
Search Graph Formation for Minimizing
the Complexity of Planning

Alberto Lacaze Stephen Balakirsky

Computational Intelligence Laboratory, ECE Intelligent Systems Division

University of Maryland, College Park National Institute of Standards and Technology

Abstract

A large number of path planning problems are solved
by the use of graph based search algorithms. There
are a variety of techniques available to optimize the
search within these graphs as well as thorough studies
of the complexity involved in searching through them.
However, little effort has been dedicated to construct-
ing the graphs so that the results of searching will be
optimized.

The commonly used approach for the evaluation of
complexity assumes that the complexity of a path plan-
ner can be evaluated by the number of nodes in the
graph. However, in many path planning problems (es-
pecially in complex, dynamic environments) the evalu-
ation of the cost of traversing edges is the major culprit
of computational complexity. In this paper we will as-
sume that the complexity associated with the computa-
tion of cost of traversing an edge is significantly larger
than the overhead of searching through the graph. This
assumption creates non-trivial complexity results that
allows to optimize the creation of the graph based on
the computational power available.

We will present a numerical evaluation of several
graph creation algorithms including the commonly used
four and eight connected grid. Different scenarios for
which ground truth is available are explored. Compar-
ison among the graph creation algorithms reveals se-
rious downfalls that are common practice throughout
the literature.

1 Introduction

Planning can be defined as the process of finding
the steps necessary to bring a system from an initial
(current) state to a final (desired) state. Most plan-
ning techniques represent the planning problem in a
graph G(V, E). Where V is a set of vertices, and E
is a binary relation on V [6, 7, 9]. The elements of

the set V are called vertices and represent states. The
elements of the set E are called edges and represent
the ability of the system to move from one state to
another. In planning graphs, the edges are ordered or
unordered pairs of vertices, (vi, vj) where vi ∈ V and
vj ∈ V . A walk is an alternating sequence of vertices
and edges, a trail is a walk with distinct edges, and a
path is a trail with distinct vertices.

When solving a planning problem, we must find
a path or plan from a starting vertex vs to an end-
ing vertex ve while minimizing a cost function C =
∑e

s wij where wij is the cost of traversing the edge
(vi, vj). Some planning problems can be solved by al-
gorithms with polynomial complexity. Unfortunately,
these tractable set of problems covers only a few of the
relevant problems encountered in path planning. Most
problems, however, can only be solved by polynomial
algorithms on non deterministic machines, ie NP . For
a thorough study on the problem of tractability and
its taxonomy see [8].

One very useful tool when fighting the computa-
tional complexity of planning is the creation of hier-
archies of planners. The Real-time Control System
(RCS) reference model architecture is one such archi-
tecture and it has been successfully applied to multi-
ple diverse systems [1, 3]. The target systems for RCS
are in general, complex control problems. Although it
has been shown [2, 10] that the complexity of a control
problem is reduced by the use of a hierarchical control
system, the reduction of error as a function of com-
plexity at one level of the hierarchy has been mostly
overlooked.

The complexity of search algorithms inside a graph
has been thoroughly studied [11, 13, 14]. However,
with few exceptions [4, 12], little attention has been
paid on how the graph should be built with some ex-
ceptions [4, 12]. In most cases, it is recommended that
the graph for search on “empty space” should be built
using grids, Voronoi diagrams, or visibility graphs. It



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−8

−7

−6

−5

−4

−3

−2

−1

0

edges

(lo
g 

av
er

ag
e 

er
ro

r 
pe

r 
un

it 
of

 c
os

t)

Figure 1: Average error for a 4 connected grid.

is not clear from the literature which of these methods
should be used and when. Moreover, in most cases the
complexity of algorithms is calculated solely based on
the number of vertices in the graph. In most path
planning problems, the computational complexity of
calculating the cost of the edges is orders of magnitude
higher than the actual time spent searching through
the graph once these values have been calculated.

2 Numerical Exploration of Graph Cre-
ation

In order to compare the different graph formation
algorithms, we started by defining a simple test sce-
nario. The analytical closed form evaluation of the
complexity of finding the optimum path taking under
consideration the placement of the vertices in the so-
lution space becomes easily intractable. Therefore, we
decided to study the problem numerically. In the ex-
periments presented in this paper, simple Euclidean
distances were used to calculate the cost of travers-
ing the edges. The advantage of using this measure
is that we have ground truth. We assumed that the
Euclidean distance is calculated with an accuracy of
five significant figures.

2.1 Grid Based Graphs

By far, the most commonly used graph for search
in planning algorithms is the four-connected square
grid. In this kind of graph, the vertices are placed at
regular intervals and it is assumed that each vertex
is connected to four (or eight) of its closest neighbors.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−12

−10

−8

−6

−4

−2

0

2

edges

(lo
g 

av
er

ag
e 

er
ro

r 
pe

r 
un

it 
of

 c
os

t)

Figure 2: Average error for a 8 connected grid.

Figure 3: Average distance to the mean.



We built a two dimensional four-connected square grid
with a random number of vertices. We repeated this
experiment several times. Figure 1 shows log(error)
where error is defined as

error = abs(ds,e − ((
ve
∑

vs

di,i+1) + ds,vs + de,ve)) (1)

s is a randomly selected starting point, e is a randomly
selected ending point, ve is the closest vertex in the
graph to e, vs is the closest vertex in the graph to s,
d(i, j) is the Euclidean distance between two points.
Please note that this cost function may underestimate
the real error of traversing the planned graph as it is
assuming that ds,vs and de,ve are Euclidean. This is a
best case scenario.

The summation in the equation represents the added
cost of the optimal path through the graph. The av-
erage error (marked with a black star in the Figure)
is kept constant as the number of edges is changed.
The different values at a particular number of edges
correspond to the different number of times that the
experiment was performed using different e and s.

Figure 2 shows the error function shown in 1 ap-
plied to a eight-connected grid. As expected, the er-
ror function settles at a lower error. By comparing
the 4-connected grid to the 8-connected grid we can
appreciate that the average error decreases with the
higher connectivity, however in both cases, the error
quickly settles to a constant value.

Please note that in both cases, increasing the num-
ber of edges, and therefore increasing the computa-
tional complexity gives us very modest improvements
of the final cost. Another problem found experimen-
tally with the 4 and 8 connected grids using this cost
function is that there are many paths that have ex-
actly the optimal cost. This has the effect that the
optimal path that the algorithm will choose, may wan-
der off the “expected” straight path line from e to s.
In other words, many paths within the parallelogram
defined by vs and ve have exactly the same “optimal”
cost. Another effect that results from square grids is
that the error varies significantly depending on the di-
rection of travel. A numerical evaluation of this devi-
ation can be appreciated by examining Figure 3. The
large average distance to the mean is due to the fact
that some s and e happened to be horizontal or verti-
cal, therefore giving small error, while some created a
very costly stair-step paths through the graph.

2.2 Shaking the Grid

Some of the pitfalls of the grid based graphs can be
avoided by:

1. Shaking the vertices within the grid. In other
words, building a square grid, adding a random
displacement to the vertices, and finally connect-
ing all the vertices that are within a neighbor-
hood. The size of the neighborhood dictates the
vertices to edges ratio. This has two effects:

(a) Break the ties among optimal paths so that
only one path is found to be optimal. This
is very helpful in re-planning systems as it
forces to commit instead of randomly flip-
ping among the set of “optimal” paths.

(b) Create a more uniformly distributed set of
vertices where all “ directionalities” are rep-
resented.

2. Create higher connectivity rates (higher than in
the 8-connected grid).

Figure 4 through Figure 7 shows the results of a
set of experiments run using the above principles. To
compute these figures, the vertices of the grid are
placed first in a grid pattern where each point is l
apart from its closest neighbor. Next, a random vec-
tor is added to each vertex of maximum amplitude 3l.
All vertices within a distance threshold are then con-
nected. By varying the connection threshold, different
ratios between the number of nodes and the number
of edges are achieved. We can see from Figure 4 that
the error decreases as the number of edges increases,
approaching the 10e-5 mark set by the 5 significant
figures used to calculate the Euclidean distances. Fig-
ure 5 shows a top view of the same numerically found
error. We can see that even a simple Euclidean cost
function creates ripple effects in the final cost.

If we take the assumption that the computational
complexity is directly proportional to the number of
edges (as it is in most cases), we can see in Figure
8 the error function as a function of the number of
nodes. The almost counter-intuitive results can be
explained from the fact that by increasing the number
of vertices the average cost of an edge decreases. In
Figure 9 we assumed that we could only calculate the
cost of 40000 edges. By visual inspection of Figure
9 we can determine that the least error is given by
about 2000 vertices, and therefore creating a graph
where each vertex has 20 connected neighbors.

3 Vehicle Planner Example

In order to validate the above rules of thumb, sev-
eral experiments were conducted using the Demo III



0
1

2
3

4
5

6
7

x 10
5

0

1000

2000

3000

4000

5000

−5

−4

−3

−2

−1

0

1

2

nodes

edges

(lo
g 

av
er

ag
e 

er
ro

r 
pe

r 
un

it 
of

 c
os

t)

Figure 4: Average error in a shaken grid.

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

edges

no
de

s

Figure 5: Average error in a shaken grid:top view.

0
1

2
3

4
5

6
7x 10

5
0

1000

2000

3000

4000

5000

0

20

40

60

80

100

nodes

edges

pe
rc

en
ta

ge
 o

f i
nv

al
id

 p
at

hs

Figure 6: Percentage of failed planning processes in
shaken grid.

0 1 2 3 4 5 6 7
x 10

5

0

1000

2000

3000

4000

5000

−6

−4

−2

0

2

4

6

8

10

12

14

nodes

edges

lo
g(

av
er

ag
e 

di
st

an
ce

 to
 th

e 
m

ea
n)

Figure 7: Average distance to the mean in shaken grid.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

−4

−3

−2

−1

0

1

2

Number of nodes

lo
g(

av
er

ag
e 

er
ro

r 
pe

r 
un

it 
of

 c
os

t)

Lowest Complexity 

Highest Complexity 

Figure 8: Error for different complexities and varying
number of vertices



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of nodes

av
er

ag
e 

er
ro

r 
pe

r 
un

it 
of

 c
os

t

Figure 9: Error for fixed complexity and varying num-
ber of vertices

Figure 10: Planning result for complex cost map with
four-connected graph.

Figure 11: Planning result for complex cost map with
many-connected graph.

Vehicle Level Planner [5]. In these experiments, a
four-connected graph and a shaken graph of the form
of section 2.2 were run using a complex world model
and cost function. The four-connected graph had a
grid size of 8 meters with 61012 connections and the
shaken graph had a grid size of 11 meters with 45086
connections (26% fewer connections) and was shaken
±5.5 meters. The world model contained a priori in-
formation on the NIST grounds at 4 meter resolution
including the locations of wooded areas, buildings,
roads, and fences. It should be noted that the world
model resolution is twice that of the four-connected
graph and almost three times that of the highly-connected
graph.

In the Demo III Vehicle Level Planner, the planning
module passes path segment endpoints (the vertices of
the planning graph) to the world model for evaluation.
The world model simulates driving a straight line path
(the edges of the planning graph) between these end
points and returns the cost of traversal to the plan-
ner. The planner then conducts an optimal search
algorithm to find the cheapest path (in reference to
the cost function used by the world model). The cost
function used by the world model favored paths that
avoided roads and buildings, and drove next to, but
not in wooded areas combined with the time of traver-
sal of the route (assumed uniform vehicle velocity over
the route segment).

The straight line segments used by the world model
may cause plan failures when the resolution of the
planning graph is less then that of the world model.



This occurs when a very narrow low-cost corridor is
surrounded by a very high cost area. It may occur
that there are no straight line segments at the graph
resolution that traverse this low-cost corridor. This
phenomenon can be avoided in the highly-connected
graph by adding additional vertices in these high pay-
off areas. This approach was not taken in the experi-
ments described below.

Using this planning system, we found that the highly-
connected graph performed as much as 27% better
then the four-connected graph, even though it used
26% fewer connections. Sample output paths may be
seen in Figure 10 for the four-connected graph and
Figure 11 for the highly-connected graph. A snap-shot
of the world model may be seen as the background of
these images. As one would expect, the benefit of us-
ing the highly-connected graph is directly tied to the
shape of the optimal path. For straight paths, the two
graphs performed on par with each other. For paths
which required many turns, the highly-connected graph
significantly outperformed the four-connected graph.

4 Conclusion

• “Optimal” paths found using the four-connected
grid based graph are in general, directionally bi-
ased, favoring the traversal of the space in cer-
tain directions and not in others. They also
create symmetries that result in noncommittal
paths. Shaken grids and high connectivity be-
tween vertices was shown numerically to improve
these pitfalls.

• The number of edges in the graph and their
cost evaluation are in most cases, the major cul-
prit for computational complexity. Therefore, it
is recommended that the graph design process
starts by determining the number of edges that
can be evaluated, and then selecting the number
of vertices that give the least error.

• Numerical evaluation of the error are in most
cases the only way to select parameters for the
formation of search graphs in complex environ-
ments. Most analytical evaluations of the com-
plexity in the literature make the assumption
that the burden of computational complexity is
in the “opening” of the vertices in the search
graph, and are not readily applicable to plan-
ning problems.

References

[1] J. Albus. Outline for a theory of intelligence.
IEEE Transactions on Systems, Man, and Cy-
bernetics, 21:473–509, 1991.

[2] J. Albus, A. Meystel, and A. Lacaze. Multireso-
lutional planning with minimum complexity. In-
telligent System and Semiotics, 97.

[3] J.S. Albus. Brain, Behavior, and Robotics.
McGraw-Hill, 1981.

[4] R.S. Alexander and N.C. Rowe. Path planning by
optimal-path-map construction for homogenous-
cost two-dimensional regions. In IEEE Interna-
tional Conference on Robotics and Automation -
1990, 1990.

[5] Stephen Balakirsky and Alberto Lacaze. World
modeling and behavior generation for au-
tonomous ground vehicles. In Proceedings IEEE
International Conference on Robotics and Au-
tomation, 2000.

[6] J. Bondy and U. Murty. Graph Theory with Ap-
plications. North Holland, 1976.

[7] N. Deo. Graph Theory with Applications to En-
gineering and Computer Science. Prentice Hall,
1974.

[8] M. Garey and D. Johnson. Computers and In-
tractability. Freeman, 1979.

[9] F. Harary. Graph Theory. Addison Wesley, 1972.

[10] Y. Maximov and A. Meystel. Optimum design
of multiresolutional hierarchical control systems.
In Proceedings of IEEE Int’l Symposium on In-
telligent Control, pages 514–520, Glasgow, U.K.,
1992.

[11] C.H. Papadimitriou. Computational Complexity.
Addison Wesley, 1994.

[12] F.P. Preparata and M.I. Shamos. Computational
Geometry, An Introduction. Springer Verlag,
1988.

[13] J.H. Reif. Complexity of the generalized moving
problem. In et al Schwartz, editor, Planning Ge-
ometry and Complexity of Robot Motion. Ablex
Publishing Corporation, 1987.

[14] J.T. Schwartz, M. Sharir, and J. Hopcroft, edi-
tors. Complexity of the Generalized Moving Prob-
lem. Ablex Publishing Corporation, 1987.


