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ABSTRACT

Open-architecture technology is ushering in new advances in the world of computer numerically controlled (CNC) machines.
Yet, some major benefits of open-architecture technology have failed to materialize due to the lack of a standard open-
architecture specification. We propose an open-architecture framework to fill the specification void. The proposed framework
supports component-based technology by specifying a control class hierarchy, plug-and-play components and a design frame-
work. This framework can be used to build applications ranging from a single-axis device to a multi-arm robot. An example
application applying the framework is documented.
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1. BACKGROUND

A major advance is underway within the CNC community toward open, component-based, controller techndish

as openness revolutionized the PC industry, openness has the potential to revolutionize the CNC industry. Currently many
controllers are marketed as open. However, to realize truly open-architecture benefits, controller components and interfaces
must be standardized. An open-architecture standard allows integrators to mix and match components from different vendors.
With an open-architecture standard, controllers can be built from best-value components from best-in-class services. For
parts manufacturing, this ability leads to better integration of process improvements and increased satisfaction of application
requirements.

The “Open Modular Architecture Controller” (OMAC) white paper spells out the industry requirements for an open-
architecture controller to meet the manufacturing needs of the automotive inBlustryesponse to these requirements, the
OMAC Application Programming Interface (API) workgroup was formed. As members of the Open Modular Architecture
Controller (OMAC) API workgroup, the workgruop’s goal has been to define a specification for open, component-based con-
trollers. On the basis of our evaluation, we believe that a specification based on an object-oriented framework offers the best
hope in achieving open, component-based controllers.

In this work we describe an object-oriented framework for designing and implementing open-architecture control systems.
In our context, the terframeworkis used to mean a specification for an integrated set of software componemiseAraystem
frameworkis a framework that promotesterface reuséased on a public interface specificatiorin the OMAC framework,
classes define components of the system. Class instanobgectsare used to implement the components. The framework
classes are derived from a decomposition of a generic controller into a class hierarchy. Framework classes are then grouped
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into OMAC API modules that become plug-and-play components. Within the framework, a controller design is generated by
selecting differentimplementations of the OMAC modules.

A survey of the industry finds other open-architecture standardization efforts. Open System Architecture for Controls
within Automation Systems (OSACA) is a message-based open-architecture effort that has developed a reference architec-
ture and communication scheme directed at equipment contrélle®pen System Environment Consortium (OSEC) has
produced a message-based, open-architecture specification also, which is based on the Factory Automation Equipment De-
scription Language (FADL) for exchanging messages in a distributed, agent-based, networked envirofinesetefforts use
amessage-basaxpproach to specification. Message-based communication is at a lower level of abstraction than an API-based
framework. In the OMAC API framework, communication between objects is achieved by method invocation. Nevertheless,
when distributed communication is needeghraxy agenis used to cross a domain boundérywe feel this approach hides
the lower-level communication details thus improving software quality. The proxy-based approach offers a model conducive to
both local and remote object interaction.

In the following sections, we will review major aspects of the OMAC framework. First, we start by describing the notion
of a framework and why it is useful. We then apply information modeling to the application domain, which yields a class
hierarchy and the concept of a “module” as a necessary prerequisite for plug-and-play. Following this discussion, architecture
design and detail design within the OMAC framework will be reviewed. We then look at the behavior model for the framework
including discussion on finite state machines, events, and collaboration.

2. FRAMEWORK MODEL

An object-oriented framework builds controllers as a collection of objects that encapsulate algorithms and data representations.
This is in contrast to the procedural software approach where the behavioral procedures and the data structures exist as separate
entities that are only loosely connected. The benefits of modularity, reusability and extensibility were decisive in selecting an
object-oriented framework as the specification approach. This contrasts with the procedural approach where there is difficulty
extending and specializing functionality; difficulty in factoring out common functionality; difficulty in reusing functionality

that results in duplication of effort; and, difficulty in maintaining the non-encapsulated functionality.

Frameworks enhance modularity by encapsulating volatile implementation details behind stable interfaces. Modularity is
based on information hiding where an object has a public API that other objects can use to communicate with it. The object can
maintain a private representation that can be changed at any time without affecting the other objects that depend on it. Further,
you don’t need to understand the inner object workings in order to use it. Ultimately, framework modularity improves software
quality by localizing design and implementation changes.

Frameworks provide extensibility by allowing new or modified objects to be developed. Using inheritance, frameworks
allow you to modify or change any object’'s behavior. Frameworks provide the specifications for new objects allowing you to
build new components out of smaller objects. Frameworks allow you to integrate components that are system-tailored for your
particular application. Assimilating the new or modified objects within the framework is achieved by three principal mecha-
nisms: associations (relationship between different types), subtypes (relationship between like types including inheritance) and
aggregation (subpart relationship within a larger part).

Frameworks promote reusability so that application developers do not have to start over each time. Frameworks are built
from a collection of objects. Given standard object interfaces, reuse of both the design and the code of a framework is possible.
Additionally, frameworks define the environment in which the objects operate. Since each object makes assumptions about its
environment, these assumptions must be the same or there is no way of using them together. Frameworks define an environment
containing a range of standard mechanisms including data exchange, error handling, and interobject cooperation.

3. INFORMATION MODELING

The domain of interest is discrete parts manufacturing where the applications range from low-end, single-axis machines to
high-end machines requiring multi-axis, coordinated motion control and sensor-based process control. A high-end, machine
controller makes decisions regarding part sequencing, tooling, and part locations, and it monitors the operation of the machine
under its control. Representative applications include Computer Numerical Control (CNC) machines for cutting, inspecting
and grinding. Although these applications differ in terms of their processes, there is a great deal of overlap from a control point
of view of functionality in motion and process control.
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Figure 1. Controller Class Hierarchy

3.1. Class Hierarchy

A framework embodies generalized domain functionality based on analysis and synthesis of a wide range domain applications.
Frameworks use @lass hierarchyfor domain modeling. Class hierarchies define static relationships between classes sharing
common behavior. At the lowest level, the definition of the software class closely corresponds to the physical objects in the
application domain. More abstract classes are defined in terms of the lower classes. Ultimately, all classes are members of a
hierarchy of classes united via inheritance or association relationships.

To derive a class hierarchy, a decomposition of a generic controller is performed. The decomposition spans many levels of
abstraction and has the elements for motion control and discrete logic necessary to coordinate machining, to mill parts, and to
sequence operations. Figure 1 portrays the class hierarchy derived from a controller decomposition.

At the lower levels, the classes are the building blocks that may be found in multiple modules. For example, the class
definition of a Geometry “position” would be found in most modules. As one moves up the hierarchy, framework classes
broaden their scope to define device abstractions for such motion components as sensors, actuators, and PID control laws. As
the scope broadens however, not all software objects have physical equivalents. Objects such as axis groups are logical entities
only. Axis groups hold the knowledge about the axes whose motion are to be coordinated and how that coordination is to be
performed. Services of the appropriate axis group are invoked by user-supplied plans.

Object-oriented techniques can help greatly in defining a specification. We found the object-oriented feature of inheritance
crucial in managing complexity. For example, when defining a control law class, there exist many options to implementing
control laws including PID, Fuzzy Logic, Neural Nets, and Nonlinear. Each control law option has different nomenclature and
features. The question arises, “When do we stop defining our class definitions?”

We used object-oriented inheritance to control the breadth and scope of class definitions. Inheritance is a specialization
mechanism which allows a derived class to inherit properties of a base class. Inheritance has many benefits. It helps manage
the scope of capabilities, which reduces complexity. It allows different terminology (e.g., weights versus gains) based on need.
Specialization provides a technique to handle evolving technology by allowing new derived class to be defined when necessary.
Objects of the derived class have access to data and methods of base classes without the need to redefine them. We startet
by defining base classes that modeled the general data and behavior. Subsequently, only highly-demanded subclasses, sucl
as PID in our case, were derived with the knowledge that inheritance offers a straightforward mechanism for expanding the
specification.

Inheritance was also used to institute levels of conformance. Level 1 classes constitute base functionality seen in current
practice. Level 2 classes inherited all the data and behavior of the level 1 class definitions, but added extensions to handle
advanced functionality. Higher levels constitute functional capability seen in emerging technology, but unnecessary for simple
applications. Levels of complexity were seen as critical in allowing different specification conformance levels.



3.2. Modules

A primary goal of the OMAC API specification was to enable “plug-and-play.” Plug-and-play on a per-class basis as defined in
a class hierarchy is not economically feasible since the level of granularity of a class is too fine. Instead, a coarser granularity
component, which we call module is necessary for realizing plug-and-play. To be plug-and-play, a module must satisfy the
following requirements. (1) A module must be a significant piece of software used in a component-based controller. (2) A
module must contain a grouping of similar classes. (3) A module must support a well-defined API, states, and state transitions.
(4) A module must be replaceable by any piece of software that implements the API, states, and state transitions.

The OMAC API framework extracts fourteen modules from the class hierarchy. The set of OMAC Modules and their
general responsibilities include:

Axis Modules responsible for servo control of axis motion, transforming incoming motion setpoints into setpoints for the
corresponding actuators.

Axis Group Modules responsible for coordinating the motions of individual axes, transforming an incoming motion segment
specification into a sequence of equi-time-spaced setpoints for the coordinated axes.

OMAC Base Class Base class for control OMAC modules providing uniform state model with methods for start-up and shut-
down, uniform name and type declaration, and error-logging interface.

Capability Object derived from Control Plan Units to which the Task Coordinator delegates for specific modes of operation
that correspond to traditional operating modes (AUTO, MANUAL, and MDI).

Control Law Components responsible for servo control loop calculations to reach commanded setpoints.

Control Plan Units Derived from FSM class. When the FSM is passed between modules it is céllent@IPlanUnit
Received ControlPlanUnits are then used within a module for control flow.

Control Plan Generator Modules responsible for translating part programs into a Control Plan.

Discrete Logic Modules responsible for implementing discrete control logic or rules characterized by a Boolean function that
maps input and internal state variables to output and internal state variables.

Kinematic Model Modules responsible for kinematic mechanisms, connections, coordinate frame transformations and kine-
matic solutions.

Human Machine Interface Modules responsible for handling data remotely, command, and event service of an internal con-
troller module.

I/O Points Collection of 1/0 responsible for reading from input devices and writing to output devices through a generic
read/write interface.

Machine-to-Machine Modules responsible for connecting and communicating to controllers across different domains.
Process Model Component containing dynamic data models to be integrated with the control system.

Task Coordinator Modules responsible for sequencing operations and coordinating the various motion, sensing, and event-
driven control processes.

A modules has other characteristics that clarify its intent within the framework. Interchangeable modules may differ in their
performance levels. Modules may provide more functionality (added value) than required in the specification. Specialization

of a module interface is the mechanism to achieve additional functionality. A controller may have more than one instance of a
module. Modules can be explicitly control-related (e.g., Axis) or inheritance-related encapsulating common functionality (e.g.,
OMAC Base Class.) Modules can run as separate threads and contain multiple threads of execution. Modules do not need to run
as separate threads so systems can be built from a single thread of execution. Modules may be used to build other components.
For example, a discrete mechanism, such as a tool-changer component, can be built using OMAC modules.
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4. DESIGN ISSUES

A system design is divided into two phases. The first phasecisitectural desigrand deals with system decomposition into
OMAC Modules. The second phase is caltiztailed desigrand is responsible for detailing individual object API, that is, the
object attributes and methods. In this case, the design uses the published object API or extends the API to suit the application.

4.1. Architecture Design

The design architecture describes the decomposition of the application into individual modules. A design architecture highlights
the static relationships between modules (as opposed to the data flow.) The OMAC framework does not specify a reference
architecture so composing a design architecture from OMAC modules is left to the developer. We felt it was imperative that the
framework be scalable and allow the designer the freedom to build any size system. With this freedom, OMAC systems can
start small, stay small, or be pieced together into a larger system. For example, an embedded system with a small footprint is
possible. Another system possibility is to start with an operator controlling several IO points, add an axis at a time, integrate
the axes into an axis group to eventually evolve into a full-blown 5-axis controller. This design freedom offers much flexibility,
but without guidance, can be perplexing.

4.2. Architecture Example

An example describing a CNC programmed for one-axis drilling will be developed. A typical one-axis drilling workstation
would perform some hole-working operations, e.g., drilling with a spindle drill-head, boring a precision bore, counter-boring
the bored hole, probing the (axial) location of the counterbored shoulder. Figure 2 illustrates the modules and component
relationships for a drilling application. One Axis module is necessary for motion control and another Axis module is required
for Spindle control. Spindle drive components are assumed to provide a facility for setting spindle speed and direction and
to start and stop spindle rotation. Coordinated motion of the motion and spindle is supplied by three Axis Group modules.
One Axis Group independently controls the motion and one Axis Group independently controls the Spindle. The final Axis
Group supercedes the first two to synchronize coupled control of the Motion and Spindle (shown as shaded with dashed line
connections). Generally, the Spindle Axis will not need a Control Law, however, when it is synchronized with motion it will
require servo-driven control.

In the diagram, the Task Coordinator exists to provide program control. The Control Plan Generator module translates a
part program into Control Plan Units. The primary command communication between modules is reflected in the diagrams by
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Figure 3. Design Framework

showing the keyword “Method” or “ControlPlanUnits” (which uses a method to pass it) next to an arrow. The Discrete Logic
Module handles part loading and unloading, as well as machine state (e.g., temperature, estop). To improve predictability and
reduce variation, the Process Model module exists to integrate sensing and control to detect tool breakage by monitoring spindle
torques and thrust forces. The Kinematics module models the workspace and handles different tool offsets and part placements.

4.3. Detail Design

The detailed design is concerned with the component assembly, especially integration and configuration. The detailed design
configures module responsibilities, performance, timing, and logical- to-physical mappings. Controllers are integrated into a set
of connected-module-instances that use other module services through the published API. Much of module integration depends
on aninfrastructurewhich is defined as the services that tie the modules together and allow modules to use platform services.

4.4, Infrastructure

An infrastructureis defined as the collection of services that tie modules together and includes platform services. The infrastruc-
ture is intended to hide specific hardware and platform dependence; however, this is often difficult to achieve. The infrastructure
deals primarily with the computing environment including platform services, operating system, and programming tools. Plat-
form services include such items as timers, interrupt handlers, and inter-process communications. Programming tools include
compilers, linkers, and debuggers.

The OMAC API does not specify an infrastructure because many of the infrastructural issues are outside the controller
domain and are better handled by the domain experts. Further, itis more cost-effective to leverage industry efforts rather than to
reinvent infrastructure technologies. Because there are so many competing infrastructure technologies, OMAC API has chosen
to let the market decide the course of the infrastructure definition. As such, to achieve plug-and-play module interchangeability,
a commitment to &latform + Operating System + Compiler + Loader + Infrastructigeite is necessary for it to be possible
to swap OMAC modules.

4.5. Detail Design Example

We will consider the detailed design for the drilling example discussed previously. We assume that the detailed design is the
responsibility of the system integrator who analyzes individual modules for performance and functional requirements. Based
on this analysis, the system integrator selects modules and module components from the available, commercial, off-the-shelf
(COTYS), technologies. Figure 3 illustrates the design framework with the Design Architecture enumerating the necessary
modules and module components and the COTS Components. If desired modules are not available as COTS technology or are
available but do not meet the requirements, then the system integrator must develop modules on his own. Once the pieces are
in place, the application developer configures the modules and “puts the pieces together” by linking the purchased COTS “.0”
object files.

Modules are configured based on their reference mapping to other modules. For the Axis modules in the example, the
application developer has the possibility to select position (P), velocity (V), or torque (T) Control Law modules in software,
hardware or some combination of hardware and software. For software P control, a Control Law object from the Software set



is selected. For hardware P control, a Control Law object from the Sesebss selected. The applications developer is also
responsible for mapping the logical /O points onto physical devices.

Modules are also configured based on the selection of Control Plan Units (CPU) to define a module responsibilities. Within
the example, there is a Task Coordinator module that has containers for inserting Capability CPU (in the figure represented by
a -C- framed by a diamond). The Capabilities include Manual, Automatic or Jogging. The application developer is free to put
one or more of these Capabilities into the Task Coordinator or to develop a unique Capability. For Control Plan Generator and
Axis Group, the application developer is provided Line and Arc CPU already but can plug in a Non-uniform Rational B-spline
(NURB) CPU or a Weave CPU.

5. BEHAVIOR MODEL

Building a controller is based on assembling instances of OMAC modules into a system. In general practice, controllers are
modeled as a distributed system of concurrently active objects — although in implementation a single thread of execution is
possible.Active objectglo not need to receive a message to be in the “active” state and govern their execution by internally
managing one or more independent threads of control. To reinforce the notion of plug-and-play, we usedbhtvwemmodule

in lieu of “active object.” Examples of controller active modules include: (1) Axis modules, (2) Axis Group modules, (3)
Discrete Logic modules, and (4) Task Coordinator modules. Active modules may delegatsstee modulethat do not

possess threads of control and that depend on an active module for the execution of their functions. Examples of passive
modules include (1) Kinematic Model modules, and (2) Control Law modules.

5.1. State Machine Model

The behavior of an active module is modeled as a finite state machine (FSM). In the FSM model, the world is thought of as
being in a definite state at any given time. The set of the possible states is known as the state-space. Time itself is discretized to
a sequence of relevant moments. There exists the notion of changing from one state to another between moments. The concept
of change is expressed in terms of state transitions from one state to another state, as time passes. Typically, there is a set of
allowed transitions from any given state. For our domain, we assume that a controller has a finite set of states, so that the term
finite state machine more accurately describes our model. We further assume that a controller can be modeled as deterministic
FSM whereby states can exhibit only one transition sequence for a given state and a given input.

The OMAC framework assumes that a complex FSM can be simplified by grouping states into a hierarchialA=SM.
“flat” FSM can suffer from combinatorial growth of state transitions; such is the case when every normal state has a state
transition to an error state in the FSM. The hierarchical FSM can be used to simplify the error state combinatorics by nesting all
the states that have error transitions inside a higher-level “normal” state. Hierarchical FSMs help reduce the excessive amount
of state transitions.

Of greater interest to the OMAC framework is tleeursive nestingf FSMs. This functionality differs from a hierarchical
FSM and more closely resembles running a program within a job-control shell. In the shell, suspending the shell causes the
program to suspend also. A good example of this job control model can be found in the Sematech “Job Manager/Managed Job”
model? In the recursive nesting model, both the shell and the job are FSMs, but the shell FSM is a supervisor to the job FSM.

OMAC API does not dictate the number of levels of recursive nesting. In general, aragmtétistrativeFSM exists to
handle activities that include initialization, startup, shutdown, and, if relevant, power enabling. OMAC API defines the OMAC
Base Class module to provide a uniform administrative state model across modules. To enter into a lower FSM, the module
enters into the “executing” state. In the “executing” state, client/server coordination uses a lower FSM for coordination. This
lower FSM is module- and application-dependent. This lower FSM, in turn, can have a FSM embedded within it so that further
nesting of embedded FSMs is possible.

Figure 4 shows the nesting of FSM levels. Within the figure, the FSM icon is represented by a rectangle inside a diamond.
The dotted FSM icon represents an optional FSM. The nesting of one or more, lowemleertionalFSMs is possible
depending on system complexity. Within the nesting of the FSM shown in Figure 4, the operational FSM handles different
CNC modes corresponding to “auto,” or “manual.” The designer of a particular control system determines the number of nested
FSM levels, depending upon the complexity and organization of the controlled system. For example, at the operation level for
part programming, there may be even another FSM level to handle a family of parts. The lowest level B&MingwnFSM,
monitors the current focus of control. The dominion FSM “rules” over lower level objects. There may be one or more dominion
FSMs at the lowest level within an OMAC module, which will be covered later in the computational model section.
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5.2. Events

Within a FSM, actions are associated with states and/or state transitions. Associating an action with a state is categorized as a
Moore machine. Associating an action with a state transition is categorized as a Mealy machine. We adopt the Mealy machine
as our model since it is better suited for an event-driven system. Event-driven systems correlate actions to discrete changes in
the world. We characterize change to be modeled as an event, which triggers a state transition.

For OMAC API, method invocations cause events to be propagated from the client to the server. Events are evaluated within
the highest level FSM and then forwarded recursively through each lower level FSM. For example, we will assume that the
Administrative FSM in Figure 4 is in the “executing” state and the “executing” state accepts a “pause” event to trigger a state
transition to the state “paused.” Referring to Figure 4, the receipt of a “pause” event at the highest Administration level causes
the state transition to “paused.” If the Operation FSM supports a “pause” method then this method is invoked and the event
evaluated. This event evaluation and recursive forwarding of the event may cross module boundaries and propagate all the way
to the “bottom” FSM in the application controller.

Overall, event handling is both distributed as well as recursive. Such event dispatching contrasts to traditional frameworks
characterized by centralized event handling known as inversion of céhtrol.

5.3. Computational Model

A general computational model exists for characterizing all OMAC active modules. Figure 5 illustrates this model, which
supports a mechanism to receive and queue client requests. Client requests can be either events or FSMs. FSMs received by ¢
server can replace existing FSMs or be added to the dominion list. The next section on Control Plan Units covers the concept
of collaboration using FSM.
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As outlined previously, each OMAC module can support levels of recursive FSM. The OMAC API module may also have
one or more FSM simultaneously executing on a dominion FSM list. Each FSM on the dominion list is equivalent conceptually
to a concurrent thread of state logic. FSMs on the dominion list can operate independently or not.

The ability to have multiple FSMs executing concurrently is especially useful for process modeling. Within the Axis
Group module for example, the dominion list could contain a FSM for motion control as well as a FSM for sensor integration.
Additionally, FSMs can be added to the dominion list that are “task-independent,” such as data logging. Further, the dominion
list could support more complex architectures, such as RC®jth FSMs for sensor processing, world modeling, planning,
value judgment and behavior generation.

The OMAC framework identifies three types of FSM that can exist on the dominion list:

Transient FSMs perform a fixed amount of work within a certain period. Transient FSMs execute cyclically and are removed
from the dominion list when an internal condition is satisfied. An example of a transient FSM, is a motion segment FSM
which has a beginning and an end. When the FSM “is done”, the FSM is removed from the dominion list.

Resident-Cyclic FSMs execute “forever” and perform a function periodically. Resident-cyclic FSMs execute repeatedly with
no internal completion condition. One example of a resident-cyclic FSM is a programmable logic controller (PLC)
operation that turns the oil/slides pump on/off every five minutes.

Resident-Event-driven FSMs execute once when an event triggers their execution. An example of a Resident-Event-driven
FSM is turning an I/O point on or off.

Applying these concepts to the Axis Group for exampignsientFSMs are used for controlling different motions (e.g., line,
arc) whileresident-cyclidcSMs are used to integrate probe readings or handle data logging.

Different OMAC APl modules have different FSM dominion list sizes and different types of FSM. The Discrete Logic
module has a multi-item FSM list containing resident-cyclic and resident-event-driven FSM. The Discrete Logic multi-item
dominion list is analogous to a PLC scan list to handle 0. The Axis Group has a multi-item dominion list with one or more
transient motion FSM and potentially one or more resident-cyclic Process FSM. The Axis module has a one-item transient
motion FSM dominion list.

5.4. Distribution of FSMs

Equivalent, application functionality can be achieved with different distributions of FSMs within a controller. Depending on
the circumstancesight couplingor loose couplingcan be used to coordinate logic and motion. Tight coupling is achieved
by placingresident-cyclid=SM on the dominion list. Loose coupling is achieved by placagident-cyclid~SM in a separate
thread, under the scheduler, used for all the other OMAC modules (which are resident-cyclic FSMs.)

As an example, consider the integration of a Probe sensor data with an Axis Group to modify motion control. There are at
least three ways for incorporating the Probe FSM into the system. (1) The Probe FSM is placed in the Discrete Logic module
to be run at a given period. The probe could run at the same period as the Axis Group or be oversampled. This is an example
of loose coupling. (2) The Probe could be a Process Model resident-cyclic FSM that runs inside of the Axis Group at the same
frequency as the Axis Group. This is an example of tight coupling and is illustrated in Figure 6. (3) The probe could run as
standalone resident-cyclic FSM scheduled like other OMAC modules. The probe FSM could run at a slower, faster or the same
frequency as the Axis Group. This is an example of loose coupling and is illustrated in Figure 7.

5.5. Collaboration

In the OMAC frameworkFSMs are used for controlling behavior and also serve as dafiaen events are sent from the client

to the server and contain FSM as data, the FSM data is calmhtrolPlanUnit(CPU). A ControlPlanUnit is a FSM, but the
internal representation is not important to the OMAC framework. Instead, CPU are defined with a simple state management
API hiding unnecessary FSM details. The crux of the CPU class is a few fundamental methods as seen in the following Interface
Definition Languag® (IDL) code:

interface ControlPlanUnit
{ ControlPlanUnit executeUnit();
boolean isDone();

k
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TheControlPlanUnit is an example of the Command pattéfnTo evaluate the current state, an active module invokes
theexecuteUnit() method, which causes the FSM to perform a state evaluation. Three examples of modules derived from
Control Plan Unit are: (1Eapability, which is a CPU to which the Task Coordinator delegates for specific modes of operation
corresponding to traditional CNC operating modes (AUTO or MANUAL); ¥B)tion Segmentvhich is a transient CPU used
by the Axis Group module for motion control; and Bjscrete Logic Unit which is a transient or resident-cyclic CPU for
discrete logic control.

A series of linked CPUs forms a Control Plan.Gontrol Planis a general-purpose representation of a control program.
OMAC API defines theControl Plan Generatomodule, which is responsible for translating programs written in application-
specific languages (e.g., CNC RS27#4part programs) into the more general Control Plan. To enable program translation,
program logic CPU are defined to mimic control constructs such as if/then, or while statements.

CPUs serve as data by being passed between active modules. Subsequently, such CPUs then serve as the FSM logic within
the behavior model. £ontrolPlanUnit can contain other ControlPlanUnits. When activated, a CPU can send embedded
CPUs to lower level servers. Thus, a CPU contains “intelligence” and understand how to coordinate and sequence the lower
level logic and motion modules.

Figure 8 illustrates the collaboration model as a CPU propagates through a simplified control system. In step (a) the Control
Plan Generator module translates a part program written in RS274D into a Control Plan. In step (b) the Task Coordinator uses
getNextControlPlanUnit to retrieve a CPU. In step (c) the Task Coordinator doesxacuteUnit  on this CPU. Step
(c) may be repeated several times, as in the case when the CPU may have to synchronize with lower level modules (e.g., such
as waiting until all current Motion Segments have first completed). After synchronization, step (d) occurs whereby the CPU
running within the Task Coordinator appends a reference to the Motion Segment CPU onto the Axis Group motion queue using
the methodsetNextMotionSegment . This is an example of an embedded CPU being passed to a subordinate module.
Once the Motion Segment CPU is loaded onto the Axis Group queue, it waits for activation. Once activated, the Axis Group
periodically calls the Motion Segment CRdecuteUnit() method until thasDone() condition is true.
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Figure 8. Collaboration Model

6. DISCUSSION

Defining an open-architecture, controller specification that is flexible and extensible is hard. Making it cost-effective and
real-time is even harder. In tackling this challenge, we used an object-oriented framework to define our open-architecture
specification. We used a framework largely due to its advantages in enabling COTS plug-and-play component technology
to added, replaced, reconfigured, or extended based on the functionality and performance required. This paper highlighted
only some of the more important aspects of the OMAC framework. Interested readers can find more information about the
framework at the OMAC API website.

Choosing a framework for defining the open-architecture specification is not without risks. Frameworks are an object-
oriented technology that have been used successfully elsewhere for some time, but are starting only now to make in-roads in the
manufacturing domain. We recognize that industry has found it difficult to adopt the framework paradigm, due to entrenchment
in the legacy of prior implementations, the “comfort zone” of past practice and culture, the investment hurdle to effect change,
and the shortage of skilled resources. However, the future is bright; and more and more manufacturing companies are shifting
to this paradigm.
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