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Abstract -- The key to real-time intelligent control lies in the
knowledge models that the system contains.  We argue that
there needs to be a more rigorous approach to engineering
the knowledge within intelligent controllers.  Three main
classes of knowledge are identified:  parametric,
geometric/iconic, and symbolic.  Each of these classes
provides unique perspectives and advantages for the
planning of behaviors by the intelligent system.   Examples
of each from demonstration systems are presented.

Index terms—knowledge engineering, intelligent control,
intelligent systems, world models, knowledge representation,
knowledge bases, software architecture

I. INTRODUCTION

The concept of intelligence in control applies to a variety
of approaches to extending classical control theory that
include learning, non-linear control, model-based control,
and, in general, control of complex systems that will “do
the right thing” when confronted with unexpected or
unplanned situations [4].  It can be said that all
“intelligent” systems have some knowledge of the system
to be controlled or that they use some model of the system
in calculating control outputs.  In fact, the American
Heritage Dictionary defines intelligence as “the capacity
to acquire and apply knowledge.”

Creating the knowledge – i.e., the model – of the system
to be controlled is one branch of what is known as
knowledge engineering.  The real-time aspects of control
make this problem domain different than other knowledge
engineering problems such as large-scale ontologies.  For
example, there is a need for designing non-symbolic
aspects of the system’s knowledge, such as map-based
world models. We argue that intelligent control requires
several different types of knowledge and representation.
Reference model architectures are useful in guiding the

decisions in what type of knowledge is needed in the
software and how it should be represented.

II. CLASSES OF KNOWLEDGE

A general framework for a model-based control system is
shown schematically in Fig. 1.  This framework shows a
hierarchical control structure with a world model
hierarchy explicitly interspersed between the sensor
processing hierarchy and the behavior generation or task
decomposition hierarchy, allowing for model-based
perception and model-based control [1], [2].  Example
labels for three of the levels (subsystem, primitive, and
servo), as defined in [1] are shown.   This paper presents
an overview of the data needed for the world model
hierarchy. We argue that there are three distinctly
different classes of knowledge in such a control hierarchy:
system parameters at the lower levels; maps, images and
object models at the middle levels,; and symbolic data at
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the highest levels.  We will consider each of these below.
Note that each level may contain some or all of the
classes of knowledge, but in general, there won’t be use
of symbolic knowledge at the lowest (servo) level, and the
highest levels will mostly use symbolic knowledge.
Traditionally, iconic, parametric, or numeric information
is not addressed by knowledge engineering.   We believe
that it is necessary to consider this type of representation
as well in designing the knowledge models for intelligent
systems.   

We can further distinguish knowledge that is learned or
acquired, which we will call in situ knowledge, from
knowledge that is pre-programmed or referenced from an
outside data base, which we will call a priori knowledge.
This provides a framework for considering learning and
adaptive control.

There is yet a third means of differentiation of types of
knowledge, which is to distinguish knowledge of things
(nouns), and knowledge of actions or tasks or behaviors
(verbs).  This becomes very useful at higher levels in
considering the interaction of autonomous machines with
complex environments, where appropriate behaviors
depend upon the nature of the objects encountered in the
environment; another application where this distinction
arises is generative process planning for assembly or
machining or inspection.[16][9][18] A distinction
between object models (things) and behavior models
(actions) also helps the system designer in matching the
sensor processing and world modeling specifications to
the control task specifications.

A. Parametric Level Knowledge

The lowest levels of any control system, whether for an
autonomous robot, a machine tool, or a refinery, are at the
servo level, where knowledge of the value of system
parameters is needed to provide position and/or velocity
and/or torque control of each degree of freedom by
appropriate voltages sent to a motor or a hydraulic servo
valve.  The control loops at this level can generally be
analyzed with classical techniques and the “knowledge”
embedded in the world model is the specification of the
system functional blocks, the set of gains and filters that
define the servo controls for a specific actuator, and the
current value of relevant state variables.  These are
generally called the system parameters, so we refer to

knowledge at this level as parametric knowledge.
Fig. 2 shows a traditional PD servo control for a motor of
a robot arm.  All six or seven motors that drive the arm
will have basically the same servo control, but each will
have different parameters because there are different size
motors driving different loads at different points in the
arm. Any errors that deal with a single degree of freedom,
such as ball screw lead errors, contact instabilities, and
stiction and friction are best compensated for at this level.

Learning or adaptive control systems [6],[28] may allow
changes in the system parameters and even autonomous
identification of the system parameters, but the topology
of the control loops is basically invariant and set by the
control designer.  No robot is going to invent itself a
torque loop in the field, although it could well change the
gain of a position or velocity loop as it learns to optimize
a task.

B. Iconic or Geometric Level Knowledge

Above the servo level are a series of control loops that
coordinate the individual servos and that require what can
be generally called “geometric knowledge,” “iconic
knowledge,.” or “patterns.”   Iconic knowledge can be
defined as 2D or 3D array data in which the dimensions
of the array correspond to dimensions in physical space.
The value of each element of the array may be boolean
data or real number data representing a physical property
such as light intensity, color, altitude, or density.
Examples of iconic knowledge include includes digital
terrain maps, images, models of the kinematics of the
machines being controlled, and knowledge of the spatial
geometry of parts or other objects that are sensed and with
which the machine interacts in some way.  This is where
objects and their relationship in space and time are
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modeled in such a way as to represent and preserve those
spatial and temporal relationships, as in a map, image, or
trajectory.

For industrial robots, machine tools, and coordinate
measuring machines, the first level above the servo level
deals with the kinematics of the machine, relating the
geometry of the different axes to allow coordinated
control.  Linear, circular and other interpolation and
motion in world or tool coordinates is enabled by such
coordination.  The "knowledge" here may be the
kinematic equations or Jacobian coefficients that define
the geometric relationships of the axes, or the
mathematical routines for interpolation or coordinate
transformations.  It is at this level that systematic multi-
dimensional geometric errors such as non-orthogonality
of axes of a machine tool and Abbe offset errors are
considered. [3]. Fig. 3 shows an investigation of
fixtureless inspection, in which a part is placed on the
table of an inspection machine without a fixture and the
pose of the part is determined by matching an image of
the part (dark edges) with a predicted image derived by
rotating and translating a CAD model of the part (light
edges) [21],[15].

For mobile autonomous robots, digital maps are the
natural way of representing the environment for path
planning and obstacle avoidance, and provide a very
powerful mechanism for sensor fusion since the data from
multiple sensors can be represented in a common format
[14].  Digital terrain maps are essentially two-dimensional
grid structures that are referenced to some coordinate
frame tied to the ground or earth.   A map may have
multiple layers that represent different “themes” or
attributes at each grid element. For instance, there may be
an elevation layer, a road layer, a hydrology layer, and an
obstacle layer.   The software can query if there is a road
at grid location [x, y] and similarly query for other
attributes at the same [x,y] coordinates.

The mobile robot literature references occupancy grids as
a specific approach to building quantized local maps with
some measure of certainty applied to contents of each grid
element [22] [24][7] [10]. This is particularly useful with
sensor modalities that are noisy or sensitive over wide
angles such as sonar.

Fig. 4 shows a typical local map from a mobile robot
navigating through an indoor environment.  The robot’s
position at the center is indicated by marking the occupied
cells with “R.”  The numbers in certain cells indicate the
degree of confidence that there is an obstacle occupying
that cell.  Fig. 5 shows a higher level map for path
planning for outdoor navigation.  This map contains

several feature layers, including elevation, vegetation,
roads, buildings and obstacles.

C. Symbolic Knowledge

At the highest levels of control, knowledge will be
symbolic, whether dealing with actions or objects.  It is at
this level that a large body of relevant work exists in
knowledge engineering for domains other than real-time
control, such as formal logic systems or rule based expert
systems.  Whether the knowledge is represented in terms
of mathematical logic, rules, frames, or semantic nets,
there is a formal linguistic structure for defining and
manipulating and using the knowledge.  A good
presentation of different concepts of knowledge
representation is found in Davis [11].

An example of a formal description of a solid model of a
part is shown in Fig. 6.  A block is being described using
International Standards Organization Standard for the
Exchange of Product Model Data (STEP) Part 21 [17].
Note the fundamentally different nature of this linguistic
representation from a geometric representation where, for
example, a block might be represented by equations of six

Figure 5: Multi-featured Digital Terrain Map

Figure 4: Occupancy Grid Map for Mobile Robot
Navigating  in a Hallway and Approaching an Obstacle



planes with bounding curves and a coordinate
transformation matrix to position the block within a given
coordinate system.

Linguistic representations provide ways of expressing
knowledge and relationships, and of manipulating
knowledge, including the ability to address objects by
property.  Tying symbolic knowledge back into the
geometric levels provides the valuable ability to identify
objects from partial observations and then extrapolate
facts or future behaviors from the symbolic knowledge.
In the manufacturing domain, using a feature-based
representation (which is symbolic) is reasonable at the
generative planning level (Fig. 7a). Graphical primitives
(Fig. 7b) that relate to the geometry can be tied to features

to let users easily pick a feature (such as a pocket) by
selecting on a portion of it on the screen. The geometric
representation of each edge and surface that comprise a
feature (Fig. 7c) can be tied to the feature definition in
order to facilitate calculations for generating the tool
paths.

Ontologies are definitions and organizations of classes of
facts and formal rules for accessing and manipulating
(and possibly extending) those facts.  There are two main
approaches to creating ontologies, one emphasizing the
organizational framework, with data entered into that
framework, and the other emphasizing large scale data
creation with relationships defined as needed to relate and
use that data.  Cyc [19] is an example of the latter, an
effort to create a system capable of common sense,
natural language understanding, and machine learning.

Linguistics is useful for human-machine communication
and for sharing and exchanging information amongst
robots.  Many of the results of such formal methodologies
can be useful to control applications. Formal methods can
be used to prove correctness and completeness of the
knowledge representation.   Higher-level behaviors and
environmental situations are more readily and efficiently
expressed using linguistic  (versus numeric)
representations.  For instance, at the higher levels of
control, describing the environment near an autonomous
driving vehicle by only naming objects is more compact
than an enumeration of a series of surfaces and their
mathematical descriptions.  Of course, the geometric
descriptions are necessary in order to avoid collisions, but
that would be handled by a lower control level.

III. DIFFERENT APPROACHES TO USING
KNOWLEDGE FOR CONTROL

A. CONTROL USING ONLY HIGH LEVEL
SYMBOLIC KNOWLEDGE

Much early robot work was carried out in the context of
AI research in Computer Science departments at major
universities. This had the unfortunate result of uncoupling
robotics from controls engineering, mechanical
engineering, and sensor engineering in other departments
and focused on high level issues of perception, planning,
and reasoning.[13]

After struggling for the better part of two decades, the AI
community turned away from robotics to more fruitful
applications.  Little of this early work ever found practical
application, although recent work which couples higher

DATA;
#10 = BLOCK_BASE_SHAPE(#20,#30,#70,#80);
#20 = NUMERIC_PARAMETER(‘block Z
dimension’,50.,’mm’);
#30 = ORIENTATION(#40,#50,#60);
#40 = DIRECTION_ELEMENT((0.,0.,1.));
#50 = DIRECTION_ELEMENT((1.,0.,0.));
#60 = LOCATION_ELEMENT((62.5,37.5,0.));
#70 = NUMERIC_PARAMETER(‘block Y
dimension’,75.,’mm’);
#80 = NUMERIC_PARAMETER(‘block X
dimension’,125.,’mm’);
#90 = SHAPE((),#10,());
#100 = PART(‘out’,’rev1’,’’,’simple
part’,’insecure’,(),#90,(),(),(),$,(),
(#110),(),());
#110 = MATERIAL(‘aluminum’,’soft aluminum’,$,(),());

Figure 6: STEP Representation of a Block

Figure 7: Pocket Feature.

a.) Symbolic Definition

c.) Geometric Definition

b.) Graphical Definition



level planners or agents to real systems has found new
advocates, particularly for space applications. [26][27]

B. CONTROL USING ONLY LOW-LEVEL
KNOWLEDGE

The behavioralist school of robotics, as started by Rodney
Brooks at MIT, rejected the idea of purely symbolic
control as sterile and irrelevant to robots that could
effectively interact with the real world.  Brooks proposed
using insects as a model, defining the controls as a series
of reactive behaviors that directly related sensor inputs to
behaviors through finite state machines.  More complex
behaviors were able to inhibit or subsume simpler lower
level behaviors, hence this was called a subsumption
architecture [8].

Some significant accomplishments were achieved,
including the learning experiment that Brooks carried out
to demonstrate that a hexapod with a network of
controllers could learn to walk with the appropriate tripod
gait [20].  However, Brooks and others have explicitly
rejected the concept of a world model, arguing that the
world was its own model, and as a result behavioralist or
reactive systems have not been applied to any problems of
great complexity.  Hybrid systems, such as the
deliberative-reactive systems proposed by Arkin [5] or
Thorpe [25] have attacked more complex problems.
However, these systems tend to be brittle since the
behaviors that are learned and the decision rules for
merging of these behaviors tend to be specific to the
training environment.

C. CONTROL WITH MULTIPLE LEVELS OF
KNOWLEDGE

The most significant and complex autonomous mobile
robot built to date is the Army's Experimental Unmanned
Vehicle (XUV) being developed for scout missions
(reconnaissance, surveillance, and target acquisition
(RSTA) missions).  The architecture for this vehicle is
called 4D/RCS, merging the work of Dickmanns in
Germany on road following [12] and the work of Albus at
NIST [2].  Both use data from multiple sensors to build a
world model and then use that model for planning what
the vehicle should do.

The Army XUV has successfully navigated many
kilometers of off road terrain, including fields, woods,
streams and hilly terrain, given only a few way points on
a low resolution map by an Army scout.  The XUV used
its on-board sensors to create high definition multi-
resolution maps of its environment and then navigated
successfully through very difficult terrain.

This is basically a demonstration of the use of multi-
resolutional maps as a means of knowledge representation
for sensor fusion and path planning in autonomous mobile
robots.  Over the next several years symbolic knowledge
will be added to enable tactical behaviors and human-
machine interaction.  This will create a machine that will
indeed be considered intelligent.   A brief discussion of
some of the design aspects of knowledge content and
representation in building such as system are presented in
the following section.

IV. CONSIDERATIONS IN DESIGN OF
KNOWLEDGE  AND ITS REPRESENTATION

There are several design considerations when
implementing the world model for an intelligent
controller.   A high level discussion only is possible
within the space constraints of this paper.      A key
concept is that a single, monolithic world model is too
restrictive in terms of performance and capabilities.

In this brief summary, we elaborate on the description of
the 4D/RCS autonomous scout vehicle software
architecture. 4D/RCS integrates the functional elements,
knowledge representations, and flow of information so
that intelligent systems can analyze the past, perceive the
present, and plan for the future.   A reference model
architecture is essential for guiding the design and
engineering of complex real-time control systems.

The 4D/RCS architecture is a hierarchical control
structure, composed of RCS Nodes, and with different
range and resolution in time and space at each level. The
functionality of each level in the 4D/RCS hierarchy is
defined by the functionality, characteristic timing,
bandwidth, and algorithms chosen by Behavior
Generation processes for decomposing tasks and goals at
each level. Hierarchical layering enables optimal use of
memory and computational resources in the
representation of time and space. At each level, state
variables, images, and maps are maintained to the
resolution in space and time that is appropriate to that
level.  At each successively lower level in the hierarchy,
as detail is geometrically increased, the range of
computation is geometrically decreased.  Also, as
temporal resolution is increased, the span of interest
decreases.  This produces a ratio that remains relatively
constant throughout the hierarchy.

Each RCS Node contains the same functional elements,
yet is tailored for that level of the hierarchy and the
node’s particular responsibilities.   An RCS Node
contains Sensory Processing (SP), Behavior Generation
(BG), World Modeling (WM), and Value Judgement



(VJ).  At every level of the control hierarchy there are
deliberative planning processes that receive goals and
priorities from superiors and decompose them into
subgoals for subordinates at levels below.  At every level,
reactive loops respond quickly to feedback to modify
planned actions so that goals are accomplished despite
unexpected events. At every level, sensory processing
filters and processes information derived from
observations by subordinate levels.  Events are detected,
objects recognized, situations analyzed, and status
reported to superiors at the next higher level.  The sensory
processing results are stored in the world model for that
particular level.

At every level, sensory processing and behavior
generation processes have access to a model of the world
that is resident in a knowledge database.  This world
model enables the intelligent system to analyze the past,
plan for the future, and perceive sensory information in
the context of expectations. At each level, cost functions
enable value judgments and determine priorities that
support intelligent decision making, planning, and
situation analysis.  The cost functions can be dynamic and
are determined by current commands, priorities, user
preferences, past experiences, and other sources.

Therefore, the design of the knowledge requirements at
each level is driven by the responsibilities of that level.
What commands will an RCS Node be able to execute?
What is its required control loop response time? What
spatial scope does it need to understand?  What types of
entities does it have to deal with?

At the servo level, an RCS Node receives commands to
adjust set points for vehicle steering, velocity, and
acceleration or for pointing sensors.   It must convert
these commands to motion or torque commands for each
actuator and issue them at high frequencies (e.g., every 5
ms).   The planning horizon is about 50 ms.  The
knowledge used at the servo level is primarily single-
valued state variables: actuator positions, velocities, and
forces, pressure sensor readings, position of switches, and
gear shift settings.

At the higher Subsystem level, the Autonomous Mobility
node, which is part of the vehicle’s locomotion controller
hierarchy, generates a schedule of waypoints that are sent
to the subordinate Primitive controller. Commands that
the Autonomous Mobility RCS Node accepts include
directives to follow a schedule of waypoints to avoid
obstacles, maintain position relative to nearby vehicles,
and achieve desired vehicle heading and speed along the
desired path.   Knowledge used at this level supports
planning movement through 3D terrain, hence digital
terrain maps (which are forms of iconic knowledge), with
multiple registered attribute layers are appropriate.

Planning for mobility at this level is concerned with
obstacles (both positive and negative, i.e., holes),
elevation, potentially roads, if it is to follow roads, and
observability, if it is to perform stealthy movements. A
cost-based search through a graph whose nodes are
derived from elements of the regular terrain grid is used to
find the lowest-cost path that achieves the specified
objectives.   The map-based format also provides a
convenient “receptacle” for registering and fusing
information from multiple sensors with each other and
with a priori information, such as from digital terrain
maps.   The subsystem level of the hierarchy outputs a
new plan about every 500 ms, and the planning horizon at
this level is about 5 s into the future.   The spatial scope is
roughly 50 m, with a resolution of about 40 cm.   The
extents of the space considered are based on the planning
horizon and vehicle velocity.   The grid resolution is
based on engineering considerations, like computational
resources available and what resolution the onboard
sensors can provide.

Higher still in the hierarchy is the Section Level.   This is
the controller for a group (2 or more) individual scout
vehicles.   The section RCS Node is responsible for
assigning duties to the individual vehicles and
coordinating their actions.   Orders coming into the
section level are tactical maneuvers, including mission
goals, timing and coordination requirements.    The
planning horizon is 10 minutes into the future, and new
plans are sent to subordinates about every minute.
Knowledge at the Section Level includes digital terrain
maps, typically covering about 2 km, at low resolution
(30 m), with multiple attribute layers, such as roads (of
various types), vegetation, fences, buildings, as well as
enemy locations and militarily significant attributes.
Enemy locations may be noted within the grid-based map,
but more extensive symbolic information about the
situation is associated with the grid locations.   The
symbolic information could include details about the
enemy force such as number of soldiers, weapons, and
estimated travel direction.   This group of information is
best kept in a separate knowledge structure and may be
amenable to rule or case-based reasoning tools (such as
[23]).   At the very least, the Value Judgement function
will need to convert the knowledge that “ a band of 23
soldiers and 1 tank is moving toward location x, y with 60
% probability at velocity of 10 miles/day” into a set of
costs that can be tied to the map grid and utilized by the
graph-based search to generate the vehicle plans.
Therefore, this level is an example where map-based
(graph search) planning and symbolic reasoning tools
may be used.

At most of the levels, there is some combination of a
priori knowledge and in situ knowledge.   At lower levels
concerned with mobility, the maps are primarily sensor-



generated, however, there may be pre-computed
kinematically correct steering curves that are overlaid on
the planning graph.      At higher levels, more a priori
knowledge is used, e.g., as digital terrain maps and
descriptions of enemy vehicles and capabilities.

V. CONCLUSIONS

No one type of knowledge representation is adequate for
all purposes.  Davis [11] argues that representation and
reasoning at the symbolic level are inextricably
intertwined, and that different reasoning mechanisms,
such as rules and frames, have different natural
representations that must be integrated in a representation
architecture to achieve the advantages of multiple
approaches to reasoning.   We go further and argue that
there is a requirement for integrating iconic and
parametric knowledge with multiple types of symbolic
knowledge and that, as Davis argues, there is a basic need
for a representational architecture to provide a basis for
intelligent control, which we have presented above.

The introduction of iconic data, integrated with symbolic
data and parametric data in a multi-resolution hierarchical
world model, enables the real time control of complex
systems interacting with the real world, including the
ability to deal with dynamic relationships of objects in
space and time.  This provides the ability for a moving
vehicle to sense and correctly respond to unexpected
obstacles and events.  This is the essence of intelligent
control.  The Army XUV program provides a leading
edge demonstration of the value of this approach.
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