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Abstract

This paper describes an iterative algorithm for regis-
tration of 3D LADAR data. The proposed approach is
iconic in nature with suitable modifications to deal with
false/spurious matches, occlusions and outliers. Exper-
imental results using data obtained from field trials on
an eXperimental Unmanned Vehicle (XUV) are pre-
sented to demonstrate the efficacy of the approach. The
paper also details ongoing research efforts to determine
the feasibility of employing the algorithm for real-time
autonomous navigation.

1 Introduction

The Demo III [10] eXperimental Unmanned Vehicle
(XUV) (shown in Figure 1) can autonomously navi-
gate at 60 km/h on-road and at 35 km/h off-road in
daylight, and 15 km/h off-road at night or under in-
clement weather conditions. The vehicle employs the
NIST developed 4D/RCS (Real-Time Control System)
[1] for autonomous navigation. The primary naviga-
tion suite of this vehicle consists of a Schwartz Electro-
Optics LAser Detection And Ranging (LADAR), color
cameras, Global Positioning System (GPS), and an
Inertial Navigation System (INS). The navigation sys-
tem uses a Kalman filter to fuse data from the INS
and the carrier phase differential GPS unit to compute
the vehicle’s position, orientation, speed, and velocity.
GPS (even in differential mode) is not always reliable
as the accuracy of the GPS estimates depends on the
number of satellites in view. Hence to continually pro-
vide reliable vehicle information, an alternate solution
becomes inevitable.

With increasing computing power and reduction in size
1Certain commercial equipment, instruments, or materials are

identified in this paper in order to adequately specify the exper-
imental procedure. Such identification does not imply recom-
mendation or endorsement by NIST, nor does it imply that the
materials or equipment identified is necessarily best for the pur-
pose.

Figure 1: The Demo III XUV is a hydrostatic diesel, 4
wheel drive, 4 wheel steer vehicle capable of
autonomous navigation in unstructured and
off-road driving conditions. The LADAR is
shown in white.

and increase in sophistication of LADAR units, our mo-
tivation to register 3D LADAR data (both consecutive
range images and also range images to a priori maps)
is many fold:
• Firstly, LADAR registration can minimize the depen-
dence on GPS and either serve as a primary navigation
solution (in the absence or degradation of GPS) or as
a secondary combined solution along with GPS.
• Within RCS, the use of a priori maps would enhance
the scope of the world model. These maps may take
a variety of forms including survey and aerial maps
and may provide significant information about existing
topology and structures. In order to take advantage
of this knowledge, research is needed to register these
a priori maps with the sensor-centric maps [4]. Addi-
tionally, for incorporating a priori knowledge into the
world model, some form of weighting is required and
this depends on how well the a priori data and the
sensed information are registered.
• There is also the need to generate higher resolution a
priori terrain maps as the current survey maps are too
coarse for autonomous driving.
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• Another potential application for registering LADAR

data is the computation of ground truth as such reg-
istration is not dependent on time-based drift (unlike
INS), vehicle maneuvers and terrain of travel.

All of the above mentioned factors warrant the need
to develop robust 3D LADAR data registration algo-
rithms. We have adapted the Iterative Closest Point
(ICP) algorithm for registering the LADAR range im-
ages. At each iteration, the technique determines the
closest match for each point and updates the estimated
transformation based on a least-squares metric with
some modifications to increase robustness. ICP and
its variants have been widely used for registration pur-
poses [9]. For autonomous vehicle navigation, ICP has
been used for registration of range images for 3D ter-
rain mapping [5] and localization [7]. Modified ver-
sions of the ICP algorithm have also been proposed for
registration of range images in the presence of outliers
[6],[8].

This paper is organized as below: Section 2 describes
the registration of 3D LADAR data. Section 2.1 ap-
plies the ICP algorithm with suitable modifications
to achieve sufficiently reliable registration of LADAR

range images. Section 3 describes the experimental
setup and provides the corresponding results. Section
4 concludes the paper outlining further research efforts.

2 Iterative Registration of 3D LADAR Data

We term the process of 3D LADAR data registration as:

Given two sets of 3D range image scan points (model
set: M and data set: D): Find a 3D transformation
(rotation and translation) which when applied to D
minimizes a distance measure between the two point
sets.

The goal can be stated more formally as:

min(R,T)

∑
i

||Mi − (RDi + T) ||2 (1)

where R is a 3×3 rotation matrix, T is a 3×1 transla-
tion vector and the subscript i refers to the correspond-
ing points of the sets M and D.

We adapt the ICP algorithm for registering 3D LADAR

range images. The algorithm as we have applied to reg-
ister range images with suitable modifications is given
in the next section.

2.1 Iterative Closest Point Algorithm
The ICP algorithm [3] can be summarized as follows:
Given an initial motion transformation between the two
3D point sets, a set of correspondences are developed
between data points in one set and the next. For each

point in the first data set, find the point in the sec-
ond that is closest to it under the current transforma-
tion. It should be noted that correspondence between
the two points sets is initially unknown and that point
correspondences provided by sets of closest points is a
reasonable approximation to the true point correspon-
dence. From the set of correspondences, an incremental
motion can be computed facilitating further alignment
of the data points in one set to the other. This find cor-
respondence/compute motion process is iterated until
a predetermined threshold termination condition.

In its simplest form, the algorithm can be described by
the following steps:
1. For each point in D compute the closest point in
M from the set comprising ND data and NM model
points. We tessellate M using Delaunay triangulation
and then do a 3D nearest point search. At the end of
this step, we have all model points that correspond to
data points and the distances between corresponding
points.
2. Compute the incremental transformation (R,T) us-
ing Singular Value Decomposition (SVD) using corre-
spondences obtained in step 1.
3. Apply the incremental transformation from step 2.
to D.
4. If relative changes in R and T are less than a thresh-
old, terminate. Else go to step 1.

To deal with spurious points/false matches and to ac-
count for occlusions and outliers, we modify and weight
the least-squares objective function in Equation (1)
such that [11]:

min(R,T)

∑
i

pdi ||Mi − (RDi + T) ||2 (2)

If the Euclidean distance between a point xi in one set
and its closest point yi in the other, denoted by di

�
=

d(xi, yi), is bigger than the maximum tolerable distance
threshold Dmax, then pdi is set to zero in Equation (2).
This means that an xi cannot be paired with a yi since
the distance between reasonable pairs cannot be very
big. The value of Dmax is set adaptively in a robust
manner by analyzing distance statistics. Let {xi, yi, di}
be the set of original points, the set of closest points and
their distances, respectively. The mean and standard
deviation of the distances are computed as:

µ =
1
N

N∑
i=1

di; σ =

√√√√ 1
N

N∑
i=1

(di − µ)2

where N is the total number of pairs. The pseudo-code
for the adaptive thresholding of the distance Dmax is
given below:

if µ < D
Ditn

max = µ + 3σ;



elseif µ < 3D
Ditn

max = µ + 2σ;
elseif µ < 6D
Ditn

max = µ + σ;
else Ditn

max = ε;

where itn denotes the iteration number, D is defined
as the average distance between the scan points to be
registered and is a function of the resolution of the
LADAR data. In our implementation, D was selected
based on the following two observations: (i) If D is too
small, then several iterations are required for the al-
gorithm to converge and several good matches will be
discarded, and (ii) if D is too big, then the algorithm
may not converge at all since many spurious matches
will be included. At the end of this step, two corre-
sponding point sets, PM:{pi} and PD:{qi} are said to
be established.

We recover the incremental 3D transformation (rota-
tion and translation) of step 2. in the least-squares
sense as follows [2]:
• Calculate H=

∑ND

i=1(pi − pc)(qi − qc)T ; (pc,qc) are
the centroids of the point sets (PM,PD).
• Find the SVD of H such that H = UΩV T .
• The rotation matrix relating the two point sets is
then given by R = V UT .
• The translation between the two point sets is given
by T = qc − Rpc.

We iterate this process as stated in step 4. until the
mean Euclidean distance between the corresponding
point sets PM and PD is less than or equal to a prede-
termined distance or until a given number of maximum
iterations is exceeded.

3 Experimental Setup and Results

LADAR data obtained from field trials conducted on
an experimental site at the Fort IndianTown Gap, PA,
is used to test the iterative algorithm. The XUV tra-
versed vegetated and rugged terrain during the course
of the field trials experiencing heavy pitching and
rolling motion characteristic of travel over such undu-
lating terrain. The LADAR was mounted on a pan/tilt
platform to increase its narrow 20◦ field of view. The
range of the tilt motion is ±30◦ resulting in an effec-
tive field of view of about 80◦. The LADAR provides
a range image of 32 rows × 180 columns (16 facets)
where each data point contains the distance to a tar-
get in the operating environment. Utilizing knowledge
about the LADAR mount position and calibration fac-
tors, the range information provided by the LADAR is
transformed to cartesian coordinates.

Figure 2(a) and (b) show a graphical representation of
the model (M) and data (D) LADAR range images.

The XUV is also shown. For this data set, the point
sets are obtained from consecutive LADAR scans. Fig-
ure 2(c) shows the registered range images and Figure
2(d) shows the closest point distance before and after
registration.

Figures 3(a) and (b) show the model and data range im-
ages before and after registration. To demonstrate the
robustness of the proposed algorithm, range image D
was chosen to be 20 scans apart from the model range
image and was also translated a meter along each of the
(x,y,z) axes in addition to the translation and rotation
that the image underwent due to the motion of the ve-
hicle. It is important to note here that even though
the range image points arrive in the same sequence for
both the model and data sets, it is not guaranteed that
both sets will have the same number of points as some
facets of the LADAR data sets return empty values. As
it can be seen from the Figures 3(a) and (b), the im-
ages are well registered after registration. Figure 3(c)
shows a magnified view of the 3D nearest point search
for correspondence determination midway through the
registration process. The pairing of the model and data
point sets can be clearly seen. Figure 3(d) depicts the
closest point distance before and after registration of
the range images. It is clear that after registration the
distance between the range images have considerably
reduced.

Table 1 summarizes the registration results for four
data sets. Data sets #1 and #3 correspond to Figures
2 and 3, respectively. In data set #2, point sets sepa-
rated by 20 scans were matched. In data set #4, range
image D of data set #1 was rotated 10 degrees and was
also translated 3 meters along each of the (x,y,z) axes.
Due to the above translation and rotation, it can be
seen that both the number of iterations and the mean
distance after registration have increased but the range
images were still sufficiently registered. Note that such
amounts of translation and rotation are highly unlikely
to occur between consecutive range images as seen from
Figure 2.

4 Conclusions and Further Work

The registration of 3D LADAR data for use in un-
manned ground vehicle navigation was the main sub-
ject of this paper. An iterative algorithm for register-
ing LADAR scans obtained from a moving XUV was
described with suitable modifications to increase ro-
bustness. Field data obtained from experimental trials
was used to test the efficacy of the algorithm in produc-
ing reliable results. The proposed iterative registration
algorithm possesses the following strengths:
• It is iconic as it works directly on sensed data and
thus does not require explicit extraction and matching
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Figure 2: Model (M) and data (D) LADAR range images are shown in (a) and (b). The graphical front end depicted in
(a) and (b) also shows the XUV as the range images were acquired. (c) shows the range images after registration.
The closest point distance before and after registration of the range images is shown in (d).
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Figure 3: LADAR range images before (a) and after (b) registration. The data range image (D) was chosen to be 20
scans apart from the model range image (M) and was also deliberately translated 1 meter along the (x,y,z) axes
in addition to the inherent translation to demonstrate the robustness of the iterative algorithm. (c) depicts a
magnified view of the 3D nearest point search procedure for correspondence determination. (d) shows the closest
point distance before and after registration of the range images.



Table 1: Quantitative Comparison of Performance

Data Set Description Mean Distance After Registration [cm] # Iterations
#1 M:4852 D:4848 Consecutive scans 5.77 6
#2 M:5349 D:5352 20 scans apart 4.64 3
#3 M:5349 D:5352 R(0)T(1)[#2] 4.64 38
#4 M:4852 D:4848 R(10)T(3)[#1] 11.66 83

of features. Because the search is confined to small
perturbations of the sensor scans, it is computationally
efficient.
• The adaptive thresholding updating stage combined
with least-squares technique yields reasonable registra-
tion even when there are false matches/spurious points
and thus can deal with scenarios when the data is not
a subset of the model, and
• It is robust to gross outliers and occlusions in the
data.

Our future research efforts will concentrate on modify-
ing the algorithm to extend it to real-time navigation
and also in matching LADAR scans to a priori maps.
Towards accomplishing these goals, the following areas
are currently being investigated:
• Global Minimization: Even though ICP will only
converge to the closest local minimum and there is
no guarantee that this local minimum will correspond
to the actual global minimum, convergence results are
good for the tested field data. If wrong convergence
proves to be an issue, stochastic optimization algo-
rithms (e.g. Simulated Annealing) can be used to alle-
viate this problem. SA is extremely slow in converging
to the global minimum and thus a hybrid algorithm
that combines it with the proposed iterative algorithm
would be more appropriate. As the convergence of the
algorithm depends on an initial estimate, a sufficiently
good initial estimate is required for superior registra-
tion. An initial estimate is almost always available in
our case as it can be obtained from either the vehicle’s
dead reckoning or GPS estimates.
• Speed Enhancements: Computing the correspon-
dence is the most computationally expensive part of
the algorithm. kd−trees have been proposed for faster
correspondence where the complexity is reduced from
O(NDNM) −→ O(NDlogNM) making the proposed al-
gorithm real-time compatible. We have also employed
Quaternions (instead of SVD) to determine the 3D
transformation but it results only in a slight improve-
ment in the resultant registration for the tested field
trial data.
• LADAR Uncertainty: The quality of the 3D reg-
istration will significantly improve if the uncertainty of
the LADAR range images are taken into account and
has been so verified for 2D laser scan registration [7].
We are currently investigating the extension of these

results to the 3D case.

References

[1] J. Albus et al. 4D/RCS Version 2.0: A Reference
Model Architecture for Unmanned Vehicle Systems. Tech-
nical Report NISTIR 6910, National Institute of Standards
and Technology, Gaitherburg, MD 20899, U.S.A., 2002.

[2] K. Arun, T. Huang, and S. Bolstein. Least-Squares
Fitting of Two 3-D Point Sets. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 9(5):698–700, 1987.

[3] P. Besl and N. McKay. A Method for Registration of
3-D Shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(2):239–256, 1992.

[4] T. Hong, S. Balakirsky, E. Messina, T. Chang, and
M. Shneier. A Hierarchical World Model for an Au-
tonomous Scout Vehicle. In Proceedings of the SPIE Inter-
national Symposium on Aerospace/Defense Sensing, Simu-
lation, and Controls, pages 343–354, April 2002.

[5] D. Huber, O. Carmichael, and M. Hebert. 3D Map
Reconstruction from Range data. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, pages 891–897, 2000.

[6] V. Koivunen, J. Vezien, and R. Bajcsy. Multiple
Representation Approach to Geometric Model Construc-
tion from Range Data. Technical Report MS-CIS-93-66,
GRASP Lab., University of Pennsylvania, 1993.

[7] R. Madhavan. Terrain Aided Localisation of Au-
tonomous Vehicles in Unstructured Environments. PhD
thesis, The University of Sydney, January 2001. Available
from http://www.dissertation.com/library/1121776a.htm,
ISBN: 1-58112-177-6.

[8] T. Masuda and N. Yokoya. A Robust Method
for Registration and Segmentation of Multiple Range Im-
ages. In Proceedings of the Second IEEE CAD-based Vision
Workshop, pages 106–113, 1994.

[9] S. Rusinkiewicz and M. Levoy. Efficient Variants of
the ICP Algorithm. In Proceedings of the International
Conference on 3-D Digital Imaging and Modeling, pages
145–152, 2001.

[10] C. Shoemaker and J. Bornstein. The Demo III UGV
Program: A Testbed for Autonomous Navigation Research.
In Proceedings of the IEEE ISIC/CIRA/ISAS Joint Con-
ference, pages 644–651, September 1998.

[11] Z. Zhang. Iterative Point Matching for Registration
of Free-Form Curves and Surfaces. International Journal of
Computer Vision, 13(2):119–152, 1994.




