Available online at www.sciencedirect.com
SCIENCE @mnscr-

Robotics and Autonomous Systems 49 (2004) 67-78

Robotics and
Autonomous
Systems

www.elsevier.com/locate/robot

How task analysis can be used to derive and organize the
knowledge for the control of autonomous vehicles

T. Barbera*, J. Albus, E. Messina, C. Schlenoff, J. Horst

National Institute of Standards and Technology, Intelligent Systems Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Received 27 July 2004; accepted 27 July 2004

Abstract

The real-time control system (RCS) methodology has evolved over a number of years as a technique to capture task knowledge
and organize it in a framework conducive to implementation in computer control systems. The fundamental premise of this
methodology is that the present state of the task activities sets the context that identifies the requirements for all the support
processing. In particular, the task context at any time determines what is to be sensed in the world, what world model states are
to be evaluated, which situations are to be analyzed, what plans should be invoked, and which behavior generation knowledge
is to be accessed. This results in a methodology that concentrates first and foremost on the task definition. It starts with the
definition of the task knowledge in the form of a decision tree that clearly represents the branching of tasks into layers of simpler
and simpler subtask sequences. This task decomposition framework is then used to guide the search for and to emplace all of
the additional knowledge. This paper explores this process in some detail, showing how this knowledge is represented in a task
context-sensitive relationship that supports the very complex real-time processing the computer control systems will have to do.
© 2004 Elsevier B.V. All rights reserved.

Keywords: 4D/RCS methodology; Autonomous vehicle; Task analysis; Control system; Task decomposition

1. Introduction

One of the challenges of building complex control
software is the need to capture a human’s knowledge

* Corresponding author. Tel.: +1 301 975 3460;
fax: +1 301 990 9688.
E-mail addresses: barbera@nist.gov, tony.barbera@nist.gov
(T. Barbera), james.albus@nist.gov (J. Albus),
elena.messina@nist.gov (E. Messina), craig.schlenoff @nist.gov
(C. Schlenoff), john.horst@nist.gov (J. Horst).

0921-8890/$ — see front matter © 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.robot.2004.07.017

and translate it into a form that is executable by a com-
puter. The capture and translation processes are fraught
with possibilities for losing knowledge and introduc-
ing error. Typically, once a system is implemented, the
software’s decision process and internal knowledge is
not directly recognizable by the human expert, making
it difficult to assess whether the system was correctly
implemented and provide enhancements to the system.
Furthermore, there are very few guidelines available to
implementers as to exactly which knowledge must be

68 T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 6778

included, where to place it within the system, and how
to represent it.

The RCS methodology and hierarchical task de-
composition architecture has been used to implement a
number of diverse intelligent control systems. An appli-
cation summary [1] describes major systems, including
machining stations, space robotics, coal mining, and
stamp distribution systems. Most recently, experimen-
tal validation of the 4D/RCS architecture has been pro-
vided by the performance of the Demo III experimental
unmanned ground vehicles (XUVs) in an extended se-
ries of demonstrations and field tests during the winter
of 2002-2003.

During three major experiments designed to deter-
mine the technology readiness of autonomous driving,
the Demo III experimental unmanned vehicles were
driven a total of 550 km, over rough terrain: (1) in the
desert; (2) in the woods, through rolling fields of weeds
and tall grass, and on dirt roads and trails; and (3)
through an urban environment with narrow streets clut-
tered with parked cars, dumpsters, culverts, telephone
poles, and manikins. Tests were conducted under vari-
ous conditions including night, day, clear weather, rain,
and falling snow. The unmanned vehicles operated over
90% of both time and distance without any operator
assistance. A detailed report of these experiments has
been published [2].

It should be noted that the Demo III tests were per-
formed in environments devoid of moving objects such
as on-coming traffic, pedestrians, or other vehicles. The

inclusion of moving objects in the world model, and the
development of perception, world modeling, and plan-
ning algorithms for operating in the presence of moving
objects is a topic of current research.

2. Background

An RCS system models complex real-time control
as three major processing components (Fig. 1):

(1) sensory processing to measure, recognize, and
classify entities and events of task interest in the
environment and place them into an internal world
model;

(2) internal world model processing that represents
and derives world states, situations, and evalua-
tions in a task context manner; and

(3) behavior generation processing that reasons from
this world model, selects plans, and makes
value judgments to decide on the next appro-
priate output action to accomplish the mission
goals.)

These three components work together, receiving
a task, breaking it down into simpler subtasks,
determining what has to be known in the internal
world model to decide on the next course of action,
and alerting the sensory processing as to what internal
world objects have to have their states updated by
new sensory readings. All together, this produces

+ Mission {(Goal)

SENSOTY WORLD MODELING BEHAVIOR

PROCESSING VALUE JUDGMENT GENERATION
KNOWLEDGE T)

Classification
Estimation Entities Knowledge
Computation
Grouping Planners
Windowing Images Events Executors

internal
external

Actuators

Fig. 1. The basic internal structure of a 4D/RCS control loop. Sensory processing performs the functions of windowing, grouping, computation,
estimation, and classification on input from sensors. World modeling maintains knowledge in the form of images, maps, entities, and events
with states, attributes, and values. Value judgment provides criteria for decision-making. Behavior generation is responsible for planning and

execution of behaviors.
¥

T. Barbera et al. / Robatics and Autonomous Systems 49 (2004) 67-78 69

goal-directed, sensory-interactive, adaptive, stable,
real-time accomplishment of the input goal.

A large number of complex real-time control
systems have been built at the National Institute of
Standards and Technology (NIST) and other research
organizations using the NIST-defined real-time control
system (RCS, most recently referred to as 4D/RCS)
design methodology and reference architecture [3].
These systems have as their backbone a hierarchical
organization of agent control modules, each of which
does a partial task decomposition of its input goal
task, and outputs simpler subtask goals to the next
lower subordinate agent control module. Each of
these agent control modules is made up of the three
major processing components of sensory processing,
world modeling, and behavior generation. Each agent
control module is concerned with only its own level
of responsibility in the decomposition of the task.

This paper will describe the RCS methodology in its
application to the task of autonomous on-road driving
to illustrate its approach to “mining” and representing
task knowledge for control system implementation.

3. Representation and methodology
comparison

To better understand the approach that 4D/RCS uses
to represent knowledge, it is important to understand
how it is different than other existing architectures.

While our understanding of how the human mind
represents, stores, and retrieves various classes of
knowledge is limited, considerable research has been
performed in developing computer architectures to
support these operations for autonomous systems. The
architectures are commonly grouped into the classes of
deliberative and reactive [4], with most architectures
lying somewhere in-between these two extremes.
Reactive architectures strive to embed the control
strategy into a collection of pre-programmed reactions
(sense—action mappings) that are very similar to human
reflexes [5]. This approach provides a direct, constant-
time response to the sensed environment, which
requires an expert to isolate each possible combination
of sensor output and map them to actions. Adding the
equivalent of the subconscious’ sensory and procedu-
ral skill memory to the above architecture presents the
basis for the behavior-based architectures [6].

Behavior-based systems may implement very so-
phisticated control laws and include the use of both se-
mantic and episodic long-term memory. These systems
do not use an explicit world model and behaviors are
activated based on environmental input, making them
similar to the human subconscious which is capable of
sophisticated actions without explicit conscious con-
trol. Typically, behaviors are implemented in a layered
structure with the lowest layer being constructed of
relatively simple, self-contained control laws that are
more time-extended than their reactive cousins [7] and
which utilize short-term memory.

The addition of an explicit world model and the abil-
ity to simulate and reason over the consequences of
intended actions formulates the basis for the class of
deliberative architectures. In systems such as the one
in [8], a multitude of possible system actions are ex-
plored and a conscious decision is made that is based on
the cost/benefit of each action chain. It is the authors’
belief that an architecture that allows such conscious
decisions to be made is a requirement of the develop-
ment of intelligent systems. While this paper focuses
on the RCS architecture, various other deliberative ar-
chitectures such as CIRCA [9] and the three-level intel-
ligent machine [10]) may be found in the literature. RCS
is unique in its inherent reuse of architectural compo-
nents and knowledge representations.

From a knowledge acquisition (KA) perspective,
RCS is not formal, like EXPECT[11], CommonKADS
[12], and other methods and tools. These other ap-
proaches focus more on the knowledge in the system
by knowledge engineers, rather than the construction
of an executable system that is accessible to the domain
expert. Their application domains also tend to be aimed
at business and other process modeling, instead of real-
time control for autonomous systems. RCS blends the
knowledge acquisition process with classical control
system design.

4. RCS methodology summary

The RCS methodology concentrates on the task de-
composition as the primary means of understanding
the knowledge required for intelligent control. This
approach begins with the knowledge “mining” activ-
ities to retrieve knowledge from subject matter experts
(SMEs). The gathering and formatting of this knowl-

70 T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78

TASK MAP to AGENT MAP TASK DECISIONS
ANALYSIS ARCHITECTURE to STATE-TABLES
DOT Driving Manuals @
Suata Drtving Codes

Traffic Cordrol Devices

Domain Experts

Task Decision Tree
{On-rond Driving Examplse)

Hierarchical Organtzation of
Agent Control Wodules

PLAN STATE TABLE

SENSORY WORLD MODEL BEHAVIOR
PROCESSING KNOWLEDGE GENERATION

Fig. 2. The six steps of the RCS methodology approach to knowledge acquisition and representation.

edge can be summarized in six steps, each of which accomplish the desired tasks. This step forces a

follows from the knowledge uncovered by the previ- more formal structuring of all the subtask activi-
ous steps (Fig. 2 presents a high-level summary view ties as well as defining the execution structure.

of the overall approach): (3) This step clarifies the processing of each agent’s

input command through the use of rules to identify

(1) The first step involves an intensive analysis of do- all the task branching conditions with their cor-

main knowledge from manuals and subject mat- responding output commands. Each of these com-

ter experts, especially using scenarios of particular mand decompositions at each agent control module

subtask operations. The output of the effort is a will be represented in the form of a state-table of

structuring of this knowledge into a task decision ordered production rules (which is an implemen-

tree form of simpler and simpler commands (ac- tation of an extended finite state machine (FSM)).

tions/verbs) at simpler and simpler levels of task The sequence of simpler output commands re-

description. quired to accomplish the input command and the

(2) This step defines the hierarchical organization of named situations (branching conditions) that tran-

agent control modules that will execute these lay- sition the state-table to the next output command

ers of commands in such a manner as to reasonably is the primary knowledge represented in this step.

accomplish the tasks. This is the same as coming (4) In this step, the above-named situations that are

up with a business or military organizational struc- the task branching conditions are defined in great

ture of agent control modules (people, soldiers) to detail in terms of their dependencies on world and

T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78 71

task states. This step attempts to define the detailed
precursor states of the world that cause a particular
situation to be true.

(5) In this step, we identify and name all the objects
and entities together with their particular features
and attributes that are relevant to defining the above
world states and situations.

(6) The last step is to use the context of the particular
task activities to establish the distances and, there-
fore, the resolutions at which the above objects
and entities must be measured and recognized by
the sensory processing component. This step estab-
lishes a set of requirements and/or specifications
for the sensor system at the level of each separate
subtask activity.

We will now cover these six steps in detail using the
on-road driving example.

4.1. Step 1 —task decomposition design

The first step is to gather as much task-related
knowledge as possible with the goal of defining a set of
commands that incorporate all the activities at all lev-
els of detail. For on-road driving this knowledge source
would include driving manuals, state and federal driv-

ing codes, manuals on traffic control devices and de-
tailed scenario narratives by SMEs of large numbers of
different driving experiences.

Scenarios and examples are gone over in an at-
tempt to come up with the names of commands that
describe the activities at finer and finer resolutions
of detail. Fig. 3 provides an example. The high-level
goal of “Goto destination” (such as “go to post of-
fice”) is broken down into a set of simpler com-
mands — “GoOnRoad-name”, “TurnLeft Onto-name”
(MapQuest-like commands). At the next level down,
these commands are broken down to simpler com-
mands such as “Drive On Two Lane Road”, “Pass Ve-
hicle In Front” and these are then decomposed to yet
simpler commands such as “FollowLane”, “Change-
ToLeftLane”, etc.

Four very important things are being done with the
knowledge in this step.

(1) The first is the discovery and naming of simpler
component subtasks that go into making up the
more complex tasks.

(2) The second is that for each of these component sub-
tasks, we are defining a subtask command/name.

(3) The third is the understanding of the coordination
of subtask activities that the task involves. This is

GotoDestination...

e

GoOn..Rd TurnLeftOnto..Rd

GoOn..Rd

TurnRightOnto..Rd GoOn..Rd

LS /A/N Ao

DriveOnTwolLaneRd PassVehinFront NegotiateLaneConstriction
AN PO
FoliowLane ChangeToLeftLane FollowLane ChangeToRightLane FollowLane
A N AT PO
DoTrajSeg DoTrajSeg DoTrajSeg DoTrajSeg
PO

AN

Turn AccelerateForward SlowDown

Fig. 3. Task decomposition tree for on-road driving example which shows the simpler commands that are used at each lower layer to represent

the finer and finer resolutions of detail activities.

72 T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78

identified by the analysis of scenarios of remem-
bered specific examples.

(4) The fourth is the careful grouping of these com-
mands by layer and decomposition to ensure that
the example on-road driving tasks can be com-
pletely described, from the start to finish of a sce-
nario, by the proper sequencing of these commands
at the appropriate levels.

This first step of the methodology sets the number of
layers of agent control modules that will be required
(step 2) to execute the task decomposition.

4.2. Step 2 - agent control module organization

Once a set of commands is defined, we need an or-
ganization to execute them. This step is identical to
laying out an organizational structure of people in a
business or the military. You know what you want to
do at various levels of detail — now you need an or-
ganization of intelligent agents to do it. Here, we de-
cide which agent control modules will execute which
subtasks. This structure is built from the bottom-up.
The above detailed task decomposition will tell us how
many layers of agents to have in our organization but
not how many agents are at a level or how they are
grouped and coordinated. This step starts at the bottom
with an agent control module controlling each actuator
in the system and then uses the knowledge of the task
activities to understand which subordinate agents are
grouped under which supervisor to best coordinate the
task commands from step 1.

Fig. 4 illustrates how a grouping of agent control
modules is assembled to accomplish the commands de-
fined in step 1. In this example, the lowest level servo
control modules are represented by icons of the actua-
tors being controlled. The steering servo control mod-
ule is represented by a steering wheel icon, the brake
servo by a brake pedal icon, etc. For this simple exam-
ple, only four actuator control module icons are shown.
The brake, throttle, and transmission servo agent con-
trol modules are grouped under a single supervisor
agent control module, which we will call the Speed
Control Agent. This supervisor agent control module
will receive commands such as “Accelerate-Forward”
(amore general form would be “Accelerate (magnitude,
direction)) and have to coordinate its output commands
to the brake, the throttle, and the transmission to accom-

l GotoDestination...

Destination
Manager

1 GoOn..Rd

Route Segment
Manager

l PassVehinFront

Driving
Behaviors

I FoliowLane

Bemental
Meneuvers

l DoTrajSeg

Vehicle
Trajectory

1 Turn 1Acce|srate Forward

Steering Speed
Control Control

|
! : ; 14
Fig. 4. The hierarchical organization of agent control modules that
are to execute the task command decomposition.

plish them. By a similar analysis, the Steering Servo
Agent is placed under a supervisor agent we call the
Steering Control Agent Module. The Vehicle Trajec-
tory Control Agent coordinates steering commands to
the Steering Control Agent with the speed commands
sent to the Speed Control Agent described above. The
command decomposition of the commands at levels
above the Vehicle Trajectory Control Agent are shown
being executed by a single agent at each layer since
there are no more subordinate agent control modules
to be coordinated in this simple example. In a more re-
alistic implementation, there would be additional agent
control modules for ignition and engine starting, lights,
turn signals, windshield wiper/washer, pan/tilt turrets
that carry the sensor sets, etc.

4.3. Step 3 ~ state-table definitions

At this stage of the knowledge definition process,
we know the vocabulary and syntax of commands. We

T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78 73

Qutput Action

Input State/Situation

Fig. 5. State-table for the Pass Vehicle In Front command. Each line
is a rule relevant to this task. The left column contains the state
values used for ordering the execution and the situations that specify
the branching conditions of the task decision tree. The right column
contains the output commands.

also know what set of subcommands each command
decomposes into, and where in the agent control hi-
erarchy these decompositions take place. Step 3 is to
establish the rules that govern each command’s decom-
position into its appropriate sequence and coordination
of simpler output commands. These rules are discov-
ered by first listing the approximate sequence set of
output commands that correspond to a particular input
command to an agent.

Fig. 5 illustrates this step with a state-table of the
“Pass Veh(icle)In Front” command at the Driving Be-
haviors Agent Control Module. This pass command
is decomposed into five simpler output commands —
“Follow Lane”, “Change to Left Lane”, “Follow Lane”,
“Change to Right Lane”, and “Follow Lane” which are
at the appropriate level of resolution for this layer in the
agent hierarchy. These output commands can be read
in sequence down the right-hand column of the state-
table. The knowledge that is being added by this step 3
is to identify and name the sitvations (the left-hand col-
umn of the state-table) that will transition the activity
to each of these output commands.

These named situations are the branching conditions
that complete the task decision tree representation.

Each of these newly named transition situations with
their corresponding output command actions represent
a single production rule that is represented as a single
line in the state-table. The sequence that these lines

(rules) are executed is ordered by the addition of a
state variable (S1, 82, etc). In the example in Fig. 5,
the first rule shown in the state-table says that if this is
a “New Plan” (input condition), then the output action
side of the rule (the right-hand side of the state-table)
sets the state to “S1” and outputs the command to “Fol-
low Lane”. As aresult of executing this rule, this mod-
ule is now in state “S1” and can only execute rules that
include the state value of “S1” in their input condition.
The only rules that will be searched by this module are
those in the state-table that clusters the rules relating to
this particular input command (“PassVehInFront™). In
this state-table, there is only one line (rule) that contains
the state value “S1” as one of its input conditions. Thus,
only that line can match and it will not match until the
situation “ConditionsGoodToPass” is also true. When
this situation occurs, this line will match (this rule will
fire) and the module will go to state “S2” and output the
command to “ChangeToLeftLane”. This output com-
mand is sent to the subordinate agent control module
(Elemental Maneuvers Control Module) where it be-
comes that module’s input command invoking a corre-
sponding state-table to be evaluated as described here.
Thus, the large set of rules governing the task decision
tree execution is clustered both by the layer of reso-
lution in the hierarchy and by the task context of the
particular command at each layer so that only a very
small number of rules have to be searched at any given
time. The execution order of these selected rules is con-
trolled by the addition of state values.

More complex state-tables are easily built that
can represent task decompositions that are not only
sequential but include parallel coordination of multiple
subordinates, as well as multiple possible next actions
based on which particular branching situations occur
in real-time. These are easily represented by the use
of ordering state variables and the specification of the
discriminating situations.

It is important to note that the knowledge discovery,
representation, and organization have been completely
driven by looking at the problem from the detailed task
decomposition point of view.

We will now make an important summary about
the structuring of the knowledge base in these first
three steps. These three steps were concerned with task
knowledge expressed as the finer and finer branching
of the task decomposition process, the definition of par-
ticular agents to carry this out, and the identification of

74 T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78

arbitrarily named situations we create to encompass ev-
erything that the task depends upon at this point and at
this level of resolution in its execution. In this example,
one of these situations was named “ConditionsGood-
ToPass”.

These first three steps provide a complete listing of
the task decomposition rules (i.e. these rules that deter-
mine when the system has to do something different in
order maintain progress towards the goal). These rules
have been grouped into layers of resolution, and within
each layer, clustered into tables of rules relevant to sin-
gle input commands. Within each table they are ordered
in their execution sequence by additional state values.
It is important to note that although these rules are used
in a state-table format throughout this paper, this is not
the only way they can be applied. Exploration is cur-
rently ongoing to apply these rules to a graph-based
planning systems [S] as a mechanism to determine the
states in the world that costs need to be applied to.

We can think of these first three steps as identifying
the procedural knowledge involved in the task decom-
position process, i.e. defining all of the task branching
conditions and resultant corrective output actions. The
next three steps are to identify all of the knowledge
that is used to evaluate whether or not the branching
conditions are true.

ﬂncomnunﬂmhl’ln;tm'_ -
No Transit Or School Bus Stopping.
*No Pass Zone" - NotinEftect

Lane Markings Allow Pass

- No Rail roadX In Pass Zone
No Bridge In Pass Zone
No Tunnel In Pass Zone

No Toll Bath In Pass Zone

Mo Inter sections In Pass Zone afeToPass ‘

4.4. Step 4 - situation dependencies on world
States

The world knowledge we want to identify and rep-
resent are those precursor world states that determine
the task branching situation in the input side of the
state-tables. This is best illustrated with an example.
Fig. 6 shows the “PassVehInFront” state-table. As dis-
cussed above, the output command to “Change To Left
Lane” is issued when the “ConditionsGoodToPass” sit-
uation occurs. We then determine what we have to know
about the state of the world at this time to say that the
conditions are good to pass. Using detailed scenarios
and our knowledge sources, we determine the param-
eters that go into this situation assessment. This pro-
cess makes visible the surprisingly large set of things
we want to know. These items are documented as they
come up in scenarios and from manuals - “there can-
not be an on-coming car within the passing distance”,
“there must be a broken yellow lane marker on our
side of center in the lane”, “there cannot be a railroad
crossing within the passing distance”, “our own vehicle
is not being passed”, etc. These items are referred to
as world states since they seem to describe certain at-
tributes about the world that are relevant to our present
task.

PassVehinFront

input State/Situation Ouiput Action

PLAN STATE TABLE

BEHAVIOR
GENERATION

Fig. 6. The identification of all the precursor world states used to evaluate whether the situation “ConditionsGoodToPass” is true or not.

T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78 75

Once we have listed the world states relevant to
the situation of “ConditionsGoodToPass”, we go over
the list and see if groupings can be made. In this
case, we group some world states into a category
we call “LegalToPass”, and others into additional
categories we call “EnvironmentSafeToPass”, “Situa-
tionInFrontOkToPass”, “SituationlnBackOkToPass”,
“OncomingTrafficOkToPass”, etc. These groupings
are aggregate world states leading to the situation
“ConditionsGoodToPass”. For this situation to be
true, all the aggregate world states have to be true. For
each of the aggregate world states to be true, all their
component world states have to be true.

The purpose of this step is to provide a listing of all
the parameters (in terms of named world states) that
affect whether the task branching condition situation
is true or not. It is important to note that we have not
identified the sensitivity of the final situation to these
precursor values or what functions are used to weight
and evaluate the individual or combined truth of these
precursor values. Their evaluation functions could be
an AND/OR tree or more complex relationships but
at this stage we only want to identify the list of pa-
rameters. It is an additional part of the implementation
process that will decide on the functional relationships
to use.

The identification of these world states is indepen-
dent of whatever technique is used to implement the
control system. Different implementation paradigms
will affect the sensitivity, weighting, costing, and other
evaluation functions. For example, attributes like the
level of driver aggressivity may affect the calculation of
the length of the required passing zone that is a precur-
sor to a number of individual world state calculations
related to the “ConditionsGoodToPass”.

How to best represent these functions and the vari-
ables they affect is still an area of research.

4.5. Step 5 — world state dependencies on objects

This step identifies all the objects, their features,
and attributes that need to be measured by the sens-
ing system to create the world model states described
above. Fig. 7 continues with the passing example. As
described above, one of the aggregate world model
states was “LegalToPass” which was a grouping of
a number of related world states which all deal with
various legal restrictions on the passing operation.

No Construction inPass Zone
NoTransitOrSchoolBusStopping
“NoPassZone™-Not inEffect
LaneMarkingsAllowPass
NolntersectionsinPassZone

CrossBuck (Length
width, orient, pos)

Lights (pos, size, state)

Crossing Gate (pos,

length, height, state)
Signs (pos, Facing-dir, loc,
text and graphics)

NoBridgelnPassZone
NoTunnellnPassZone
NoTollBothinPassZone

Tracks (pos, size, dir)

Train (pos, dir, state)

Objects, Features World States

Fig. 7. Example of the objects that are used to establish the “NoRail-
roadXinPassZone” world state.

One of these component world states that identify a
legal restriction is “NoRailroadCrossingInPassZone”.
In this step, for each of the identified world states
we wish to identify all the objects, their features,
and attributes relevant to creating each named world
state value. For the world state named “NoRailroad-
CrossingInPassZone”, these objects would include the
railroad cross-buck emblem, crossing lights, crossing
gate, crossing signs either alongside the road or painted
on the road surface, the railroad tracks, and the train
itself. For each of these objects, we identify char-
acteristic features or attributes that will be used for
recognition of the object (e.g. the width and length of
the cross-buck planks) and/or its state (e.g. flashing
lights or a lowered gate as indicator of active warning
state).

Step 4 has defined a surprisingly large set of named
world states that are relevant to decisions that have
to be made at each decision point in the task. Now,
in step 5 we find that each of these world states
might result from a number of objects and each of
these has multiple features and attributes required for
their recognition. We are starting to get an idea of
the size of the knowledge base, and it is extremely
large. The good news is that the RCS methodology’s
approach to the grouping and representation of this
knowledge base has created a manageable structur-
ing. We have a place to put each piece of knowledge
and we use the task context to encode much of the re-
lationship of the knowledge elements to each other.
This structuring also provides an excellent indexed
structure to easily find where to add knowledge as it
is discovered, leading to an evolvable system, which

76 T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78

is possibly the most important system feature of this
technique.

4.6. Step 6 — measurement resolution

In this last step, we want to define the resolution
requirements for the measurement of objects for spe-
cific task decisions. We do this by determining the ex-
pected distances to these objects during particular task
activities. In the case of the task activity of passing
a vehicle in front, we have to be able to see objects
such as the railroad cross-buck at the far limit of the
expected passing zone. For a vehicle passing on a 75-
kph road, the passing zone could easily be 200m or
more. This means that the cross-buck, which is found
at the railroad crossing itself, (whereas warning signs
might be 300 m before the crossing) would have to be
sensed and recognized by the sensory processing sys-
tem at this distance. Since we know the size of the
cross-buck plank elements, we can make an estimate
of the absolute minimum sensory processing capability
required to recognize it at this distance. This works out
to sensors having a minimum resolution capability of
0.07°.

These specifications of the objects, attributes, fea-
tures, and measurement resolutions have been derived
from a detailed analysis of the world states required
to evaluate a particular task branching condition situa-
tion. This allows us to provide a very detailed spec-
ification as to what sensory processing is required
in order to do specific tasks and subtasks. This is
important because one of the single biggest impedi-
ments to the implementation of autonomous driving
control systems is the lack of capability of the sen-
sory processing systems. The identification of the ob-
jects of interest for particular task activities focuses
the attention of the sensory processing on these ob-
jects that should be measured at the present state of
the task, leading to very efficient and effective use of
this very compute-intensive resource. It additionally
helps to identify early on, during system design, which
tasks are even feasible given the present state-of-the-
art in sensory processing and points the direction to re-
search areas to be developed for other capabilities to be
realized.

This also allows for the development of performance
specifications in order to qualify systems for different
driving capabilities [13].

5. Summary and conclusion

This paper has presented a description of the use
of the task-decomposition-oriented RCS methodology
as an approach to acquiring and structuring the knowl-
edge required for the implementation of real-time com-
plex control tasks. Some form of structuring is essential
to this process because complex control tasks such as
on-road autonomous driving are characterized by ex-
tremely large knowledge sets that would be impossi-
ble to deal with if not for some way to organize them.
The task decomposition approach to this structuring
has given us a single consistent search process of well-
defined sequential steps to both discover the relevant
knowledge and to organize it. The knowledge has been
partitioned into two large elements:

(1) task knowledge (i.e. how to do things) concerned
with the description and representation of the task
decomposition through layers of agent control
modules performing control decision branching
decisions, encoded as rules in state-tables;

(2) world knowledge (i.e. what is the situation) con-
cerned with the description and representation of
all the states of the world that are used to gener-
ate each of these condition branching situations in
each state-table at each layer of the agent control
hierarchy.

The organization of the knowledge has been driven
by arequirement to identify everything according to its
relevance to task activities. This has a very important
impact on the implementation. This organization of the
task knowledge is in a form that can be directly imple-
mented. It has partitioned the knowledge by layers of
resolution or abstraction and so high-level commands
are clustered higher in the hierarchy and low-level,
equipment control knowledge is clustered at lower lev-
els in the hierarchy. It has threaded access to all of the
knowledge from the task through world model states
to objects and their attributes to be measured. This is
exactly the form the control system needs, so it can
access all the information relevant to the present task
activity as rapidly as possible.

This organization of the knowledge leaves the
knowledge in a form that continues to be easily
accessible by non-programmer SMEs because all
the knowledge is indexed through the task behavior

T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78 77

which is in exactly the same format that the SMEs
remembered it for example scenario discussions. This
means that continual evolution and updating of the
knowledge structure is possible by both the SMEs
and the system designers, together or separately. New
task commands, new branching condition situations
and output commands, new world states, additional
objects, features and attributes are all easily added and
the appropriate place to add them is indexed by the
task decomposition itself.

In the case of on-road driving, the amount of know!-
edge that is needed to be captured via the approach
described in this paper is large but not infinite. It is es-
timated that to perform intelligent on-road driving, 129
state-tables would be necessary containing 1000 situa-
tions, 10,000 world model states, 1000 world model en-
tities, 7000 world model attributes. Details behind how
these numbers were determined can be found in [14].

The research challenge is to develop a computer-
based knowledge storage mechanism to capture the
results of this process which up to now has been put
into computers as a combination of drawings, word
documents, spread sheets, and databases. The hope is
that ontology tools and techniques will provide a more
consistent single representational solution to capturing
this knowledge and all the implied relationships,
especially to the task, in a more computer readable
and processible form.

6. Product disclaimer

The identification of certain commercial products
or companies does not imply recommendations or en-
dorsements by NIST.

Acknowledgement

This work was supported in part by the Army
Research Lab’s program in unmanned vehicles (PM.
C. Shoemaker) and DARPA’s Mobile Autonomous
Robotic Software program (PM. D. Gage).

References

[1] J. Albus, The NIST real-time control system (RCS): an appli-
cation survey, in: Proceedings of the 1995 AAAI Spring Sym-

posium, 1995.

[2] R. Camden, B. Bodt, S. Schipani, J. Bornstein, R. Phelps, T.
Runyon, F. French, C. Shoemaker, Autonomous mobility tech-
nology assessment: interim report, Technical Report ARL-MR-
565, Army Research Laboratory, ATTN: AMSRL-WM-RP, Ab-
erdeen Proving Ground, MD, 2003.

[3] J. Albus, A. Meystel, Engineering of Mind, Wiley, 2001.

[4] R.C. Arkin, Towards the unification of navigational planning
and reactive control, in: Proceedings of the AAAI 1989 Spring
Symposium on Robot Navigation, 1989.

[51 S. Balakirsky, A Framework for Planning with Incrementaily
Created Graphs in Attributed Problem Spaces, Akademische
Verlagsgesellschaft Aka GmbH, Berlin, 2003.

[6] R. Brooks, Achieving Artificial Intelligence through
Building Robots, Massachusetts Institute of Technology,
1986.

[7] M. Mataric, Behavior-based control: examples from navigation,
learning, and group behavior, J. Exp. Theor. Artif. Intell. 9 (2-3)
(1997) 323-336.

[8] A. Lacaze, Y. Moscovitz, N. DeClaris, K. Murphy, Path
planning for autonomous vehicles driving over rough ter-
rain, in: Proceedings of the ISIC/CIRA/ISAS’98 Conference,
1998.

[9]1 D. Musliner, E. Durfee, K. Shin, CIRCA: a cooperative intel-
ligent real-time control architecture, IEEE Trans. Syst. Man
Cyber. 23 (6) (1993) 1561-1574.

[10] G. Saridis, On the theory of intelligent machines: a survey, in:
Proceedings of the 27th IEEE Conference on Decision and Con-
trol, 1988, pp. 1799-1804.

[11] B. Swartout, Y. Gill, Flexible knowledge acquisition through
explicit representation of knowledge roles, in: Proceedings of
the 1996 AAAI Spring Symposium on Acquisition, Learn-
ing, 965 and Demonstration: Automating Tasks for Users,
1996.

[12] A. Schreiber, B. Wielinga, R. DeHood, J. Akkermans, W.V.
de Velde, CommonKADS: a comprehensive methodology for
KBS development, IEEE Expert 9 (6) (1994) 28-37.

[13] T. Barbera, J. Horst, C. Schlenoff, E. Wallace, D. Aha, Develop-
ing world model data specifications as metrics for sensory pro-
cessing for on-road driving tasks, in: Proceedings of the 2003
PerMIS Workshop, NIST Special Publication 990, Gaithers-
burg, MD, 2003.

[14] J. Albus, J. Evans, C. Schlenoff, T. Barbera, E. Messina, S.
Balakirsky, Achieving intelligent performance in autonomous
driving, Technical Report, National Institute of Standards and
Technology (NIST) Internal Report, 2003.

T. Barbera is a senior controls engineer in
the Intelligent Systems Division at the Na-
tional Institute of Standards and Technology
(NIST), with 30 years of experience imple-
menting real-time control systems using the
4D/RCS methodology.

78

T. Barbera et al. / Robotics and Autonomous Systems 49 (2004) 67-78

J. Albus is a senior technical fellow in the
Intelligent System Division at the National
Institute of Standards and Technology. He
is the co-developer of the NIST real-time
control system architecture and has been in-
volved in the study of intelligent systems for
over 30 years.

E. Messina is knowledge systems group
leader in the Intelligent Systems Division at
NIST. She has over 20 years of experience
in robotics and in software engineering for
complex systems.

C. Schlenoff has a bachelors degree from
the University of Maryland and a masters
degree from Rensselaer Polytechnic Insti-
tute in mechanical engineering. He is a re-
searcher in the Intelligent Systems Division
at NIST, focusing on knowledge represen-
tation applied to autonomous systems and
manufacturing. He was recently the Process
Engineering Program Manager at NIST as
well as the Director of Ontologies at Verti-
calNet.

J. Horst is with the Intelligent Systems Di-
vision of the National Institute of Standards
and Technology where he is currently do-
ing research measuring system intelligence,
building on-road autonomous vehicle con-
trollers, and designing conformance tests
for implementations of standard interface
languages. He received a BA (music) in
1976, aBSEE in 1985, and a MSEE in 1991
all from the University of Maryland, Col-
lege Park.

R AR

R00090352_ROBOT_1169

