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ABSTRACT

With enterprises facing tremendous time-to-market pressures, manufacturing systems must be implemented
quickly and modified easily.  The ability of the open architecture approach to reconfigure or extend existing
machine controllers to meet new needs is one of its advantages in meeting these challenges. Another open
architecture advantage is the ability to reuse existing designs or components. However, without open
architecture standards, design and component reuse and reconfiguration is economically unfeasible in creating
and maintaining machine controllers. This paper will review the Open Modular Architecture Controller
(OMAC) Application Programming Interface (API) Workgroup specification that allows systems integrators
and end users to extend, modify or upgrade controller components or modules used in developing, assembling,
and reconfiguring machine controllers. The paper will examine the OMAC API component-based approach
and the various categories of reuse and reconfiguration that the OMAC API supports.
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1. BACKGROUND

To be agile, control systems need to offer the necessary flexibility in order to handle
reoccurring changes in product design and fluctuations in product mixes and volumes
without major replacement of equipment. The idea of building control systems through open
architecture technology offers advantages in developing, adapting, and reconfiguring factory
automation systems for meeting these agile manufacturing challenges. The reconfiguration
of open architecture factory automation allows control modules to be added or removed
from the control system and provides appropriate control capability to match application
needs. This paper looks at the OMAC API component-based open architecture approach to
building and reconfiguring control systems.

The foundation for the open controller effort within the discrete-parts manufacturing
industry originated with the Open Modular Architecture Controller  (OMAC) white paper,
entitled Requirements of Open, Modular Architecture Controllers for Applications in the
Automotive Industry, Version 1.0  dated August 15, 1994, that was published by the U.S.
automotive companies [3]. A great deal of interest from industry in the open, modular
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architecture technologies led to the formation of the Open Modular Architecture Controllers
(OMAC) Users Group as a forum to advance the state of open controller technology. As part
of the OMAC forum, an effort was undertaken to define an open, modular architecture
controller specification based on application programming interfaces (API). This work was
done under the auspices of the OMAC API Workgroup, of which the authors are members,
and has lead to the development of a component-based specification for machine controllers.

The goal of the OMAC API specification is to enable control vendors to supply standard
components that machine suppliers can easily configure and integrate to build machine
control systems, and that end-users can then easily reconfigure based on evolving
manufacturing requirements. The OMAC API technology vision provides for easily
customized plug-and-play control components to reduce cost and provide higher fidelity
while leveraging pervasive, off-the-shelf, high-volume, software technology.  This vision
means that building a control system by writing code would be replaced with building a
control system by assembling and integrating existing software modules or components.
Likewise, the notion of modifying a controller by rewriting code will be replaced with
reconfiguring or replacing modules within the control system. In this component-based
vision, a system integrator selects an appropriate set of components, configures the
components through a combination of plugging in components into pre-wired  slots and/or
connecting interface-compatible components together [1].  To make such a component-
based arrangement work, the OMAC API was required to define a formal integration API to
establish the relationships and collaborations between components. The OMAC API also
embraced the trend towards introspective  components, or components that contain
information about themselves found previously on bookshelves. This introspective ability
allows components to be used at design time in an Integrated Development Environment
(IDE) as well as runtime.

The OMAC API differs from other industry open-architecture standardization efforts in its
component-based approach. Open System Architecture for Controls within Automation
Systems (OSACA) is a message-based open-architecture effort that has developed a
reference architecture and communication scheme directed at equipment controllers [11].
The Open System Environment Consortium (OSEC) has a message-based, open-architecture
specification also, which is based on the Factory Automation Equipment Description
Language (FADL) for exchanging messages in a distributed, agent-based, networked
environment [12]. These efforts use a message-based approach, which is suitable for system-
to-system asynchronous communication, but is not as conducive to smaller component reuse
or reconfiguration [6].

This paper will review the OMAC API specification as it relates to developing and
reconfiguring component-based systems using different reuse and reconfiguration strategies.
The paper will start with an overview of the OMAC API specification. The paper will
continue by examining component extensibility and reusability, system integration, and then
reprogrammable tasks.  Finally, the paper summarizes the approaches with discussion on the
issue of controller reconfiguration using mainstream, high-volume, reusable component
technology.



2. OMAC API OVERVIEW

To accommodate changes within a manufacturing process, it may be necessary to increase
or decrease the functionality of the control systems associated with the equipment in the
process. At such times, a module of a control system needs to be replaced to provide
additional capability and/or lower cost to the user of the control system. Modularity, which
refers to encapsulating common functionality into a separate entity, allows a user to replace
a component or a module in a control system easily without having to devote a great amount
of engineering effort to re-integrate the control system before it is functional. In this
scenario, end users plug  in the new module and start to play  with minimal effort such as
simply loading a new software driver. Plug and Play  in this sense means to integrate and
validate in a standardized environment.

The OMAC API adopted an object-oriented approach to plug-and-play modularization,
using interface classes to define the Application Programming Interface (API). However,
plug-and-play on a per-class basis is not practical. Instead, a coarser granularity is necessary
that resulted in the OMAC API defining different sizes  and types  of reusable plug-and-
play entities. To differentiate, the OMAC API uses different terms to distinguish them —
component, module, and task — with each based on a Finite State Machine (FSM) so that
collaboration is performed in a known manner. The term component applies to a reusable
piece of software that serves as a building block within an application (analogous to a
hardware part), while the term module refers to a grouping of components (analogous to a
hardware assembly). Modules can themselves be then used as components, so that both
terms are used interchangeably within this paper.  A component may contain multiple
interfaces, either through aggregation or through inheritance. A module acts as a container
of components by providing a means of storing component references and then providing
access to the component references.  In general, new OMAC API component interfaces may
extend functionality of existing components by means of aggregation or specialization.
Further, new components can aggregate or inherit from one or more interfaces.

Figure 1 sketches the relationship between an application control system, modules and
components as defined within the OMAC API specification. An application is a computer
control system built by assembling and integrating software components. The OMAC API
application domain is multi-axis, coordinated motion control typical of Computer Numerical
Control (CNC) machines or robots.  Representative controller applications include cutting,
manipulation, and grinding.  The targeted range of controller complexity is quite broad —
from multiple robotic arms to single axis controllers one would find in the packaging
industry or on a transfer line.  The application can be distributed with parts of it running on
one or more platforms, so that one master, the System Coordinator, is responsible for
bringing up all the distributed modules on each controller platform, the Domain
Coordinator, for each platform.

The OMAC API specification defines a series of modules as shown in Figure 1, including
Axis, Axis Group, Task Coordinator, and Discrete Logic. The Axis module is responsible
for servo control of axis motion, transforming incoming motion setpoints into setpoints for
the corresponding actuators. The Axis Group module is responsible for coordinating the



motions of individual axes, transforming an incoming motion segment specification into a
sequence of equi-time-spaced setpoints for the coordinated axes. The Task Coordinator
module is responsible for sequencing operations and coordinating the various modules in the
system based on programmable Tasks. The Task Coordinator can be considered the highest
level Finite State Machine in the controller. The Input-Output (IO) Device module is
responsible for managing communication between the physical hardware device and IO
software, and is responsible for managing a group of IO points. The Human Machine
Interface (or HMI) module is responsible for human interaction with a controller including
presenting data, handling commands, and monitoring events.  The Discrete Logic module
serves as a general-purpose mechanism to organize and present IO control software and
allows discrete logic and IO programming using Tasks.
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Figure 1. Relationship of OMAC Application, Modules and Components

The OMAC API specification defines components as shown in Figure 1 that include Control
Law, IO Point, Kinematics, Process Model, and Task. The Control Law component is
responsible for servo control loop calculations to reach specified setpoints. The IO Point
component is responsible for the reading of input devices and writing of output devices
through a type-based read/write interface. Logically related IO points are clustered within an
IO Device module or within a Discrete Logic module. The Kinematics Model component is
responsible for geometrical properties of motion. A Process Model component contains a
dynamic data model that is integrated with control functionality.

Tasks are a type of component that encapsulates functional behavior characterized as
lighter-weight  than an  OMAC module, contains a series of steps, runs to completion and

may be run multiple times while a controller is running. The Task interface defines a FSM
model that has functionality in support of the Task life cycle, including methods for starting,
stopping, restarting, halting, and resuming a Task.  The Program component manages a



series of Tasks, with ability to restart and navigate.  Tasks serve a variety of roles in the
realm of a controller and a later section will cover the differences in functionality.

3. SYSTEM AND COMPONENT RECONFIGURABILITY

To integrate components, a framework is necessary. Frameworks formalize the life cycle,
collaborations and other aspects of the manner in which components operate. Example
frameworks include Microsoft s Component Object Model (COM) [7] or the Object
Management Group (OMG) Common Object Request Broker Architecture (CORBA) [10].
The potential productivity gains for end-users and Original Equipment Manufacturers
(OEM) from component-based technology using a common framework is obvious, but can
also work to the advantage of control vendors. With a common framework in which to
develop components, control vendors can concentrate on application-specific improvements
that define their strategic market-share — as opposed to spending valuable programming
resources reinventing and maintaining software plumbing.  With the shortage of skilled
software professionals continuing to rise, the urgency to leverage commodity framework
technology is even more compelling. It was the OMAC API workgroup’s desire to produce
an API specification that is platform and framework independent using a specification
language such as the Unified Modeling Language (UML) [13]. However, to hasten the
development and validation of the API, Microsoft COM was selected as an initial
development framework. The OMAC API has produced a set of reference documentation to
define the API based the Microsoft Interface Definition Language (MIDL) [9].

Historically, the difficulty in components integration has been a barrier to realizing code
reuse on a large scale. With the difficulty encountered in integration, each new system often
becomes as large an effort as if it had been created from scratch. To alleviate this problem,
the OMAC API has defined a formal integration process — beyond that found in the
Microsoft COM framework — in order to establish the relationships and collaborations
necessary for components in control system applications. The OMAC API has defined a
component-level integration so that components understand how to collaborate, how to
advertise functionality, where and under what framework they operate. The OMAC API
integration process defines an IOmac interface, which describes base services for component
integration and deployment in a consistent manner [9]. Using UML notation, Figure 2
illustrates the high-level OMAC API component model common to all components and
includes:

o Functionality interface — defines the control capability of a component. This
interface includes methods for behavior, state, and parameter manipulation.

o Infrastructure interface — provides support for the broader application framework.
The Infrastructure interface handles component identification and registration, which
is used for the component to advertise what it does, where it is, and how it operates.

o Connection interface — advertises the module dependencies such as the interfaces it
requires and enumerating the Events-in and Events-out it supports, thereby
answering the question of what a module needs.

o Attributes — parameterize the features of a component that can be customized.
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Figure 2. Omac Component Overview
The potential to reuse software is indisputable.  A study by Tracz found 60-to-70%
commonality has been found when comparing similar software, which includes code,
design, functional and architectural similarities [13]. However, component-based modularity
alone does not guarantee reusability. Modularity must be combined with feature
customization to make it possible for engineers to tailor the modules to meet the specific
needs of individual applications. Thus, to attain maximal potential for reconfiguration, the
OMAC API designers realized that modules and components must allow as much
customization as possible in as flexible a manner as possible to provide a broader basis for
the reusable components to exploit cross-industry purchasing power.

The OMAC component set of interfaces can be exploited in numerous ways in building and
reconfiguring control applications. Potential approaches include the ability for composition
(Functionality and Connections), loose coupling using events — publishes (events-out),
emitters (connection points), consumers (events-in), and configuration (attributes). These
interfaces also provide a uniform API for dealing with the common software functionality
such as handling normal operation, installation, creation and destruction, parameter
configuration, initialization, startup and shutdown, licensing, security and registration,
persistent data saving and restoring, enabling and disabling, binding and discovery, naming,
and introspection. As part of the OMAC module base services, a connection API is defined
that allows components to advertise what other components they require and assist in
resolving component dependencies.

To further streamline the ability for system reconfiguration, the OMAC API also provided
support for the growing trend in software towards embedding information in a component
about itself. With embedded information, a component has the ability to be used at design
time in a drag-and-drop Integrated Developer Environment (IDE), such as Visual Basic, or
other visual programming tool.  For example, with embedded information, a component can
be queried locally on the shop floor about its last maintenance. Embedding information also
enables component introspection that allows users to determine what the component can do
and how to customize the component. With introspection, components can be easily
customized in IDE builder tools so that users can graphically drag and drop components
onto a component container (possibly a Visual Basic form or an Axis module container), and
customize the properties of the components.  The OMAC API workgroup foresees the



ability of IDE builder tool to query an OMAC component for the functional properties, the
types of components it requires, and the events-in it requires and the events-out it generates.
To that end, the controller construction process can be greatly simplified through IDE
configuration tools so that complete systems can be integrated graphically without any
source code programming required.
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Figure 3. Example Axis Module with Component Plugs

Another step towards maximizing reconfigurability in the OMAC API is through component
plugs .  Figure 3 shows the relationship of an example Axis module, the related plugs

including coordination, (such as CommandedInput, CommandedOutput, SensedState), servo
plugs (such as FollowPosition), and the external components such as IO points (such as Axis
Limit switches).  In Figure 3, the axis is wired to IO components including a motor drive, an
encoder with marker pulse and IO switches for home and axis limits.  Axis modules can be
customized to accommodate need, for example, handling a spindle through a single Follow
Velocity plug, but the concept of plugs remains consistent.

Plugs can be customized to meet specific controller requirements. When functional add-ons
or changes to a control system are required, such as sensors, communications, diagnostics,



etc., the most appropriate technologies can be selected and integrated without relying on
specific control vendors to develop custom solutions. In the case of the Axis module as
illustrated in Figure 3, the module contains pre-wired component plugs for Commanded
Input, Commanded Output, Sensed State, etc. The appropriate communication plugs can be
inserted  via set methods accessible through the Axis module, which acts as a container for

these plugs.  Consider the Command Output plug: this plug could be replaced by one that
communicates over a Serial Realtime Communication System (SERCOS) network or a plug
that communicates over Controller Area Network (CAN) bus.

Figure 4 Axis Module Connection Property Page.

As an alternative to rewriting source code to change a set plug  method parameter,
component plugs can be changed by asking the component what component plugs or
connections it needs, and assigning a component to the connection. In this case, components
and modules advertise  what other component connections they need and a system
integrator picks and chooses an appropriate fitting  plug and connect the components
together. Figure 4 illustrates a property page for an Axis module under a Visual Basic IDE.
Within the Connections property page, a connection is made using a Sercos.Servo  plug so
that the Axis module Commanded output will communicate over a SERCOS network to the
axis servo drive. Pluggable deployment does not place any extra programming burden on the
end-users. Control vendors would be expected to provide a default set of plugs, so that users
would customize only if the need arises. This is seen by the Connections Property Page
Required  column that indicates whether the connection is mandatory or optional, so that

the axis module uses an internal plug.



4. REPROGRAMMABLE TASKS

The OMAC API defines the Task API to allow programmable control components. To allow
component collaboration in a known manner, Tasks follow a Finite State Machine (FSM)
logic defined by the ITask interface corresponding to start-running-completed-restart
program behavior.  Tasks are also component plugs because they offer a mechanism to
customize the system for specific application needs. However, Task are component plugs
that implement the ITask interface, while heavier-weight  OMAC modules follow and
extend the FSM state logic defined by the IOmac interface, which defines a more complete
component lifecycle API.  IOmac compliant components would operate continuously from
the moment the controller is brought up until the controller is shutdown. ITask compliant
components would run from start to completion any number of times while the controller is
running.

An example of a Task is the homing of an Axis. Since homing can vary greatly based on the
underlying hardware, this control logic functionality is best encapsulated into a Homing
Task component plug.  Figure 5 uses UML notation to illustrate how the  OMAC task model
is used to handle Axis Homing configurations. Case (a) illustrates an automatic detection of
crossing the homing switch and capturing the position. Case (b) illustrates a very low-cost
machine, where the axis switch is wired into a single digital input bit on the controller and
any overtravel limit causes an abort. The operator manually cranks the axes and is
responsible for monitoring when the switch trips and then backing the machine off.
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To handle these different hardware limit switch configurations and position capture, the
Axis Homing is a plug that aggregates an IConnectionTable interface in support of˚design
and runtime connection to IO Points it needs in performing the homing process. As part of
this procedure, the hardware setup for the Axis Homing plug could be either hard-coded
through source code or configured with an ini  file.˚Then the Axis Homing plug advertises
the names and˚types of IO it requires, including homing or limit switches, latches, encoder
pulse count, and possibly even an operator IO point. Then, the Axis Homing plug
is˚connected to these IO Points and to the controlling object - either an Axis Group or Axis
Supervisor depending on the type of machine. In some cases where hardware latching is not
available and software sampling must be done, the Axis Homing plug could contain direct
access to the hardware for better performance.

Tasks that support both the IOmac and the ITask interfaces are Resident Tasks  that
operate as a permanent part of the controller. Resident tasks execute periodically "forever"
or on an event-driven basis. Resident Tasks are independent of any  OMAC module, and
depend on a scheduler or an arrival of an event to carry out execution. Estop is an example
of Resident Task since it maps an Estop event into several events that can be tailored to
accommodate domain-specific safety codes. For example, Estop could be mapped into stop
as fast on each limit using the software limits as configured by OEM, put brakes on, cut
power , or cut power after certain time limit  depending on pertinent safety codes. To
allow for the different domain-specific forms of Estop, this functionality has been abstracted
into a Resident Task and would use either a hard or abnormal stop to a achieve safe
emergency stop as dictated by the domain-specific safety code.

In manufacturing, a series of Tasks corresponds to a process plan, which coordinates actions
in a production operation to control one or more devices (i.e., machines, tools, fixtures, etc.)
and allows "re-programming" a controller. An RS274 part program is an example of a
process plan for milling a part. Process plans are handled in the OMAC API by translating
them into a series of process-oriented Transient Tasks .  In the OMAC API model, each
process plan step is translated into a sequence of Execution Steps as defined by the
IExecutionStep interface, which is a specialization of the ITask interface. The relationship
between Transient Tasks and Execution Steps corresponds to distinction between a class
factory and an instance of the class. In this case, each Execution Step is a parameterized
clone of a Transient Task that has been pre-wired to resolve connection dependencies to
components, modules and other Tasks. IProgram is an interface that has been defined to
provide programming control (e.g., start, stop, single step, rewind) that is made up a
sequence of Execution Steps.

The OMAC API provides a model for translating Process Plans into Execution Steps in a
device independent manner. All potential process plan steps have a corresponding Execution
Step. A Transient Task factory is responsible for generating an Execution Step. A system
integrator rewrites a Transient Task depending on the equipment and facilities of the
machine controller. For example, consider the case of handling˚a tool change cycle in a CNC
Machining Center.˚ A Tool Change may include orientating motion of the spindle. It may
also include motion of the axes to a fixed tool-change position, as performed by the Axis
Group Transient Motion Tasks (e.g., Straight Line motion segments).  The implementation



of the Tool Change Transient Task depends on the˚underlying hardware and devices
associated with the Tool Changing operation. For the case of a Machining Center that has a
Tool Changer with a Tool Magazine, Collet/Chuck, etc., a more permanent  Tool Changer
Discrete Logic module would be used to coordinate the activity.  For the case of a
Machining Center˚that is equipped with no moving (e.g., chain-driven) tool magazine or
specialized tool changing device, the Tool Change functionality would have to be realized as
a Resident Task rather than a Component/Module, since there is no corresponding actual
device.

5. SUMMARY

With the pressure on manufacturing systems to adjust to the fast changing demands from the
marketplace, the time required to design and integrate a control system must greatly improve
in the near future.  The open architecture ability to reconfigure or extend existing equipment
to meet new needs is particularly powerful in meeting these challenges. However,
realization of the open architecture concept demands more than the selection of control
modules and the definition of standard interfaces. It also requires components conforming to
the standard interfaces, software tools to assist the users to integrate commercial
components, and support from control component suppliers and system integrators for
implementations.  There exist several controller IDE products on the market today, (e.g., [4,
5]), that achieve many of the desired goals of the OMAC API prescribed plug-and-play
component-based technology. Unfortunately, these products are proprietary and the resulting
components are not operable in other IDE environments.  Without high-volume
interchangeable component technology, it is economically unfeasible for a manufacturing
industry to create and maintain components in an IDE [1].

The OMAC API specification is a draft proposal for a standard component-based, plug-and-
play, controller technology that leverages pervasive, off-the-shelf, high-volume, component
strategy. Currently, validations and commercial product development based on the proposal
are underway. This paper presented an overview of the OMAC API plug-and-play
capabilities for machine controller development and reconfiguration. The OMAC API
component-based specification encourages reuse and reconfiguration by providing
numerous mechanisms for plugging,  rewiring,  and tweaking  components. Of note is
the fact that OMAC application systems need not be monolithic, but rather a system could
be pieced together that merely consisted of a HMI and an Axis. This scaleable nature of the
OMAC API allows systems to be built and tested incrementally. More importantly, OMAC
API based systems can be reconfigured to fit memory-constrained applications or other
deployment constraints. Solution scalability is essential for achieving the commodity-
valuations necessary if component-based controller technology is to succeed.
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