WM) is a set of processes that construct and maintain a world model.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

