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ABSTRACT 
 This paper presents a new cable-suspended robot.  It is a 7-cable 
spatial design with a closed-form forward pose kinematics solution.  
Applications include automated machining, construction, and sculpting.  
This paper presents two new ideas.  First, an independent, passive, six-
string-pot-based Cartesian metrology system was built and tested since 
length measurements through the active drive system may be inaccurate 
for large-scale systems.  Second, we introduce a new active cable 
tensioning approach wherein we control the displacement of a physical 
spring in-line with one of the active drive cables in attempt to ensure 
only positive cable tensions in all active cables.  This is compared with 
an existing particular/homogeneous tensioning solution approach.  
Simulation examples are presented in this paper; we are currently 
building the proposed system for future evaluation work. 
 
1.  INTRODUCTION 

Cable-suspended robots (CSRs) are a type of parallel manipulator 
wherein the end-effector link is supported in-parallel by n cables with n 
tensioning motors.  In addition to the well-known advantages of parallel 
robots relative to serial robots, CSRs can have lower mass than other 
parallel robots.  Several CSRs have been developed to date.  An early 
CSR is the RoboCrane (Albus et al., 1993) developed by the National 
Institute of Standards and Technology (NIST) for use in shipping ports.  
This device is similar to an upside-down six-degrees-of-freedom (dof) 
Stewart platform, with six cables instead of hydraulic-cylinder legs. In 
this system, gravity ensures that cable tension is maintained at all times 
throughout the system work volume.  Another CSR is Charlotte, 
developed by McDonnell-Douglas (Campbell et al., 1995) for use on the 
International Space Station.  Charlotte is a rectangular box driven in-
parallel by eight cables, with eight tensioning motors mounted on-board 
(one on each corner).  CSRs can be made lighter, stiffer, safer, and more 
economical than traditional serial robots since their primary structure 
consists of lightweight, high load-bearing cables.  In addition, a major 
advantage of CSRs over existing parallel robots is a larger workspace.  
On the other hand, one major disadvantage is that cables can only exert 
tension and cannot push on the end-effector. 

Other authors presenting CSR developments are Aria et al. (1990),  
Mikulas and Yang (1991), Shanmugasundram and Moon (1995), 
Yamamoto et al. (1999), and Shiang et al., (1999). 

Roberts et al. (1998) present inverse kinematics and fault tolerance 
of Charlotte-type CSRs, plus an algorithm to predict if all cables are 
under tension in a given configuration while supporting the robot weight 
only.  Shen et al. (1994) adapt manipulability measures to CSRs.  Choe 
et al. (1996) present stiffness analysis for wire-driven robots.  Barette 
and Gosselin (2000) present general velocity and force analysis for 
planar cable-actuated mechanisms, including dynamic workspace, 
dependent on end-effector accelerations. 

Most CSRs are designed with actuation redundancy, i.e. more 
cables than Cartesian motion (or, in contact, wrench-exerting) degrees-
of-freedom (except for the RoboCrane, where cable tensioning is 
provided by gravity) in attempt to avoid configurations where certain 
wrenches require an impossible pushing force in one or more cables.  
Despite actuation redundancy, there exist subspaces in the potential 
workspace where some cables can lose tension.  This problem can be 
exacerbated by CSR dynamics.  A general dynamics controller has been 
proposed to enable CSR motions with only positive cable tensions 
(Williams, Gallina, and Vadia, 2003; Williams and Gallina, 2002). 

NIST was also the innovator behind passive cable-based metrology.  
The Robot Calibrator (Bostelman, 1990) used three cables meeting at a 
single point, measured by three string encoders, to calibrate a PUMA 
robot, position only.  Driels and Swayze (1994) implemented a similar 
idea for partial-pose (position) calibration of an industrial robot.  Jeong, 
et al., (1998), have also implemented a similar cable-based industrial 
robot pose-measuring system.  Their six-cable parallel wire mechanism 
is based on a (non-inverted) Stewart Platform.  No analytical solution to 
that forward pose kinematics problem exists; instead they use a 
numerical approach. 

One problem with a heavy, large-scale RoboCrane is that 
metrology (measurement of the Cartesian pose) may be unreliable when 
using the motor encoders in the active drive path, due to cable 
stretching and other uncertainties.  Therefore, the NIST RoboCrane 
currently uses an expensive non-contact laser scanning system for 
Cartesian metrology.  A more economical, passive, string-pot-based, 
full-Cartesian-pose metrology system has been implemented at NIST for 
aiding sculptors of large stone pieces (Williams, Albus, and Bostelman, 
2003).  The current paper extends this passive 6-string-pot system 
(wherein the tool is driven by the human) to an active 7-cable CSR 
wherein the Cartesian metrology is provided by an independent passive 
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6-string-pot subsystem.  Potential applications include automated 
machining, construction, and sculpting. 

This paper describes the 7-cable CSR with 6-string-pot metrology, 
followed by kinematics modeling, statics modeling (including two 
methods for attempting to maintain positive cable tensions, without and 
with a physical spring in one of the cables), and examples to 
demonstrate these developments.  Unlike many proposed CSRs, the 
forward pose kinematics problems of the active robot and the passive 
metrology system are solved in closed form.  This paper presents the 
theory for our planned hardware implementation, which is currently 
under design. 
 
2.  SYSTEM DESCRIPTION 
 Our current CAD model (see Figure 1) shows the arrangement of 
the 7-cable robot system with independent 6-string-pot metrology 
system.  The robot consists of a moving platform with tool, controlled 
relative to the base by 7 active cables.  Each of the 7 active cables is 
driven by a separate motor (fixed to the base) with cable reel.  If each 
active motor has an encoder, one could determine the active cable 
lengths and then the Cartesian pose via forward pose kinematics.  One 
new aspect in this paper is an independent Cartesian metrology system, 
consisting of 6 more passive cables connecting the moving platform to 
the base.  Each passive cable is a string pot, which is basically a rotary 
potentiometer that can pay out string (cable); the voltage reading of the 
potentiometer is proportional to the length of string.  The string can also 
retract via a passive torsional spring, ensuring all strings are in tension 
at all times.  From the 6 string pot readings and forward pose 
kinematics, we can also determine the Cartesian pose of the tool, 
independently of the driving system. 

 

 
Figure 1.  7-Cable Robot with 6-Cable Passive Metrology 

 
 Figure 2a shows the kinematic diagram for the active-cables 
subsystem of our robot, and Figure 2b shows the passive-cables 
independent metrology subsystem; these two figures exist together, but 
are separated for notational clarity.  The world coordinate frame is {0}; 
the origin of this frame is on the floor, attached to the base.  In Figures 
2, the vertices of the moving platform are P1, P2, and P3 (for the active 
cable connections) and p1, p2, and p3 (for the passive string-pot 
connections, identical to points P1, P2, and P3 in our current design).  
The moving platform frame is {P}, located at the centroid of the 
platform triangle, with orientation as shown.  The moving platform 

equilateral triangle side length is the same for active and passive cables 
in our current design, i.e. DP = dp. 
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Figure 2a.  Active Drive Cables Subsystem 
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Figure 2b.  Passive String-Pot Cables Subsystem 

 
 The tool cutting tip T is located at the origin of moving frame {T}, 
with orientation as shown in Figure 2c; currently the tool tip is located 
only along the -ZP direction from the origin of {P}, with length DT, but 
this can be changed in the future to any position vector for any specific 
tool, fixed with respect to the platform.  At nominal orientation (zero 
orientation), the orientations of {P} and {0} align, but the orientation of 
{T} is always flipped by 180 deg about the YP axis relative to {P}, so 
that the positive ZT axis is the nominal tool approach vector. 
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Figure 2c.  Moving Platform/Tool Subsystem 
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In this paper we use capital letters to indicate lengths and fixed 
and moving points associated with the 7 active motor-driven cables, 
while we use lower-case letters to indicate lengths and fixed and 
moving points associated with the 6 passive string pots.  The lengths of 
the 7 active cables are Li, 7,,2,1=i  (Figure 2a), and the lengths of 

the 6 passive string pots are lj, 6,,2,1=j  (Figure 2b).  Fixed points 

C1, C2, C3, A4, A5, B6, and D7 (see Figure 2a, where the subscripts are 
the active cable number i) are the active cable base contact points, 
located near points C, A, B, and D, respectively.   Active cable 1 
connects C1 to P1, cable 2 connects C2 to P2, cable 3 connects C3 to P3, 
cable 4 connects A4 to P3, cable 5 connects A5 to P2, cable 6 connects B6 
to P2, and cable 7 connects D7 to P1.  Fixed points c1, c2, c3, a4, a5, and 
b6 (see Figure 2b, where the subscripts are the passive string pot 
number j) are the passive string pot cable base contact points, located 
near the respective active cable points of Figure 2a.   Passive string-pot 
1 connects c1 to p1, string-pot 2 connects c2 to p2, string-pot 3 connects 
c3 to p3, string-pot 4 connects a4 to p3, string-pot 5 connects a5 to p2, and 
string-pot 6 connects b6 to b2. 
 Moving platform cable and string pot connection points P1, P2, and 
P3 plus the identical points p1, p2, and p3 are known in the moving {P} 
frame and base cable and string pot connection points C1, C2, C3, A4, A5, 
B6, and D7, plus c1, c2, c3, a4, a5, and b6, are known in the {0} frame. 

Note that though our design has each string pot j near its active 
cable i, this is not required since we will do Cartesian-level metrology 
instead of joint level cable length measurements with our independent 
metrology system.  Also note that our cable arrangements, both for the 
active and passive systems, are designed to ensure closed-form forward 
pose kinematics solutions (see Section 3.2). 
 
3.  POSE KINEMATICS MODELING 
 Kinematics relates the Cartesian position and orientation (pose) of 
the tool frame (guided by the moving platform) to the various cable 
lengths.  Figure 2a shows a kinematic diagram of the 7-cable robot and 
Figure 2b shows the 6-string-pot independent metrology subsystem 
kinematic diagram.  Inverse pose kinematics is required for achieving 
desired robot trajectories; this involves the active cable lengths only 
since we cannot control the length of the passive string pots.  Forward 
pose kinematics is required for simulation and real-time sensor-based 
control.  In this paper the primary forward pose kinematics solution will 
calculate (in closed form) the tool pose given the passive string pot 
lengths.  However, assuming the active cables motors have encoders to 
measure the active cable lengths, a similar (closed-form) solution may 
be applied to the active cables, in order to compare Cartesian pose 
measurement accuracy via traditional (drive system encoders) and the 
independent metrology system (passive string pots) proposed in this 
paper. 
 
3.1  Inverse Pose Kinematics 
 The inverse pose kinematics problem is stated: Given the desired 

tool pose [ ]T0
T  (homogeneous transformation matrix (Craig, 1989) 

giving the position and orientation of {T} with respect to {0}), calculate 
the seven active cable lengths Li, 7,,2,1=i .  The solution to this 
problem may be used as the basis for a pose control scheme.  Note we 
do not care about an inverse pose problem for the passive string pot 
lengths lj, 6,,2,1=j  since we cannot control these passive string 
lengths.  For the 7-cable robot (like most CSRs and general parallel 
robots), inverse pose kinematics is easier to solve than forward pose 
kinematics.  Given the tool pose, we know the moving platform pose 
since the tool is rigidly attached to it; we then also know the positions of 
the moving platform vertices in the {0} frame.  Then the inverse pose 
solution consists simply of calculating the seven active cable lengths 

using the Euclidean norm of the appropriate vector differences between 
the various moving and fixed cable connection points (see Figure 1).  
Inverse pose kinematics yields a unique closed-form solution, and the 
computation requirements are not demanding. 

 We specify inverse pose kinematic input [ ]T0
T  via position vector 

{ }TP0  and orthonormal rotation matrix [ ]R0
T  (which can be found by 

giving ZYX Euler angles α, β, and γ, Craig, 1989).  Next, to find the 
pose of the moving platform {P} with respect to {0} we use: 

[ ] [ ][ ] 100 −
= TTT P

TTP       (1) 

 

where [ ]TP
T  is a fixed transform, known from the robot moving 

platform/tool design.  We then can find the moving platform vertices 

{ }iP0  (the vector positions of points Pi with respect to {0}) using: 

{ } [ ]{ }i
P

Pi PTP 00 =    3,2,1=i    (2) 

 
Note we must augment each position vector in (1) with a ‘1’ in the 

fourth row.  The fixed relative vectors { }i
P P  are from moving platform 

geometry.  Given the moving cable connection points P1, P2, and P3 in 
{0} from (2), we can find the seven unknown active cable lengths.  The 
inverse pose kinematics solution is the Euclidean norm of the 
appropriate vector differences as shown below (see Figure 1): 
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3.2  Forward Pose Kinematics 
 The standard forward pose kinematics (FPK) problem is stated: 
Given the seven active cable lengths Li, 7,,2,1=i , calculate the 

Cartesian pose of the tool, expressed by [ ]T0
T  or the six Cartesian pose 

numbers { } { } T
T zyx γβα=X0  (again, we use ZYX αβγ Euler 

angles (Craig, 1989); also, { } { } T
T zyx=P0 ).  This pose can then be 

interpreted and used for robot simulation or real-time sensor-based 
control.  Unlike many parallel robot forward pose kinematics problems, 
there exists a closed-form solution, and the computation requirements 
are not demanding.  There are multiple solutions, but the correct 
solution can generally be determined. 
 However, in this paper, the primary FPK problem will employ the 
independent 6-string-pot-based metrology system:  Given the six passive 
string pot cable lengths lj, 6,,2,1=j , calculate the Cartesian pose of 

the tool [ ]T0
T . 

 The 7-cable robot and independent metrology system are both 
designed so that their respective FPK problems may be solve in closed-
form, using the three intersection of three spheres.  Let us outline this 
FPK solution for the passive string-pot-based metrology system (the 
standard active cable FPK solution will be similar). 
 The system in Figure 1 (both passive metrology and active drive 
subsystems) can be viewed as a (non-symmetric) 3-2-1 Stewart 
Platform, whose forward pose kinematics problem has been presented 
(e.g. Nair and Maddocks, 1994; Geng and Haynes, 1994; Zsombor-
Murray, 2000).  To the authors’ knowledge, the current paper is the first 
practical use of this arrangement and we are currently building our 7-
cable robot.  Innocenti (1996) presents a clever FPK solution for general 
parallel manipulators: if a seventh length measurement can be obtained 
(as is the case for our active 7-cable robot, but not our passive 6-string-
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pot metrology subsystem), the problem is made into a linear set of 
equations.  However, this is a (sparse) homogeneous set of 146 
equations in 147 unknowns.  We believe our FPK solution based on 
intersecting sets of three spheres is simple enough so we do not pursue 
that method here. 
 The forward pose kinematics solution consists of finding the 
intersection point of three given spheres; this must be done three times 
in the following sequence.  Let us refer to a sphere as a vector center 
point c and scalar radius r: (c,r).  Moving platform string-pot vertices pi 

are found in the following order, represented by vectors ip0 , 3,2,1=i  

expressed in {0}: 

1.  p2 is the intersection of: ( 5
0 a ,l5), ( 6

0 b ,l6), and ( 2
0 c ,l2). 

2.  p3 is the intersection of: ( 4
0 a ,l4), (p2,dp), and ( 3

0 c ,l3). 

3.  p1 is the intersection of: (p2,dp), (p3,dp), and ( 1
0 c ,l1). 

 
Where dp is the moving platform equilateral triangle side with string-
pot cable connections. 

 The closed-form intersection of three given spheres algorithm is 
presented in detail in Williams, Albus, and Bostelman (2003) and is not 
repeated here.   There are two solutions to the intersection point of three 
given spheres; therefore, the FPK problem yields a total of 23 = 8 
mathematical solutions since we must repeat the algorithm three times.  
Generally only one of these is the valid solution for the robot tool pose.  
Also, algorithmic singularities exist in the solution; as discussed in 
Williams, Albus, and Bostelman (2003) none of the singularity types 
presents a practical problem as long as the spheres are ordered correctly 
(we did so in our FPK solution summary above).  When the centers of 
spheres 1 and 3 or spheres 2 and 3 have the same z coordinate, an 
algorithmic singularity results; therefore we avoid these situations 
merely by ordering the spheres as above.  The same paper also 
discusses problems with imaginary solutions and multiple solutions, 
which can similarly be overcome. 

 Now we can finish the FPK solution, assuming ip0  are now 

known.  Given ip0 , we can calculate the orthonormal rotation matrix 

[ ]R0
P  directly, using the definition that each column of this matrix 

expresses one of the XYZ unit vectors of {T} (or {P}) with respect to 
{0} (Craig, 1989): 

[ ]
















= PPPP ZYX ˆˆˆ 0000 R      (4) 

 
The columns for (4) are calculated using (5), referring to Figure 2c. 
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0 ˆ
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pp

−

−=PY     PPP YXZ ˆˆˆ 000 ×=     (5) 

 
where p4 (not shown in Figure 2b) is the midpoint of p1p3: 

P
P X

d ˆ
2

0
1

0
4

0 






+= pp      (6) 

 

 The position vector PP0 to the center of the moving platform can be 

found from any one of the vectors ip0 , 3,2,1=i : 

i
P

PiP pRpP 000 −=      (7) 

 

 With { }PP0  and [ ]R0
P , we now have [ ]T0

P  and finally the overall 

FPK result [ ]T0
T  can be found: 

[ ] [ ][ ]TTT P
TPT

00 =       (8) 

 
 This concludes the FPK solution using the independent string-pot-
based metrology system.  Assuming the active drive system is equipped 
with motor encoders from which we can determine in real time the 
lengths of the seven active drive cables, we now briefly describe the 
standard FPK solution alluded to earlier, which can be used for 
comparison sake, but is not required given the first FPK solution.  The 
seven-active-cable FPK problem is overconstrained, with seven cable 
length inputs but only six Cartesian outputs.  It will work if all inputs 
are consistent.  The easiest solution method is to use only the first six 
active cable lengths to find the moving platform vertices Pi , just like 
the passive FPK solution: 
 

1.  P2 is the intersection of: ( 5
0 A ,L5), ( 6

0 B ,L6), and ( 2
0C ,L2). 

2.  P3 is the intersection of: ( 4
0 A ,L4), (P2,DP), and ( 3

0C ,L3). 

3.  P1 is the intersection of: (P2,DP), (P3,DP), and ( 1
0C ,L1). 

 
Where dP is the moving platform equilateral triangle side with active 
cable connections (in our design DP = dp; i.e. the active and passive 
cables connect to the same moving platform points). 

Following this we may use 7
0

1
0

7 DP −=L  to help ensure the 

resulting FPK solution is the correct one (comparing to the given L7 
which was not used in the procedure).  Then we finish the FPK solution 
in a like manner to that above. 
 
4.  PSEUDOSTATICS MODELING 
 In order to ensure all 7-cable robot motions can be made with all 
cables in tension, we develop a pseudostatic model in this section and 
then apply it in attempt to maintain positive cable tensions.  A similar 
model was presented in Williams, Gallina, and Vadia (2003), but in 
this paper we must extend this method to handle the passive string-pot 
cables for independent metrology which have constant passive tensions 
via torsional springs, in addition to the actively-tensioned drive cables. 
 
4.1  Equations for Static Equilibrium 
 This section presents statics modeling for the 7-cable robot with 6-
string-pot metrology subsystem.  All thirteen cables connect from the 
base to the moving platform.  The 7 drive cables have variable tensions 
which must be maintained as positive, while the 6 string-pot cables 
have constant tension, ensured by their passive torsional springs.  For 
static equilibrium the sum of all active and passive cable tensions plus 
gravitational loading acting on the moving platform must equal the 
resultant wrench exerted on the environment by the robot.  For free-
space pseudostatic motions, this resultant wrench is zero; when the tool 
is in contact with the environment, there is no robot motion, but the 
resultant wrench is non-zero.  Figure 3 shows the statics free-body 
diagram for the moving platform, showing only the 6th cable for clarity; 
for the entire robot, the seven active cable tension vectors are Ti, 

7,,2,1=i , and the six passive string-pot cable tension vectors are tj, 

6,,2,1=j .  In this paper we will derive the statics Jacobian matrices 
for the moving platform CG; to handle wrenches applied at the tool tip 
these must first be transformed back to the {P} frame (See Craig, 1989, 
end of Chapter 5). 
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Figure 3.  Moving Platform Free-Body Diagram (Partial) 

 
The statics equations are: 
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where iii T LT ˆ−=  is the vector cable tension applied to the moving 

platform by the ith active drive cable and jjj t lt ˆ−=  is the vector cable 

tension applied to the moving platform by the jth passive string-pot cable 

(both types in the negative cable length directions iL̂  and jl̂  because 

iT  and jt  must be in tension; iL̂  and jl̂  are defined to point from the 

base to the moving platform); m is the total mass of the moving platform 

and tool; g is the gravity vector; iiPi TRHM ×= 0  is the moment due to 

the ith active drive cable tension ( iH  is the moment arm from the 

moving platform CG to the ith active cable connection point, expressed 

in {P} coordinates); jjPj tRhm ×= 0  is the moment due to the jth 

passive string-pot cable tension ( jh  is the moment arm from the 

moving platform CG to jth string-pot cable connection point, expressed 

in {P} coordinates); CG
pt P  is the vector to the moving platform CG 

from the moving platform point of interest, pt (this vector is zero if the 
point of interest is the CG); and RF and RM  are the vector force and 

moment (taken together, wrench) exerted on the environment by the 
robot.  Moments are summed about the CG and all vectors must be 
expressed in a common frame, {0} in this paper.  Substituting these 
details into (9) and (10) yields: 

[ ]{ } [ ]{ } { }GWtSTS −=+ R21       (11) 

 

where { } { } TTTT 721=T  is the vector of scalar active drive cable 

forces, { } { } Tttt 621=t  is the vector of scalar passive string-pot 

cable forces, { } { } Tm 0gG =  is the vector of gravity loading (assuming 

that CG
pt P  is zero), { } { } T

RRR MFW =  is the external wrench vector 

exerted on the environment by the robot, and the active and passive 
statics Jacobian matrices [ ]1S  and [ ]2S are: 

 

[ ]












×××
−−−=

7
0

72
0

21
0

1

721
1 ˆˆˆ

ˆˆˆ

RHLRHLRHL

LLL
S

PPP

    (12) 

 

[ ]












×××
−−−=

6
0

62
0

21
0

1

621
2 ˆˆˆ

ˆˆˆ

RhlRhlRhl

lll
S

PPP

    (13) 

 
One benefit of the active statics Jacobian matrix [ ]1S  is that it may be 

readily adapted for resolved-rate (inverse velocity) control without 
additional computations: The inverse Jacobian matrix M is closely 

related to the active statics Jacobian matrix of (12): T
1SM −= .  We do 

not present this in the current paper but intend to pursue this as one of 
our hardware control modes. 
 The statics equations (11) can be used in two ways.  Given the 

active and passive cable tensions { }T  and { }t  and each iL̂  and jl̂  

from kinematics analysis, forward statics analysis calculates the 
external wrench {WR} applied on the environment by the robot, using 
(11) directly.  Inverse statics analysis (calculate the required active 
cable tensions { }T  given the desired external wrench {WR}, the passive 

cable tensions { }t ,  and each iL̂  and jl̂ ) is used for tension 

optimization control, in attempt to ensure all active cables remain in 
tension for all pseudostatic motions.  This latter case is presented in the 
next subsection. 
 Note that robot and metrology system dynamics may be an 
important factor in cable tensioning, especially for robot motions with 
high velocities and accelerations.  Therefore, future work into dynamics 
(e.g. see Williams, Gallina, and Vadia, 2003) is required to complement 
the pseudostatic approach of this paper. 
 Now, even for relatively slow pseudostatic robot motions, not all 
desired configurations and wrenches will be able to exist with only 
positive active cable tensions.  Even for zero applied Cartesian wrench 
(i.e. only supporting the weight of the moving platform and tool), our 
cable tension optimization algorithms presented in the next subsection 
may fail, especially for large rotations of the moving platform away 
from nominal orientation. 
 
4.2  Maintaining Positive Cable Tensions 
 This subsection presents two approaches to maintain positive cable 
tensions on all active cables for all robot motion.  Both require actuation 
redundancy, i.e. more active cables than Cartesian dof.  In both 
approaches we assume that the passive string-pot cables will always 
maintain sufficient tensions by virtue of their passive torsional springs.  
The first approach extends our previously-published algorithm 
employing active cable tension control with a standard 
particular/homogeneous solutions optimization method.  The second 
approach is new and potentially simpler: employing a stiff linear spring 
in line with active cable 7, and controlling motor 7 in conjunction with 
the overall length L7 of active cable 7 so that we have a constant tension 
on cable 7 which is also sufficient to ensure positive tensions in all 
remaining active cables. 
 
4.2.1  Actuation Redundancy Solution 
 Since our 7-cable robot has actuation redundancy, (11) is 
underconstrained (6 equations in the 7 unknown active cable tensions 
{ }T ) which means that there are infinite solutions to the cable tension 

vector { }T  to exert the required Cartesian wrench RW .  To invert (11) 
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(solving the required cable tensions { }T  given wrench RW  and the 

passive cable tensions { }t ) we adapt the well-known particular and 
homogeneous solution from rate control of kinematically-redundant 
serial manipulators: 

{ } [ ] { } [ ]{ }( ) { }121 NtSGWST α+−−= +
R    (14) 

 

The first term of (14), { } [ ] { } [ ]{ }( )tSGWST 21 −−= +
RP , is the particular 

solution to achieve the desired wrench, accounting for the known 

passive string-pot cable tensions.   The matrix [ ] ( ) 1
1111

−+ = TT SSSS  is 

the 7x6 underconstrained Moore-Penrose pseudoinverse of active statics 
Jacobian [ ]1S .  The second term of (14), { } { }1NT α=H , is the 

homogeneous solution, expressed as a scalar α multiplied by the null 
vector { }1N  of [ ]1S .  All homogeneous active cable tension solutions 

{ }HT  cause zero wrench on the environment from the robot tool.  

Scalar α is determined on-line (α changes with each control step) to 
ensure that the minimum active tension resulting from (14) will be a set 
small positive value. 
 
4.2.2  Alternate Seventh Cable Spring Approach 
 This subsection presents the second active cable tensioning 
approach, which offers a more mechanical solution (compared with the 
particular/homogeneous solution method above) by placing a stiff spring 
in active cable 7.  In this case the seventh cable tension will be known, 
in addition to the known six passive string-pot cable tensions, and we 
can solve (11) in a new way: 

{ } [ ] { } [ ]{ } { }( )712
1

116 716
TR StSGWST −−−= −   (15) 

 
In (15), { }16T  is active cable tensions vector { }T  with T7 removed, 

[ ]
161S  is active cables statics Jacobian [ ]1S  with column 7 removed, and 

that column 7 is named { }
71S .  The solution represented by (15) then 

comes from six equations in six unknowns and is not from an 
underconstrained set of equations as in the previous subsection; thus the 
plain square matrix inverse is sufficient in (15). 
 Now, we have two choices in implementing (15): 1. We can always 
maintain a constant spring displacement in the 7th cable spring by 
considering the required length L7 and adjusting the seventh motor as 
appropriate, which leads to a constant tension T7 on cable 7 for all 
motion; 2. We can allow tension T7 to vary, calculating its value on-line 
for best performance with the specific configuration and wrench 
desired. 
 We believe that the former choice with the second approach will be 
preferable, cable 7 control for constant T7; otherwise, on-line 
computation of an ideal T7 would be similar to the first approach, in 
which case we may as well go ahead and use the 
particular/homogeneous solution method. 
 Design of the constant cable tension of cable 7 will be critical (i.e. 
choose the best stiffness K7 and preferred displacement ∆7 to obtain an 
effective constant T7 for all motion).  If T7 is too small (i.e. around the 
value of the constant passive string-pot tensions), many poses will exist 
wherein some cables go slack.  If T7 is too large most desired poses will 
be achieved with only positive active cable tensions, but at the cost of 
adding too much tension into the overall system. 
 We present examples in the next subsection to demonstrate the 
active cable tensioning algorithms (particular/homogeneous vs. constant 
T7). 
 
 

5.  EXAMPLES 
 This section presents two types of examples to demonstrate the 
developments of Sections 3 and 4: a snapshot pose kinematics example, 
followed by an inverse pose trajectory, comparing the two methods for 
maintaining positive cable tensions. 
 Though we are considering large-scale systems, the hardware we 
intend to build is scaled down, roughly to a tetrahedron of 1 m sides.  
For all examples in this section we use the following design parameters 
from our hardware design.  All length units are meters.  The fixed base 
cable connection points for the active cables are (all expressed in {0}): 
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The fixed base points for the passive string-pot cables are (in {0}): 
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The moving platform is an equilateral triangle; our current hardware 
design has the same connecting points (the triangle vertices) for the 
active and passive cables; the moving platform side is DP = dp = 0.27 m 

(see Figures 2a and 2b).  The fixed vertices vectors relative to {P} i
P P , 

3,2,1=i , (for use in (2), identical to points i
P p  in our design) can 

easily be determined from DP (which is also dp).  From Figure 2c, the 
fixed homogeneous transform giving the pose of the tool relative to the 
moving platform is: 
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where DT = 0.05 m.  Note that due to the special symmetry of Figure 2c 

and (18), TP
T  is its own inverse, i.e. TTT T

P
P
T

P
T == −1 .  This is of course 

rare, but beautiful in its symmetry!  This fact is required for equation 
(1) from inverse pose kinematics.  The matrix of (18) is also required 
(non-inverted) in (8) of forward pose kinematics. 
 
5.1  Snapshot Pose Kinematics Example 
 For the robot shown in Figures 1 and 2, with parameters given 
above, this subsection gives a snapshot example for pose kinematics.  
All translational units are in meters and rotational units are in degrees.  
For the following active and passive cable lengths: 
 

{ } T33.058.083.048.056.048.051.0=L  

{ } T52.071.045.047.037.047.0=l  
 
The Cartesian poses for {T} and {P} with respect to {0} are: 



 Copyright © 2004 by ASME 7 





















−−
−

−−−

=

1000

25.090.042.014.0

05.038.089.026.0

10.023.018.096.0

0 TT  





















−−
−

−

=

1000

29.090.042.014.0

07.038.089.026.0

09.023.018.096.0

0 TP  

 

alternatively, the Cartesian pose { } T
T zyx γβα=X0  is: 

{ } T
T 251881525.005.010.00 −−=X  

 
 This example can be used in a circular manner, i.e. given the 

Cartesian pose T0
T , calculate the active cable lengths via inverse pose 

kinematics (the passive string-pot lengths may also be determined in a 
similar manner for completeness - this is useful in simulation but not 
for real-time control).  Then the passive string-pot cable lengths are 
given to forward pose kinematics as input and the shown Cartesian pose 
should result (for completeness, we can also use the active cable lengths 
to see if we get the same Cartesian pose of the tool with respect to the 
base).  The pose of this snapshot example is shown in Figure 4. 
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Figure 4.  Snapshot Example Robot Configuration 

 
 One primary control mode we have planned for the hardware is 
based on the inverse pose kinematics solution.  At each point in time for 
a desired Cartesian trajectory, we command the Cartesian pose and 
calculate the required seven active cable lengths.  We control the length 
of the seven active cables (inner-loop joint level servo control); 
meanwhile we read the six string pots and use forward pose kinematics 
for the independent Cartesian metrology subsystem.  We can compare 
the actual and desired Cartesian poses during the desired trajectory to 
form an outer-loop Cartesian servo. 
 However, kinematics is not sufficient for control of cable-suspended 
robots; we also need to ensure positive cable tensions on all cables for 
all motions, if possible.  In the future, we will extend the dynamics 
model of Williams, Gallina, and Vadia (2003) to achieve this; for now, 
in the current paper we will rely on the pseudostatics model developed 
in Section 4; we give examples for these methods in Subsection 5.2 
below. 
 
5.2  Trajectory Pseudostatics Examples 
 For the same robot design presented above, we now present an 
inverse pose trajectory example, with attempting to ensure all active 
cables remain in positive tension for all motion.  Since we are not yet 
considering robot dynamics, we must assume that the motions have 
small velocities and accelerations to maintain the pseudostatic case.  
We further assume that the passive string-pot torsional springs are 
sufficient to maintain string-pot cable tensions passively at all times; 

these are included in the modeling via passive statics Jacobian matrix 

2S  in (11). 

 In this example we start at { } T
T 0180015.0000 =X  and 

move to { } T
T 0180030.010.005.00 −=X  in 50 equal steps.  

This commanded motion requires the seven active cable length histories 
shown in Figure 5. 
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Figure 5.  Required Active Cable Lengths for Trajectory 

 
 For this same trajectory, we will now present two pseudostatic cable 
tensioning examples.  For both, we assume that the robot tool is not 
exerting any wrench on the environment, so the robot only need support 
the weight of the moving platform/tool, which is assumed to be 5 N 
(gravity is in the -Z0 direction).  First, following the actuation 
redundancy (particular/homogeneous solutions) of Subsection 4.2.1, 
Figure 6 presents the resulting cable tensions.  Note that the particular 
solution for cable 5 tension was always negative (all remaining 6 cable 
tensions were already positive), so the algorithm always shifted the 
seven cable tensions using the homogeneous null space solution as in 
(14) to ensure the tension in cable 5 was always at the positive 
minimum value, set to 0.20 N (hard to see at the scale of Figure 6).  We 
see that all cables have positive tension for all motion in the example 
trajectory. 
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Figure 6.  Active Cable Tensions using Actuation Redundancy 

 
 Second, following the alternate 7th cable spring approach of 
Subsection 4.2.2, Figure 7 presents the resulting cable tensions.  Here 
we choose a constant 7th cable tension of +5 N, to be achieved through 
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position control of the 7th cable with a physical spring included.  Note 
that the resulting cable 5 tension is always negative through step 30, 
which is of course impossible!  (All remaining 6 cable tensions are 
again positive for all motion.) 
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Figure 7.  Active Cable Tensions using Constant 7th Tension 

 
 To better compare the required tensions of Figures 6 and 7, Figure 8 
shows the tension vector norms for each case, which will be related to 
the energy input required to command tensions (using motor torques) 
via motor currents.  We see that the actuation redundancy case requires 
greater until about the 34th step, after which the constant cable 7 tension 
approach increases in tension norm sharply. 
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Figure 8.  Tension Norms Comparison for the Two Approaches 

 
 Now, since the simulation of Figure 7 with a constant 7th cable 
tension of +5 N, turned out to be impossible, we repeated this 
simulation, increasing the constant 7th cable tension until all seven cable 
tensions were positive for the entire trajectory.  It turns out that we need 
to double the constant 7th cable tension to +10 N; in this case the 5th 
cable tension starts out at zero and then increases during the motion.  
Except for T5 and T7, the plot looks similar to Figure 7.  Figure 9 
repeats the tension norm comparison of Figure 8 for the new, valid 
constant 7th cable tension approach (the actuation redundancy approach 
is unchanged from Figures 8 to 9).  Now we see that the constant cable 
7 tension approach requires much greater input energy than the 
actuation redundancy case, almost for the entire trajectory. 
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Figure 9.  New Tension Norms Comparison for the Two Approaches 
 
 So, we see that the design of an appropriate constant T7 is pose- and 
trajectory-dependent; also the constant T7 approach can greatly increase 
the overall tensions required, compared to the optimization method. 
 It may be that choosing a variable T7, ensuring positive cable 
tensions at all control steps, will be more efficient - we will consider 
this in the near future.  The reason we considered a spring in cable 
seven in the first place is that, for cable seven, the tension control 
problem is then converted to a position control problem ( 777 ∆= KT , in 

conjunction with the overall L7 position control problem).  This reduces 
the required control bandwidth on cable 7 by at least an order of 
magnitude and may reduce the energy consumed by the 7th motor. 
 For both tensioning approaches (actuation redundancy and 
specifying the 7th cable tension), our simulations show that it is 
impossible to maintain all positive cable tensions in certain poses, with 
certain wrenches applied to the environment by the robot tool.  This is 
especially true of large rotations of the moving platform (note our 
trajectory above used only nominal orientations, no rotations at all; for 
more on this problem see Williams, Gallina, and Vadia, (2003), who 
conclude that the use of a serial robot wrist mounted to the moving 
platform will be preferable  when large rotations are required by tasks).  
So, considerable design work and controller development is required to 
fully understand and avoid these slack cable possibilities, where no 
algorithm can maintain positive cable tensions.  We have achieved this 
for the planar case (Williams, Gallina, and Vadia, 2003) and now must 
extend it to the current 3D case. 
 
6.  CONCLUSION 
 This paper presents a new 7-cable-suspended robot, with closed-
form forward pose kinematics, for automated machining, construction, 
sculpting, and related applications.  Two new ideas presented are an 
independent six-string-pot-based Cartesian metrology system (since the 
active path cable length sensing may be unreliable for large systems) 
and maintaining active tension control via a physical spring in one of 
the active drive cables.  This approach reduces the bandwidth on that 
cable and may reduce the energy consumed by its motor.  To compare 
with the new approach, we also implemented in simulation an 
optimization approach with particular/homogeneous tension solutions to 
attempt to ensure positive cable tensions for all motions and exerted 
wrenches. 
 We presented examples for snapshot pose kinematics and an inverse 
pose trajectory with active cable tensioning.  We are currently building 
the design presented and will evaluate the robot, focusing on the new 
aspects of string-pot-based metrology and specified cable tensioning. 



 Copyright © 2004 by ASME 9 

ACKNOWLEDGEMENTS 
 The first author gratefully acknowledges support for this work from 
the NIST Intelligent Systems Division, via Grants #70NANB2H0130 
and #60NANB3D1122. 
 
REFERENCES 

J.S. Albus, R. Bostelman, and N.G. Dagalakis, 1993, “The NIST 
ROBOCRANE”, Journal of Robotic Systems, 10(5): 709-724. 
 T. Aria, H. Osumi, and H. Yamaguchi, 1990, “Assembly Robot 
Suspended by Three Wires with Seven Degrees of Freedom”, MS90-
807, 11th International Conference on Assembly Automation, SME, 
Dearborn, MI. 

G. Barette and C.M. Gosselin, 2000, “Kinematic Analysis and 
Design of Planar Parallel Mechanisms Actuated with Cables”, ASME 
Design Technical Conferences, Baltimore, MD. 

R.V. Bostelman, 1990, “Robot Calibrator”, Internal NIST Report. 
P.D. Campbell, P.L. Swaim, and C.J. Thompson, 1995, “Charlotte 

Robot Technology for Space and Terrestrial Applications”, 25th 
International Conference on Environmental Systems, San Diego, SAE 
Article 951520. 
 W. Choe, H. Kino, K. Katsuta, and S. Kawamura, 1996, “A Design 
of Parallel Wire-Driven Robots for Ultrahigh Speed Motion Based on 
Stiffness Analysis”, ASME Japan/USA Symposium on Flexible 
Automation, 1:159-166. 

J.J. Craig, 1989, Introduction to Robotics: Mechanics and Control, 
Addison Wesley Publishing Co., Reading, MA. 
 M.R. Driels, W.E. Swayze, 1994, “Automated Partial Pose 
Measurement System for Manipulator Calibration Experiments”, IEEE 
Transactions on Robotics and Automation, 10(4): 430-440. M.M.  J.W. 
 Z. Geng and L.S. Haynes, 1994, “A 3-2-1- Kinematic Configuration 
of a Stewart Platform and its Application to Six Degree of Freedom 
Pose Measurements”, Robotics & Computer-Integrated Manufacturing, 
11(1): 23-34. 
 C. Innocenti, 1996, "Closed-Form Determination of the Location of 
a Rigid Body by Seven In-Parallel Linear Transducers", 24th Biennial 
Mechanisms Conference, 96-DETC/MECH-1567, Irvine, CA. 
 Jeong, S.H. Kim, Y.K. Kwak, and C.C. Smith, 1998, “Development 
of a Parallel Wire Mechanism for Measuring Position and Orientation 
of a Robot End-Effector”, Mechatronics,8:845-861. 

 Mikulas Jr. and L.-F. Yang, 1991, “Conceptual Design of a 
Multiple Cable Crane for Planetary Surface Operations”, NASA 
Technical Memorandum 104041, NASA LaRC, Hampton, VA. 
 R. Nair and J.H. Maddocks, 1994, “On the Forward Kinematics of 
Parallel Manipulators”, International Journal of Robotics Research, 
13(2): 171-188. 
 R.G. Roberts, T. Graham, and T. Lippitt, 1998, "On the Inverse 
Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots", 
Journal of Robotic Systems, 15(10): 581-597. 
 A.P. Shanmugasundram and F.C. Moon, 1995, “Development of a 
Parallel Link Crane: Modeling and Control of a System with Unilateral 
Cable Constraints”, ASME International Mechanical Engineering 
Congress and Exposition, San Francisco CA, DSC 57-1: 55-65. 
 Y. Shen, H. Osumi, and T. Arai, 1994, “Manipulability Measures 
for Multi-wire Driven Parallel Mechanisms”, IEEE International 
Conference on Industrial Technology, 550-554.  
 W.-J. Shiang, D. Cannon, and J. Gorman, 1999, “Dynamic Analysis 
of the Cable Array Robotic Crane”, IEEE International Conference on 
Robotics and Automation, Detroit MI, 4: 2495-2500. 
 R.L. Williams II, P. Gallina, and J. Vadia, 2003, "Planar 
Translational Cable-Direct-Driven Robots", Journal of Robotic Systems, 
20(3): 107-120. 
 R.L. Williams II, J.S. Albus, and R.V. Bostelman, 2003, “Cable-
Based Metrology System for Sculpting Assistance”, ASME Design 
Technical Conferences, 29th Design Automation Conference, Chicago, 
IL, September 2-6. 
 R.L. Williams II and P. Gallina, 2002, “Planar Cable-Direct-Driven 
Robots: Design for Wrench Exertion”, Journal of Intelligent and Robotic 
Systems, 35 (2): 203-219. 
 M. Yamamoto, N. Yanai, and A. Mohri, 1999, “Inverse Dynamics 
and Control of Crane-Type Manipulator”, IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 2: 1228-1233. 

P. Zsombor-Murray, 2000, “Forward Kinematics of the 6-3 (3-2-1) 
Platform with a Succession of Three Tetrahedral Constructions using 
Three Sphere Intersections Reduced to Line ∩  Sphere”, e-mailed 
paper.

 


