
Hierarchical Control and Performance Evaluation of Multi-Vehicle

Autonomous Systems

Stephen Balakirsky, Chris Scrapper, Elena Messina

National Institute of Standards and Technology, Gaithersburg, MD

Email: {stephen.balakirsky, chris.scrapper, elena.messina}@nist.gov

Abstract – This paper will describe how the Mobility Open Architecture Tools and Simulation (MOAST) framework can

facilitate performance evaluations of RCS compliant multi-vehicle autonomous systems. This framework provides an

environment that allows for simulated and real architectural components to function seamlessly together. By providing

repeatable environmental conditions, this framework allows for the development of individual components as well as

component performance metrics. MOAST is composed of high-fidelity and low-fidelity simulation systems, a detailed

model of real-world terrain, actual hardware components, a central knowledge repository, and architectural glue to tie

all of the components together. This paper will describe the framework’s components in detail and provide an example

that illustrates how the framework can be utilized to develop and evaluate a single architectural component through the

use of repeatable trials and experimentation that includes both virtual and real components functioning together.

Keywords: Performance evaluation, architecture, robot, multi-agent, simulation, hierarchical

1. PROBLEM STATEMENT

One possible solution for large-scale non-deterministic problems is the use of multiple agents and multi-agent systems.

In order to find a solution for these problems, the agents must adapt and cooperate with one another in a rational and

deliberative manner. To accomplish this, a specific agent may be required to communicate with both homogenous and

heterogeneous agents, acquire and share knowledge with various knowledge repositories, and adapt to a possible

stochastic, non-deterministic environment.

When developing these agents, researchers have been searching for a general architecture that allows agents to be

flexible, adaptive, and robust. The general architecture would allow agents to act rationally in undefined situations and to

avoid rogue group behavior. The emergence of undesirable rogue group behaviors from benign agents can cause

catastrophic damage as was seen from the automatic selling of stocks during the 1987 stock market crash [12]. The

National Institute of Standards and Technology (NIST) has a long history in the development of the RCS reference

model architecture [2] to meet this need. However, the complexity of each agent in this architecture and the resulting

behaviors produced from the interaction of the agents may cause performance to be extremely hard to measure, predict

and debug. In order to thoroughly test and analyze these systems, a robust analysis framework is needed that is capable

of unit and group testing in controlled and repeatable trials. The Mobility Open Architecture Simulation and Tools

(MOAST) framework is one such framework.

2. INTRODUCTION

The development of an embodied multi-agent system is truly a multi-disciplinary endeavor. It requires skills and

expertise in fields as varied as sensor processing, knowledge representation, planning, execution and control, and even

basic auto-repair. In addition, the “multi” in multi-agent implies that there are multiple platforms that may require

multiple safety personnel and a large amount of real estate to perform over. A lighthearted, but realistic view of the

development cycle may be summarized by:

1. Develop a cool new algorithm for accomplishing task ‘x’.

2. Code an implementation of algorithm ‘x’.

3. Get code to compile for real vehicle(s).

4. Assemble team to test algorithm on real vehicle(s).

5. Immediately discover implementation bug, hardware failure, or software change to supporting subsystem,

dismiss team and recode algorithm or fix vehicle(s).

6. Reassemble team and search in vain for exact same scenario that caused crash (literally or figuratively) in 5.

7. Repeat from 3.

Unmanned Ground Vehicle Technology VII, edited by Grant R. Gerhart,
Charles M. Shoemaker, Douglas W. Gage, Proceedings of SPIE Vol. 5804
(SPIE, Bellingham, WA, 2005) · 0277-786X/05/$15 · doi: 10.1117/12.603772

13

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

As seen from the above summary, much of the development cycle is beyond the control of the algorithm developer.

Vehicle up-time, safety personnel availability, and course availability play a large role in the development schedule. In

addition, it may be difficult to isolate failures due to a lack of repeatable trials and the use of software modules that are

being co-developed (which module has the bug?).

The need to use real hardware for development may severely limit the ability of expertise or resource constrained

institutions to fully participate in the field. In addition, research in a particular discipline may be limited by the current

state-of-the-art in unrelated disciplines. For example, when operating on a real system, the planning community can only

construct plans based on features that the sensor processing community is able to detect. It is difficult or impossible to

answer the question of how the system’s plans would be affected if it could see feature ‘x’ at range ‘y’. Because of this,

planning researchers are unable to explore behaviors that require next generation sensor processing until after that

generation has arrived.

Traditionally, many of these problems have been addressed by using a simulation environment for algorithm

development and testing. Simulation has benefits that include reduced competition for scarce resources, no risk of harm

to personnel or equipment, the ability to add as yet undeveloped capabilities to subsystems, and the ability to perform

repeated tests over vast and varied terrains from the comfort of your own desk. As a result, an individual code module

can be thoroughly tested and understood before moving to real hardware.

Most simulators developed in the past are dedicated to testing entire autonomous systems under a specific task in a static

environment, or a single subsystem of the autonomous system under varied conditions [1,11]. Simulated Highways for

Intelligent Vehicle Algorithms (SHIVA) [17], for instance, provided realistic sensor models, communication

infrastructure, and a variety of driver models that allowed for the testing of tactical decision-making in a mixed traffic

environment. SHIVA was designed to allow for migration of the subsystems being tested in the simulation environment

to the actual vehicle platforms. The View Simulation System (VSS) [11] provides high performance graphic facilities to

test vision-based autonomous systems. While both of these systems provide high-fidelity testing of certain components,

neither provides realistic mobility models or computation facilities to adequately simulate complexities that exist in real

world environments.

One Semi-Automated Forces Testbed (OTBSAF) [13] expanded the realm of simulation environments by providing an

open, modular architecture that simulates vehicle behaviors, sensors, and weapon systems in a larger multi-agent

environment. OTBSAF sacrifices fidelity in order to divert its computational facilities to controlling multiple entities

autonomously in the environment. Due to the inherent nature of such a simulation package, OTBSAF availability is

limited to U.S. government distribution.

Recently, simulation environments have attempted to leverage existing technologies to achieve a general-purpose

environment that is capable of simulating the complexities of multi-agent, feature rich environments. Gamebots [9] is a

multi-agent test-bed for AI that was built as a modification to the Unreal game engine. The system provides a client-

server architecture that allows “bots” and humans to interact. The Unreal engine uses built-in scripting languages and 3D

modeling faculities to allow a developer to create or modify the simulated environment. The system provides a client-

server architecture that allows “bots” and humans to interact. Gamebots uses built-in scripting languages and 3D

modeling faculties to allow a developer to create or modify the simulated environment. USARSim [18], which in turn

was built on Gamebots, makes effective use of the rich kinematic models that exist in the Karma game engine to

simulate Urban Search and Rescue environments. USARSim and others have extended the Gamebots API to provide

virtual sensors, decision-making facilities, and worlds that accompany the simulation environment.

As more agents are simulated in larger and more complex worlds, the computational complexity of the simulation grows.

Distributed Virtual Simulation Environments (DVSE) [5] have been developed to manage this computational

complexity. UTSAF [10,14] is a simulation bridge between the Unreal game engine and OTBSAF. This bridge parses

the standardized Distributed Interactive Simulation Protocol (DIS) [8] used by OTBSAF to facilitate the communication

and participation of both simulators in a single hierarchical distributed virtual simulation environment. This hierarchical

distributed model provides a high fidelity simulation environment that precisely simulates entities in a specified sphere

of influence, while a low-fidelity simulator simulates a larger region. Player/Stage [7] is another example of a

14 Proc. of SPIE Vol. 5804

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

hierarchical distributed virtual simulation environment that was developed as a package and does not require the use of a

separate bridge for the integration of both the high- and low-fidelity simulators.

A typical development cycle with the use of a simulator may be represented by:

1. Develop cool new algorithm for accomplishing task ‘x’.

2. Code an implementation of algorithm ‘x’.

3. Get the code to compile for simulation engine.

4. Test/debug code in simulated environment.

5. Recode implementation to work with real robot(s).

6. Assemble team to test code on robot(s).

7. Find that simulated world does not accurately represent real world and that algorithm redevelopment is

necessary.

8. Go to “Classic” Development and Test Cycle.

As shown above, there is still no replacement for testing the algorithms on the real hardware. The reason for this is that

simulation environments are typically composed of worlds that do not include false alarms or missed detections, have

perfect command execution, and ideal system performance. The result of this is that an algorithm that works perfectly in

simulation is not guaranteed to work at all under actual environmental conditions, platform performance, and command

execution. Therefore, step 5 in the development cycle calls for the simulated algorithm to be ported and run on the actual

robot hardware. The problem with this is that differences in interfaces or knowledge requirements often prevent plug-

and-play operation of an architectural component from the simulation environment to the real hardware. For many

simulation-system/real-hardware combinations, substantial code and command interface changes must be made. These

changes may introduce new bugs and may also lead to the discovery that algorithms have become dependent on

unrealistic or non-existent attributes from the simulation environment.

The next evolutionary step in the distributed simulation models is to incorporate real hardware in virtual environments.

Player/Stage and RAVE [6] are two simulation environments that provide numerous controllers for a variety of vehicle

platforms. The real/virtual simulation environments permit seamless integration and transparent transference of data

between the real and simulated components. This allows for developers to take advantage of the real mobility

characteristics of vehicle platforms while still providing a controlled environment.

At the National Institute of Standards and Technology (NIST), the Mobility Open Architecture Simulation and Tools

(MOAST) framework has been developed as a real/virtual environment that allows researchers to concentrate their

efforts in their particular area of expertise. This framework conforms to the NIST Real-Time Control System (RCS)

architecture [3] and allows simulated and real architectural components to function seamlessly in the same system. This

permits not only the development of individual components, but also allows for component performance metrics to be

developed and for the components to be evaluated under repeatable conditions. The framework is composed of high-

fidelity and low-fidelity simulation systems, actual components under test, a detailed model of real-world terrain, a

central knowledge repository, and architectural glue to tie all of the components together. MOAST also leverages a

software development tool that facilitates the development of the overall RCS-based controller hierarchy, the creation of

communication channels between the various components, and allows for real-time visualization and debugging of the

functioning code. This paper will describe the components in detail and provide an example of how the framework can

be utilized to develop and evaluate a single architectural component through the use of repeatable trials and

experimentation that includes both virtual and real components functioning together.

3. THE MOAST FRAMEWORK

MOAST has been designed to be a general-purpose framework that can be easily modified to become domain-specific.

The value of such frameworks lies in their ability to reuse existing technologies and integrate their functionalities

together into one complete set of tools. Specifically, MOAST’s tools allow the framework to seamlessly integrate

simulation subsystems with real robotic hardware subsystems. The goal is to allow the individual subsystems to perform

in the area where and when they do best. For example, simulation systems can replicate multiple platforms for the

development of multi-platform behaviors. They allow for repeatable events, and may provide detailed system/event

Proc. of SPIE Vol. 5804 15

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

logging. In addition, by simulating the results of sensor processing, the potential benefits of detecting new features or

utilizing novel sensing paradigms may be measured.

However, there is no substitute for real mobility, sensing, and communications. Therefore, when available, real system

components/subsystems must be able to plug into the MOAST framework and replace simulated subsystems. This is

made possible through the architectural glue of the framework. This glue includes a reference model architecture that

includes well defined interfaces and communications protocols, and detailed specifications on individual subsystem

input/output (IO). The RCS reference model architecture has been selected for the MOAST reference model architecture.

All communications between modules is accomplished over Neutral Messaging Language (NML) channels [16] that

function as the communication medium.

Architectural Glue

 In order to guarantee real-time operation and decompose the robotic system into manageable pieces or agents, it was

necessary to utilize a hierarchical architecture that was specifically designed to accommodate real-time deliberative

systems. The RCS reference model architecture is a hierarchical, distributed, real-time control system architecture that

meets this need while providing clear interfaces and roles for a variety of functional elements [2,3].

KNOWLEDGE

DATABASE

SENSORY

PROCESSING

BEHAVIOR

GENERATION

PLAN

PREDICTED

INPUT

UPDATE

STATE

P
L

A
N

R
E

S
U

L
T

S

P
L

A
N

S
I
T

U
A

T
I
O

N

E
V

A
L

U
A

T
I
O

N

OBSERVED

INPUT

COMMANDED

ACTIONS (SUBGOALS)

PERCEIVED

OBJECTS &

EVENTS

COMMANDED

TASK (GOAL)

OPERATOR

INTERFACE

VALUE

JUDGMENT

WORLD

MODELING

E
V

A
L

U
A

T
IO

N

STATUS

STATUS

SENSORY

INPUT

SENSORY

OUTPUT

PEER INPUT

OUTPUT

RCS Node

To Higher and Lower Level

World Modeling

Figure 1. Internal structure of a RCS_NODE (from [3] p. 28).

Through RCS, a clear system hierarchy exists that provides control ranging from that of individual actuators up to groups

of 10s or 100s of platforms. Each level of the hierarchy is composed of the same basic building blocks illustrated in Fig.

1. These building blocks include behavior generation (task decomposition and control), sensory processing (filtering,

detection, recognition, grouping), world modeling (knowledge storage, retrieval, and prediction), and value judgment

(cost/benefit computation, goal priority). While the architecture specifies guidelines for the general content and

frequency of communications, it does not provide details on the actual message format. The NML toolkit is utilized to

fill in this information.

The NML toolkit provides general templates for command and status messages that are transmitted between RCS

modules and automatic tools for communication code generation based on these templates. The toolkit allows for the

control hierarchy to be graphically laid out and populated, and for the creation of the NML-based communication

channels to be easily created. As the MOAST framework is implemented for different domains, these templates must be

fleshed out and completed for every module in the system. Standardized interfaces are an essential component in and of

themselves to the overall framework. The standardized interfaces facilitate the modularization of the components and

enable the modification and testing of an individual component without affecting the overall system design. As will be

discussed later in this paper, the MOAST framework has been implemented for on- and off-road robotic vehicles and

16 Proc. of SPIE Vol. 5804

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

detailed specifications exist for the communication channels. During actual operation, JAVA
1
 based tools are provided

that allow for automatically generated command and status windows that provide a complete picture of the

communications hierarchy as well as a detailed view of the content of every command and status message that is flowing

through the system. This detailed view allows the user to see what commands each component is executing and what

status is being generated at any given time. In addition, the tool also provides a testing harness that allows a user to

isolate specific components to assist in unit or group testing. This is accomplished by allowing the user to modify and

transmit any command or status messages that the components expect to receive from other components in the hierarchy.

Central Knowledge Repository

The reference model architecture must provide for a means of coordination amongst peers as well as command and

control of subordinates in order to provide coherent multi-agent behaviors. While it is feasible that coordination may be

accomplished through the use of status channels (message passing), the MOAST framework provides a central

knowledge repository as an additional means of coordination. This knowledge repository is based on domain specific

schemas that are implemented through the use of a central SQL server (shared memory).

The design schema of the centralized knowledge repository consists of both active and passive tables. Active tables

consist of dynamic knowledge about the domain that can be updated either by the simulation environment or the

individual agents. The information in these tables includes sensed information, specific class instance information, and

information about the agent self. The passive tables consist of static a priori knowledge that provides ontological models

of the domain and agents operating in the domain. The data in these tables is rarely updated and is mostly used in

conjunction with active tables to provide general class information and to assist in the generation of additional

knowledge needed to produce rational behaviors in agents and realistic behaviors within simulation environments.

In addition to schemas, the knowledge repository contains policies that uniquely specify which module is authorized to

populate each knowledge field. The populated schemas constitute a knowledge base that contains information ranging

from a priori environmental data and module capabilities data to real-time state and status information. A knowledge

base for a specific multi-agent ground robot system has been developed and will be discussed in later sections.

Detailed Terrain Model

A priori environmental data contained in the central knowledge repository is derived from a detailed terrain model

contained in the MOAST framework. From the agent’s point of view, this model may be decomposed into a portion that

is known a priori and a portion that will be discovered through normal agent operation. A priori information may be

preprocessed and populated into the central knowledge repository where it is available to all subsystems. An example of

this form of knowledge would be a representation of a highway map. Discoverable knowledge is operated on by

simulated sensors and appears as the result of sensor processing that may be reported thorough NML status channels or

through a central knowledge repository knowledge base. The simulated sensor processing may be used to model

detection ranges and to add noise, false alarms, and missed detections to the otherwise accurate information. In addition,

the toolkit also provides tools to visualize both the ground truth and the perceived environment. This contributes to the

validation of the knowledge and may be used as a performance measurement of actual agents by facilitating the

comparison of the real and perceived worlds.

Agent Components

The central theme of the MOAST framework is the ability to test actual individual hardware/software modules (agents).

As shown in Fig. 2, an architectural view of a system under test will look identical to a standard RCS architecture

diagram. However, the modules may actually be decomposed into two separate frameworks that represent the “real”

modules or agents (the dark boxes in the figure) that consist of actual algorithms from autonomous system and the

“virtual” modules or agents (the light boxes in the figure) that make up a system test harness. The test harness assists

developers in the analysis, development, and performance characterization of the control system. The two frameworks

are seamlessly integrated with the only requirement for operation being conformance to the MOAST communications

protocols and formats. The NML communications libraries are freely available from NIST in source format as well as

1
 Certain commercial software and tools are identified in this paper in order to explain our research. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the software tools

identified are necessarily the best available for the purpose.

Proc. of SPIE Vol. 5804 17

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

precompiled for numerous operating systems
2
. Since all modules conform to the same communications protocols and

formats, the module under test will be unaware of which participating modules are real and which are simulated.

Figure 2: MOAST implementation including simulated (light) and

virtual (dark) components.

Simulation Systems

As with actual components, the only requirement on simulation systems is conformance to the MOAST communications

protocols and formats. Currently, simulation systems have been used to simulate the results of sensor processing and

platform mobility. By simulating sensor processing results, experiments may be performed that utilize repeatable events

from as yet unrealized sensor capabilities, or results from sensors that may be too expensive, large (weight, volume, or

2
 See http://www.isd.mel.nist.gov/projects/rcslib/

18 Proc. of SPIE Vol. 5804

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

power), or delicate to place on mobile platforms. Simulated mobility allows varied repeatable terrain and the inclusion of

multiple non-existent platforms.

4. IMPROVISED EXPLOSIVE DEVICE IMPLEMENTATION

Under funding from the Army Research Laboratory (ARL), (C. Shoemaker Program Manager), the MOAST framework

has been implemented to develop the behaviors that a platoon of robotic vehicles capable of neutralizing an improvised

explosive device (IED) would need to perform. While the requirements of this mission are well understood; a group of

robotic agents must identify and neutralize an IED (otherwise known as a roadside bomb), the exact procedure for

performing this mission is not. In this example, the MOAST system will be used to design, debug, and evaluate the

individual components of the system as well as the overall mission strategy. A conventional solution (implemented

solely on real hardware) is not possible due to the fact that there is no known sensor for detecting/neutralizing an IED

and that it would be too dangerous to intentionally place bombs on roadways around our research facility. A block

diagram of the implemented system is shown in Fig. 2. In the diagram, the light boxes are virtual components and the

dark boxes are real systems. The system is composed of three vehicles; all of which have virtual sensing and low-level

mobility. The figure only shows one of the vehicle’s subsystems. The lowest level of the hierarchy (or echelon) shown

in the diagram is subsystem and is composed of a mission and a mobility subsystem. The mission subsystem in this case

controls a payload that detects and neutralizes explosive devices.

 Architectural Glue

One of the first jobs for the system designer is to determine the module interfaces. Whenever possible, it is desirable to

reuse existing interfaces since this allows for the reuse of entire code modules. In the case of the IED mission, many of

the mobility system behaviors are identical to previously designed road driving systems that have been constructed under

the MOAST framework [4]. In fact, the entire subsystem echelon mobility code was used without modification. As one

moves higher in the hierarchy, skills and behaviors become more specialized for the individual mission and new

behaviors must be added to augment already existing skills. For example, the existing vehicle echelon mobility planner

created for an autonomous scout vehicle was able to plan to drive along a section of roadway; however no behavior had

yet been created for cautiously driving around a suspected IED. The existing interface specification must be updated and

the corresponding controllers augmented with this new behavior. A graceful failure mode of controllers not compliant

with the new specification is still possible through the report of an “unknown command” over the systems status channel

and error log.

Central Knowledge Repository

As with the module interfaces, the MOAST framework allows for the reuse of knowledge components that have been

previously developed for other applications. Table 1 depicts the knowledge bases contained in the knowledge repository

and their origin.

Table 1: Knowledge bases that form the central knowledge repository.

Knowledge base Purpose Origin

Road Network

Database

Contains a hierarchical decomposition of

road networks from constant curvature

lane segments to complete roadways.

Reusable general purpose knowledge base

originally developed for on-road driving under

DARPA MARS project, PM Doug Gage [15].

Vehicle

Characteristics

Contains average values for common

types of vehicles and vehicle class

relationships.

Reusable general purpose knowledge base.

Vehicle Sensor

Characteristics

Contains average values for sensor

ranges, fields of view, etc.

Reusable general purpose knowledge base.

Vehicle Weapon

Characteristics

Contains weapon lethality, range, etc. Reusable general purpose knowledge base.

Vehicle Status Contains mode, health, and location

information.

Reusable general purpose knowledge base.

IED Class

Characteristics

Contains expected blast radius, safe

approach radius, etc for various types of

IEDs.

Developed for IED mission.

Proc. of SPIE Vol. 5804 19

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

Vehicle Team

Composition

Requirements on sensing and mobility to

fill different roles in mission (Leader,

observer, …).

Reusable general purpose knowledge base

extended for IED mission.

IED Instance

Characteristics

Specifics about potential IEDs (class,

location, status, …)

Developed for IED mission.

Error Log Provides global logging of error

conditions.

Reusable general purpose knowledge base.

As is shown in the table, the majority of the knowledge bases are general purpose and may be used for multiple domains.

In addition to storing a priori and dynamic information about objects, the knowledge repository is useful as a means of

coordination and synchronization amongst peers. For example, it was noticed that our robotic neutralizer was turning on

active sensors earlier than necessary. This is a problem since active sensors may be detected which lowers the vehicle’s

survivability and therefore its overall performance. The solution for this was to have the vehicle echelon mission

executor coordinate with the vehicle echelon mobility executor to only turn on these sensors when required by vehicle

mobility. The executors utilize the vehicle status knowledge base to communicate these needs.

Detailed Terrain Model

A detailed terrain model has been generated of the NIST campus. This terrain model consists of a bare earth elevation

array with post spacing of 45 cm (1.5 feet) and root mean square error (RMSE) of 15 cm (6 inches), color

orthophotography with pixel resolution of 7.5 cm (0.25 feet), and comprehensive vector data. The vector data includes

items such as all road edges, parking lots, parking lot strips, buildings, sidewalks, lamp posts, signs, etc.

Incorporating a high-fidelity terrain model into the MOAST framework allows for algorithm performance evaluation and

the ability for mobility planning systems to incorporate items that are not yet detectable by current state-of-the-art sensor

processing algorithms. For example, as the real vehicle drives through the real world, detected road edges may be

compared with those in the terrain model to measure the performance of the road detection algorithms. For the case of

the IED mission, it is desirable to have simulated sensor processing for detecting IEDs coupled to real mobility. This

allows the high-level behaviors to function even though there are currently no sensor processing algorithms capable of

distinguishing classes of IEDs.

Actual Components

As shown in Fig. 2, the majority of the system elements above the subsystem echelon were real components running on

actual system hardware. Through the use of the MOAST global world model and interface specifications, module

functionality is identical to a completely implemented robotic platform.

Simulated Components

For this particular implementation of the MOAST framework, virtual components were provided through interfaces and

behaviors added to the OTBSAF simulator and through stand-alone simulators. OTBSAF was modified to provide short-

range and mid-range feature/entity detection, an IED neutralization device, and behavior generation for the behaviors of

an IED. When features or entities entered the field-of-view (FOV) of the short range sensor, the exact information about

that feature or entity was relayed to the vehicle over the sensory processing NML channel. This information included

such items as the exact location, class, and status of an IED and the location of obstacles and other entities. The mid-

range sensor is capable of reporting similar information with less precision. For example, it will tell the approximate

location of an IED but will not be able to discern its status or class. The IED neutralization device is a short range device

that when aimed at an IED and activated, will disarm the IED.

IED behaviors were also developed and embedded into OTBSAF. These included the ability of an IED to detect when

vehicles are in range, to explode and cause damage to vehicles, and to be neutralized. OTBSAF was also used to provide

a visualization of the mission as it progressed.

Low level mobility simulation was performed by an internally developed simulation system. In the near future, we will

be interfacing to a commercial simulation package that will provide physics based simulation of vehicle motion.

20 Proc. of SPIE Vol. 5804

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

Overall System Performance

The first use of the MOAST framework was to provide design, debug, and development support to get our skeleton IED

mission up and running. Once the complete system was operational, the MOAST framework was employed to perform

repeated trials while the overall mission was refined and new techniques were experimented with. For example, when an

IED was detected, our robots were told to move off to a safe stand-off distance until it was disarmed. It was noticed that

since a simple “go to” style command was commanded to the lower levels, the vehicles would turn around and drive to

the safe location. The problem with this was that in turning around the vehicles sometimes detonated an IED. A potential

solution of backing-up to the safe location was experimented with and eventually implemented.

Once the engineers were happy with the overall system performance, a domain expert was brought in to observe the

system in operation. By using the MOAST framework, the expert was able to observe many different runs and situations

all from the comfort of our laboratory. In addition, when suggestions such as adding an unmanned air vehicle (UAV)

were made, a new robotic asset did not have to be purchased. A standard OTBSAF air vehicle was turned into a UAV

and the UAV simply became another element in the overall simulation.

Other benefits of the MOAST framework include the ability to utilize sensing technologies that do not yet exist (a virtual

sensor) and to validate the performance of existing sensors. The use of virtual sensors provides a means of gathering

potential sensor processing requirements that will allow for increased performance of the agent. By developing a

fictitious virtual sensor in the MOAST framework, e.g. a mid-range sensor, the overall system performance can be

quantitatively measured to better understand the benefits of the given sensor. Similarly, emplacing a virtual

representation of an existing sensor allows for sensor performance validation. The ability to validate current sensor

performance coupled with the ability to measure performance gains offered by a fictitious sensor can drive sensor

development and perception in order to enhance the overall performance of the system.

5. SUMMARY AND FUTURE WORK

This paper has presented a novel approach to system development. Under this approach, a new development cycle may

be coined as follows:

1. Develop cool new algorithm for accomplishing task ‘x’.

2. Code an implementation of algorithm ‘x’.

3. Get code to compile for simulation engine.

4. Test/debug code in simulated environment.

5. Run identical code on real robot.

6. Assemble team to test code on robot.

7. Run only as much code as necessary to validate algorithm on real robot (everything else is simulated).

8. Algorithm runs on real robot on first try!

In the near future, this approach will be verified when the code developed for the IED mission is run (without porting) on

our NIST HMMWV. Additional efforts are also being directed at developing more complete interfaces for the various

modules and on incorporating a commercial off the shelf physics based mobility simulator. This simulator will function

off of the MOAST terrain component and will obey standard MOAST command and control communication channels.

6. ACKNOWLEDGEMENT

This work was supported in part by the Army Research Laboratory (C. Shoemaker, Program Manager) and the Defense

Advanced Research Projects Agency (Doug Gage, Program Manager).

References

 1. Adobbati, R., Marshal, A., Scholar, A., and Tejada, S., "Gamebots: A 3D Virtual World Test-Bed For Multi-

Agent Research," Proceeding of the 2nd Workshop on Infrastructure for Agents, MAS, and Scalable MAS at

Autonomous Agents , 2001.

 2. Albus, J., "Outline for a Theory of Intelligence," IEEE Transactions on Systems Man and Cybernetics, Vol. 21,

1991, pp. 473-509.

Proc. of SPIE Vol. 5804 21

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

 3. Albus, J., Huang, H., Messina, E., Murphy, K., Juberts, M., Lacaze, A., Balakirsky, S., Shneier, M., Hong, T.,

Scott, H., Proctor, F., Shackleford, W. P., Michaloski, J. L., Wavering, A., Kramer, T., Dagalakis, N., Rippey, W.,

Stouffer, K., Legowik, S., Bostleman, R., Norcross, R., Jacoff, A., Szabo, S., Falco, J., Bunch, B., Gilsinn, J.,

Chang, T., Meystel, A., Barbera, A., Fitzgerald, M., DelGiorno, M., and Finkelstein, R., "4D/RCS Version 2.0: A

Reference Model Architecture for Unmanned Vehicle Systems," NISTIR 6910, Gaithersburg, MD, 2002.

 4. Balakirsky, S. and Scrapper, C., "Planning for On-Road Driving through Incrementally Created Graphs,"

Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, 2004.

 5. Chen, D., Bu-Sung, L., Wentong, C., and Turner, S. J., "Design and development of a cluster gateway for cluster-

based HLA distributed virtual simulation environments," 2003, pp. 193-200.

 6. Dixon, K., Dolan, J., Wesley, H., Paredis, C., and Khosla, P., "RAVE: a real and virtual environment for multiple

mobile robot systems," Vol. 3, 1999, pp. 1360-1367.

 7. Gerkey, B. P., Vaughan, R. T., and Howard, A., "The Player/Stage Project: Tools for Multi-Robot and

Distributed Sensor Systems," Proceeding of the International Conference on Advanced Robotics, 2003, pp. 317-

323.

 8. IEEE P1278, "Standard for Information Technology, Protocols for Distributed Interactive Simulation," Institute

of Electrical and Electronics Engineers, No. 1278, 1993.

 9. Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshal, A., Scholar, A., and Tejada, S.,

"Gamebots: A Flexible Test Bed for Multiagent Team Research," Communication of the ACM, Vol. 45, No. 1,

2002, pp. 43-45.

 10. Manojlovich, J., Prasithsangaree, P., Hughes, S., Jinlin, C., and Lewis, M., "UTSAF: a multi-agent-based

framework for supporting military-based distributed interactive simulations in 3D virtual environments," Vol. 1,

2003, pp. 960-968.

 11. Matsumoto, Y., Miyazaki, T., Inaba, M., and Inoue, H., "View Simulation System: a mobile robot simulator

using VR technology," Vol. 2, 1999, pp. 936-941.

 12. Odell, J., "Agents (Part 2): Complex Systems," Cutter Consortium, Volume 3, Number 6, Arlington, MA, 2000.

 13. Parsons, D. and Whittman Jr., R., "OneSAF Tools and Processes Promoting and Supporting a Distributed

Development Environment for Multi-Domain Modeling and Simulation Community," Proceedings of the Spring

2004 SIW Conference, 2004.

 14. Prasithsangaree, P., Manojlovich, J. M., Jinlin, C., and Lewis, M., "UTSAF: a simulation bridge between

OneSAF and the Unreal game engine," Vol. 2, 2003, pp. 1333-1338.

 15. Schlenoff, C., Balakirsky, S., Barbera, A., Scrapper, C., Hui, E., Paredes, M., and Ajot, J., "The NIST Road

Network Database: Version 1.0," National Institute of Standards and Technology, NISTIR 7136, 2003.

 16. Shackleford, W. P., Proctor, F. M., and Michaloski, J. L., "The Neutral Message Language: A Model and Method

for Message Passing in Heterogeneous Environments," Proceedings of the 2000 World Automation Conference,

2000.

 17. Sukthankar, R., Pomerleau, D., and Thorpe, C., "SHIVA: Simulated Highways for Intelligent Vehicle

Algorithms," 1995, pp. 332-337.

 18. Wang, J., Lewis, M., and Gennari, J., "USAR: A game based simulation for teleoperation," Proceedings of the

47th Annual Meeting of the Human Factors and Ergonomics Society , 2003.

22 Proc. of SPIE Vol. 5804

Downloaded from SPIE Digital Library on 26 Apr 2010 to 129.6.32.111. Terms of Use: http://spiedl.org/terms

