
Open System Architecture for Real-time Control

Using a UML Based Approach

Hui-Min Huang, Elena Messina, Harry Scott, James Albus,
Frederick Proctor, and William Shackleford

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

{hui-min.huang, elena.messina, harry.scott, james.albus, frederick.proctor, william.shackleford}@nist.gov

Abstract

We describe a generic architecture that is
applicable to the engineering of many real-time
control problems. We further describe how
UML is used to apply the architecture to the
problems.

1 Introduction

Industry desires short lead time for production to
enable companies to compete in the global
economy [1, 2]. Applying software architectures
yields the benefits of interoperability, portability,
efficient system integration, etc. [3, 4, 5, 6, 7],
which contribute to the industrial objective.

Albus [8] proposed a generic, open, reference
model architecture called Real-time Control
System, (RCS). RCS and its variants, including
Intelligent System Architecture for
Manufacturing (ISAM), have been applied to
various large-scale engineering problems [9, 10,
11, 12, 13, 14].

ISAM/RCS attempts to model the fundamental
behaviors of complex systems. The ISAM/RCS
model is a hierarchical control structure that is
composed of multiple, organized control nodes.
High control levels cover system behaviors that
are longer in temporal span and wider in spatial
span. Low control levels handle tasks that are
more detailed, with short time and spatial spans.
For example, a shop floor control may handle a
production order that takes months to make
certain products with multiple workstations. On
the other hand, the lowest level may involve the
servo control of motors for the machines. We

will describe the architecture, together with a
method for applying the architecture to
engineering problems.

Unified Modeling Language (UML) has rapidly
emerged as an industrial standard for software
engineering. There are many characteristics in
ISAM/RCS that make UML a feasible modeling
and representation language for the architecture.
Since our effort started before UML’s emergence
as an industry standard, we will describe how
our approach transitions from being C++
language based to being UML-based.

We use a manufacturing inspection scenario to
illustrate the key concepts. Manufacturing shop
operators use inspection systems to measure
dimensions of manufactured parts. The systems
compare the measurements of the parts with the
parts’ models to determine whether the parts are
made to the specifications.

2 Reference Model

ISAM/RCS provides that nodes in a control
system all have the same structure despite their
different behaviors. A control node generates
behavior through a planning and execution
process. The behavior generation process is
supported by physical or logical sensory
processing functions and real-time knowledge
processing functions. These functional aspects
of the architecture are shown in Figure 1. This
generic-plus-specific structure repeats
throughout the entire system.

This generic structure gives rise to our software
implementation method called generic shell.

2

Figure 1: ISAM Control Node Functions

Generic shell provides generic computing
models for ISAM-based hierarchical control
systems, including interfacing and
communication. Developers apply the generic
building blocks to all the control nodes and
interfaces to build a skeleton for their control
systems. The developers then embed the
application-specific behavioral or processing
algorithms into the skeleton and fill in the inter-
process interface templates. This is consistent
with the generalization/inheritance and data
abstraction concepts in object-oriented
paradigms.

The number of layers and nodes that form the
organization of a particular application is
dictated by the application’s task and behavior
requirements. This highlights ISAM/RCS’s task
orientation.

In Figure 2, we show the integrated architectural
conceptual framework for ISAM/RCS.

At the center of the figure is the generic control
node model. The node is populated up along the
T-axis (Task) to form a hierarchical system; each
level having different task responsibility. The
node is functionally decomposed along the F-
axis (Function) depending on each node’s
application complexity. Various domain or
application specific functionality may be added
along the O-axis (Object) to form subclasses and,
eventually, applications themselves.

Along the T-axis, the ISAM task decomposition
process decomposes system goals into a

hierarchy of subgoals with gradual decrease
in scope and increase in details. These
subgoals are assigned as responsibilities for
the control nodes at the various control
levels. The behaviors for the nodes at the
bottom of the hierarchy would be the
actuator signals to manipulate the hardware.
In a manufacturing process, a high level task
INSPECT_PART may be decomposed to a

low level task set including {
GOTO, PROBE_TO,

SET_PARAMETER}. GOTO itself
may then be decomposed into a set of
waypoints for execution.

Fu
nc

tio
na

l

de
co

m
po

sit
io

n

of
 n

od
e

intelligent
machine
model of
RCS

Object orientation/
abstractionT

as
k
:

 a
u
th

o
ri

ty

an
d
 r

es
o
lu

ti
o
n

s

T

F

O

Figure 2: Conceptual Framework for ISAM/RCS
Generic Shell

A perception process performs successive
integrations that transform low-level features
into high-level features. Image pixels are
integrated to form linear features. The latter,
themselves, are integrated to form surface
features. The process continues to form object
features and features of even higher levels of
abstractions.

Along the F-Axis, as indicated in Figure 1, all
the control nodes perform the same types of
functions. However, different applications may
dictate nodes invoking different solution
paradigms or algorithms, such as AI, fuzzy logic,
or traditional, analytical control algorithms.

From a system realization perspective, the O-axis
captures the concepts of from abstract to
concrete, from generic to specific, from skeleton
to expansion, and from reference model to
applications.

task command

subordinate 2

schedule schedule

select

execute

simulate

execute

assign

sense

evaluate

supervisor

update
knowledge
base

schedule schedule

select

execute

simulate

execute

assign

sense

evaluate

subordinate 1

update
knowledge
base

subtask command

3

PLType

planningHorizon

readSuperior()
readWM()
planner()
planSelector()
writeEX()

(from nodeInheritance)

EXType

readPL()
writeSubordinate()
setCycleTime()

(from nodeInheritance)

SPWMType

readSubordinates()
integrate()

(from nodeInheritance)

IWPLType

IWEXType

IWEXInit()
IWEXInspect()

IWSPWMType

CMMPLType

CMMEXType

CMMSPWMType

ISAM_MOD

preProcessing()
decisionProcessing()
postProcessing()

Figure 3: UML representation for generic shell
process templates

3 Generic shell

Generic shell is an implementation method for
ISAM/RCS. Generic shell can be realized in
various forms, from C++ code templates, to
commercial tools, to UML classes. Our
descriptions contain work from both the C++ and
UML aspects. The two versions of generic shell
share the same software engineering concepts.

Figure 3 depicts a UML representation for
generic shell process templates.

The first layer, the most generic, is the base
class. The second layer comprises templates that
model the ISAM functions. The third layer
models nodes for the inspection system. These
three layers follow the O-axis. The fact that the
third layer classes would populate the control
hierarchy is consistent with the T-axis.

We have combined the functional model as
described in Figure 1 into three processing
templates, planning (PL), executor (EX), and
sensory processing and world modeling
(SPWM). This is consistent with the F-axis.

3.1 The base class

The base class, ISAM_MOD, specifies a generic,
cyclic pre-decision-post process model. The

preprocess obtains and
computes all the information
to support the decision
process. The post process
outputs and stores the
outcome.

We derive the following
ISAM shells.

3.2 The PL shell

This shell typically covers the
assign, schedule, and select
boxes in Figure 1. Figure 3
illustrates how we plan to use
the methods to implement
those boxes. This diagram is
developed with the Rational
Rose tool1 from the Rational
Software Corporation.

During preprocess, the input
channels include commands from the superior,
execution status from the subordinates, and
queries and responses for data. In ISAM/RCS,
the planning function plans ahead for ten steps,
typically. The system’s knowledge at any
control level tends to be more uncertain and the
environment tends to change significantly to
make looking further ahead useful.

During execution, the generated plans are re-
evaluated and replanning is performed every
cycle. Generic shell employs a plan selector to
manage the plan buffer. The plan selector is also
responsible for coordinating with the executors
that execute the plans.

Figure 4 illustrates how a PL shell may select
different plans depending on an input command.
Figure 5 illustrates a particular plan, which is to
initialize the control node. This set of examples
has been implemented and executed on an NT
platform. These two diagrams are developed
with the ARTiSAN Real-time Studio tool from
the ARTiSAN Software Tools, Inc.

1 Certain commercial products or company names are

identified in this paper to describe our study
adequately. In no case does such identification
imply recommendation or endorsement by the
National Institute of Standards and Technology, nor
does it imply that the products or names identified
are necessarily the best available for the purpose.

4

3.3 The EX shell

The EX shell interfaces with PL by receiving
command schedules and other instructions. It
sequences, schedules, executes schedule steps,
and reports status to PL. When errors occur, EX
either performs emergency routines or reports
the error and suspends execution.

Figure 4: A PL Shell Example

3.4 The SPWM shell

The SPWM shell typically covers the
sense, update knowledge base, simulate,
and evaluate boxes in Figure 1.

3.5 Knowledge Structure and
Interfacing

Generic shell contains a task-oriented
method and, as such, the knowledge that
is required in each system is based on the
task that the system is to perform. The
knowledge can be organized in terms of
node tasks. The tasks require many
attributes, including task goal and its
constraints, planning and execution
states, plan description or references to
planning algorithms or plan databases, transition
conditions, errors, knowledge requirements,

resource requirements, priority, and performance
metrics.

ISAM/RCS maintains a system perception
process in real-time. The perception process
supports task generation and execution. The
perception process acquires and assimilates
system knowledge through the sensory

processing function. In generic shell, task
commands flow down the hierarchy (the T-axis).
In Figure 3, a PL reads task command messages
from its superior node and writes to EX to
execute the tasks. This process repeats top-
down.

Figure 5: A Behavior in PL

iwplInitNewCmd
iwplInitS1

iwplInitS2

/

[else]/

/

/newCmd = 0;

[newCmd == 1]/ sendCmd ();
lastState = S1; ...

[(newCmd == 0) && (lastState == S1)]/

[iwexStatusIn == DONE]/ lastState = S2;

[(newCmd == 0) && (lastState == S2)]/

/

iwplInitBehavior
STD: iwplInitBehavior

preprocessing

iwplInspPartBehavior
STD: iwplInspPartBehavior

postprocessing

cycling

iwplInit/setCmdInit();
iwexExec/iwexStatusIn = EXEC;
iwexDone/iwexStatusIn = DONE;
iwplInspPart/setCmdInsp();

iwplInitBehavior
STD: iwplInitBehavior

preprocessing

iwplInspPartBehavior
STD: iwplInspPartBehavior

postprocessing

ready

/ /

startCycling/

«Destroy»/

/setVars();

after(1000)/

[iwplCmdIn == 1001]/
[iwplCmdIn == 1003]/

[else]/

/rcs_wait();
setVars();

«Create»/

5

On the other hand, the sensed information flows
upwards. In Figure 3, SPWM reads the
information from below and integrates and
perceives it for a feature with the corresponding
level of resolution.

For example, the knowledge that “the part is
ready for inspection” integrates multiple pieces
of low level information:

- the part has been placed on the inspection
table,

- its location has been determined, and
- the knowledge for inspecting the part, i.e.,

its inspection plans, has been retrieved. This
further implies that the geometrical
knowledge has been obtained.

4 Summary and Future Work

We described our ongoing investigation of
applying UML to a software development
process. Our current results have indicated that
UML is able to support an efficient process for
modularizing and sharing software under the
ISAM/RCS generic real-time control system
architecture. UML may allow us to reuse legacy
code and external software libraries. It may
support a scenario driven development process
that is consistent with the ISAM/RCS
methodology. UML also provides a standard
representation that is critical to open systems and
to facilitate understandability.

References:

1 SEMATECH Technology Transfer 93061697J-ENG, Computer Integrated Manufacturing (CIM) Framework

Specification Version 2.0, SEMATECH, Inc., January 1998.

2 http://imtr.ornl.gov/Default.htm

3 Garlan, D., “Software Architecture: a Roadmap,” The Future of Software Engineering, Finkelstein, A., Ed., ACM,
New York, New York, 2000.

4 Kosanke, et al., “CIMOSA: enterprise engineering and integration,” Computers In Industry, Volume 40, Elsevier
Science, 1999.

5 Tarr, P. , et al., "N Degrees of Separation: Multi-Dimensional Separation of Concerns. "Proceedings of the
International Conference on Software Engineering (ICSE'99), May, 1999.

6 http://www.arcweb.com/omac/

7 Maximov, Y. and Meystel A., “Optimum design of multiresolutional hierarchical control systems,” Proceedings of
IEEE International symposiumm on intelligent control, pg 514-520, Glasgow, UK, 1992

8 Albus J. S. and Meystel A., “A Reference Model Architecture for Design and Implementation of Intelligent Control
in Large and Complex Systems,” the International Journal of Intelligent Control and Systems, 1996.

9 Balakirsky, S.B., Lacaze, A., World Modeling and Behavior Generation for Autonomous Ground Vehicles,
Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, April 24-28,
2000.

10 Proctor, F.M., "Practical Open Architecture Controllers for Manufacturing Applications," Open Architecture
Control Systems: Summary of Global Activity, ITIA Series, Vol. 2, pp. 103-114, 1997.

11 Moore, M., et al., “Complex Control System Design and Implementation Using the NIST-RCS Software Library,”
IEEE Control Systems, Volume 19 Number 6, December 1999.

12 Albus, J.S., McCain, H.G., Lumia, R., NASA/NBS Standard Reference Model for Telerobot Control System
Architecture (NASREM), NISTTN 1235, National Institute of Standards and Technology, Gaithersburg, MD, May
1989.

13 Barbera A.J., et al., "A 3-D Control And Simulation Analysis Tool For The United States Postal Service", ASME
1992 Japan-U.S.A. Symposium on flexible Automation Conference, San Francisco, CA, July 13-15, 1992.

14 Huang, H., Michaloski, J., Tarnoff, N., and Nashman, M., “An Open Architecture Based Framework for Automation
and Intelligent System Control,” Invited Paper for the IEEE Industrial Automation and Control Conference’95,
Taipei, Taiwan, May 1995.

