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Abstract –This paper presents an open systems architecture-based 
software design for an online spindle health monitoring system. The 
software is implemented using the graphical programming language 
of LabVIEW, and presents the spindle health status in two types of 
windows: simplified spindle condition display and warning window 
for standard machine operators (operator window) and advanced 
diagnosis window for machine experts (expert window). The 
capability of effective and efficient spindle defect detection and 
localization has been realized using the analytic wavelet-based 
envelope spectrum algorithm. The software provides a user-friendly 
human-machine interface and contributes directly to the 
development of a new generation of smart machine tools. 
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I. INTRODUCTION 

Unexpected failure of machine tools can cause severe part 
damage and costly machine down time, affecting the overall 
productivity as well as maintenance cost. Since spindles are 
essential elements in virtually all machine tools and their 
working condition directly reflects upon machine tool 
performance, effective and reliable spindle health monitoring 
is highly desired to capture any potential failure at its early 
stage based on the sensor measurement data, which will 
enhance the overall performance of the machine tool system. 
A spindle with such added capability would represent one of 
the key components in the next generation of smart machine 
tools with self-monitoring and diagnosis functionality. A 
dynamic data-driven integrated software package is needed to 
help realize accurate identification of spindle health condition 
in real-time. 

Efficient software design and implementation requires a 
modular and interchangeable architecture. A related effort is 
the Open System Architecture for Condition Based 
Maintenance (OSA-CBM) program set up by the Machinery 
Information Management Open Systems Alliance 
(MIMOSA) [1]. The objective of the OSA-CBM program is 
to develop an open architecture and standards for distributed 
CBM software components. Such an architecture has been 
defined in terms of functional layers (Figure 1), which 

include: 1) Sensing and Data Acquisition, 2) Signal 
Processing, 3) Condition Monitoring, 4) Health Assessment, 
5) Prognostics, 6) Decision Support, and 7) Human-Machine 
Interface. Data communication among the layers is enabled 
by the OSA-CBM interface standards.  
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Fig. 1. Functional Layers of the OSA-CBM 

 
These layers represent a logic flow of information from 

the physical sensor to the decision support in the upper layer. 
The Human-Machine Interface layer can communicate with 
all other layers. For instance, a signal measured by the Data 
Acquisition layer is used by the Signal Processing layer to 
perform machine condition information extraction. Such 
information is in turn used by the Condition Monitoring layer 
to compare against expected values and output condition 
indicators. The Health Assessment layer then utilizes the 
input from the Condition Monitoring layer to derive the 
current state of the system, which is subsequently used by the 
Prognostics layer to predict the future performance of the 
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system. The current state and predictions are fed into the 
Decision Support layer to provide recommended actions for 
system maintenance. In addition, the current state and 
predictions, together with all measured and computed data, 
are displayed by the Human-Machine Interface layer such 
that the users can have visual interaction with the system.  

The layered architecture shown in Figure 1 facilitates the 
integration and interchangeability among sensors, electronics, 
and software components [2, 3], which allows flexibility for 
upgrading or expanding the system by incorporating new 
functions into corresponding layers. By taking advantage of 
the open systems architecture, this paper presents the 
software design of an online spindle health monitoring 
system. After introducing the system configuration in section 
II, Section III discusses various modules embedded in the 
software in detail. Then, the graphical user interface of the 
software is designed and implemented in Section IV. After 
that, the designed software is experimentally evaluated by 
monitoring a custom-designed test-bed spindle in section V. 
Finally, section VI draws some conclusions.  

II. SYSTEM CONFIGURATION 

The effectiveness and efficiency of a software design is 
dependent on how the programming process is executed. As 
compared to a text-based programming language, such as C 
and C++, the programming language of LabVIEW is graphic-
based, and uses graphic icons to replace the text command. 
These graphic icons are wired together through drag-and-
drop operations to realize various functions, such as data 
acquisition, signal analysis, etc., which simplifies the 
software development. Therefore, the graphical programming 
language of LabVIEW has been chosen to design and 
implement the spindle health monitoring system. As 
schematically shown in Figure 2, signals from various 
sensors are acquired through a data acquisition (DAQ) board 
and displayed on the computer through the graphical user 
interface (GUI) of the software. The software takes a modular 
approach to integrate various measurement functions into one 
entity and allows for evaluation of the spindle health status. 
Each module is programmed independently, and whenever 
certain function needs to be modified, only the module 
related to that function will be reprogrammed. New functions 
can be added into the software as independent modules. 
According to the OSA-CBM, each of the modules represents 
the functionality of either one or more layers. The data flow 
of the software that is related to the OSA-CBM layers is 
illustrated in Figure 3. Different types of sensor measurement 
data obtained in the Sensing and Data Acquisition Layer are 
transferred to the Signal Processing Layer and then processed 
to extract features that characterize the spindle dynamics. 
Several advanced signal processing algorithms for spindle 
defect detection are embedded in this layer with each being 
implemented as a module. For example, characteristic 
frequencies extracted by the Signal Processing layer are fed 
into the Condition Monitoring layer, where the ratio of the 

magnitude of each characteristic frequency to the noise floor 
is compared against a predefined threshold. The result is an 
enumerated condition indicator, which describes the 
operational state of the spindle.  In the Health Assessment 
layer, the output of the Condition Monitoring layer is 
assessed, based on the trending information recorded in the 
system, to determine if the system health is degraded and 
specifies the type and location of the identified degradation. 

 
Fig. 2. Schematic view of the spindle test system  

 
Fig. 3. Data flow and functional diagram of the designed software 
 
The core functions of the software, which include data 

acquisition, wavelet envelope spectrum analysis [4], 
Stochastic Subspace Identification (SSI), spindle health index 
indication, and data storage and logging, are designed as 
individual modules. Each module features a hierarchical 
structure in that it can call its second-level sub-module, and 
each sub-module can further call its next lower level sub-
modules. In the following sections, all of the modules are 
discussed in detail except for the data acquisition module, as 
it can be easily implemented using standard modules 
embedded in the software development environment. 
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III. SOFTWARE MODULE DESIGN 

A. Wavelet Envelope Spectrum Module 

Envelope spectrum analysis using band-pass filtering has 
been widely employed for detection and identification of 
structural defects [5-6]. While envelope extraction has been 
traditionally implemented by rectifying and low-pass filtering 
the band-pass filtered vibration signals, the Hilbert transform 
has shown to present a good alternative to forming a signal’s 
envelope [7]. Performing a Hilbert transform on a signal 
leads to the formulation of a corresponding analytic signal, 
with its real and imaginary parts being the original signal 
itself and the Hilbert transform of the signal, respectively. 
The modulus of the analytic signal represents the signal’s 
envelope. However, the frequency coverage of the band-pass 
filter needs to be known a priori. Furthermore, the 
effectiveness of the traditional envelope spectrum analysis 
suffers from a low signal-to-noise ratio, especially when the 
defect-related vibration is weak and overwhelmed by strong 
structural-borne noise. The development of a wavelet 
transform provides an effective tool for extracting a weak 
signal component out of a strong noise environment through 
time-scale analysis [8]. Wavelet transform essentially 
measures the “similarity” between the signal to be analyzed 
and the scaled wavelet function. Thus it can be viewed as a 
band-pass filter that extracts specific information from a time 
series, e.g., defect-induced vibrations. Since the imaginary 
part of a complex wavelet is inherently the Hilbert transform 
of its real part, the wavelet coefficients of a transformed 
signal, in which the complex wavelet is used as the base 
wavelet, are analytic in nature, and their corresponding 
modulus forms the signal’s envelope. Therefore, a complex 
wavelet-based signal transformation combines the ability of 
band-pass filtering with enveloping into one single step, thus 
eliminating the need for additional operations such as the 
Hilbert transform, or low-pass filtering to extract signal 
envelope. 

Figure 4 illustrates the design and implementation of the 
wavelet envelope spectrum module. As an analytic wavelet, 
the complex Morlet wavelet chosen in this module has been 
identified as an appropriate base wavelet for defect detection 
[4]. Another advantage of the complex Morlet wavelet is that 
it has explicit expression in the frequency domain as:  
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with symbols fb  and fc being the bandwidth and wavelet 
center frequency parameters, respectively. Equation (1) is 
designed and implemented in the module as a formula node, 
which is used to evaluate the mathematical expressions. As 
shown in Figure 4, with the inputs from sampling rate f, a pair 
of bandwidth fb and center frequency fc, the output Gm of the 
complex Morelet wavelet in the frequency domain is 
obtained. By multiplying Gm with coefficients that are 

resulted from Fourier transform of the input signal, and then 
applying the inverse Fourier transform, the wavelet 
transformation of the input signal is realized. Further 
operation is taken by performing the Fourier transform on the 
modulus of the wavelet coefficients to obtain the wavelet 
envelope spectrum (denoted as WES).  

 
Fig. 4. Coded algorithm for performing the wavelet envelope spectrum 

B. Stochastic Subspace Identification Module 

To ensure complete frequency coverage of the vibration 
signal when applying the wavelet envelope spectrum 
algorithm, a data-driven scheme for wavelet center frequency 
fc selection is designed. The appropriate wavelet center 
frequency can be dynamically modified by the program, 
based on the output of model parameters identified using the 
SSI technique [9, 10]. Instead of fitting an empirical model to 
the Frequency Response Function (FRF) from artificial 
excitations (e.g., hammer strikes) as the traditional approach 
does, the SSI technique accounts for dynamic changes caused 
by the rotations of the spindle without the need for artificial 
excitations, and extracts the modal parameters from its 
measured output only, thus satisfying the requirement of 
online operation. Mathematically, the SSI technique is 
formulated and solved using a discrete time-state space model 
of a linear, time-invariant system (e.g., the spindle) without 
known external inputs according to the following equation: 
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 (2) 

where xk=x(kΔt) is the discrete-time state vector, yk is the 
system response vector, A is the state matrix, and C is the 
output matrix. The two components, wk and vk, represent the 
disturbance noise to the spindle and measurement noise due 
to sensor inaccuracy, respectively, and are stochastic in 
nature. Equation (2) indicates that the new state of the spindle 
physical system, xk+1, can be obtained by the sum of the state 
matrix A multiplied with the old state vector xk  and the 
disturbance noise vector wk. As a result, the dynamic 
behavior of the spindle is completely characterized by the 
state matrix A. Generally, a Kalman filter is used for the 
optimal prediction of the state vector xk+1. Numerical 
techniques, such as singular value decomposition, are then 
applied to estimate the state matrix A and output matrix C. 
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Subsequently, the modal parameters can be extracted from 
the state matrix A. Based on the SSI technique, Figure 5 
illustrates how the model parameters of the spindle system 
are identified in the designed module. As shown in Figure 5, 
a Hankel matrix is first constructed based on the input 
signals. Then a sub-module is called to estimate the state 
matrix A and output matrix C using the singular value 
decomposition method. After that, the eigenvalues of the state 
matrix A are extracted to estimate the resonance frequencies 
and their corresponding damping ratios. 

Since a structural defect may excite the spindle system at 
any of the identified resonance frequencies, the equally 
spaced wavelet center frequencies, which cover the range of 
these natural frequency components, are chosen for 
implementing the wavelet envelope spectrum algorithm.  

C. Spindle Health Index Module 

To characterize the defect severity level of the spindle 
(e.g., healthy, small defect, medium defect, and severe 
defect), and to present a first step towards a generic data 
model for quantifying the working condition of various types 
of spindles and machine tools, trending information on the 
magnitude of the wavelet envelope spectrum is recorded to 
construct a database, which is used subsequently for setting 
up a spindle health index. As illustrated in Figure 6, the 
magnitude information within a series of frequency intervals 
that covers possible defect-related frequency components 
(e.g., Ball Pass Frequency of the Inner raceway, denoted as 

BPFI) is extracted from the wavelet envelope spectrum first. 
The signal-to-noise ratio (SNR), defined as the ratio of 
magnitudes of the defect-characteristic frequency to the other 
frequency components, is then calculated and compared with 
the predefined thresholds at different levels. If the SNR is 
within a certain threshold interval, a corresponding health 
index is derived.  

D. Data Logging Module 

The software logs the machine conditions (e.g., health 
status and health index) in a unified format automatically or 
based upon user command. Presently, the eXtensible Markup 
Language (XML)-based data format is adopted in the 
software, which can be used with any networking technology 
(e.g., Time Control Protocol/Internet Protocol TCP/IP) for 
data transfer [11]. Figure 7 gives an example for how the 
health status and the health index are logged with XML. 
During each data sampling cycle, the vibration signals are 
acquired and then processed to output spindle health status 
and index values. These values, together with a time stamp, 
are converted to XML format. Based on the predefined XML 
schema, which is embedded in the software development 
environment, the time information, spindle health status, and 
health index are logged into an XML file. Figure 8 shows a 
piece of the XML-based data format, where the health index 
and status of the spindle bearing are logged during one 
sampling cycle. All of the information stored with such a 
format can be retrieved through web-based applications. 
 

 
Fig. 5. Code for SSI-based modal parameter identification 

 

 
Fig. 6. Code for spindle status and health index indication 
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Fig. 7. Code for data logging module 
 
 

 
Fig. 8. Representation of health index and status of the spindle using 

XML-based data format 

IV. GRAPHICAL USER INTERFACE DESIGN 

According to the open systems architecture, the software is 
designed and implemented with a user-friendly human-
machine interface, which needs to consider the visual 
appearance, ease of operation, and accommodation of the 
needs for different users, etc. Figure 9 illustrates the designed 
user interface for online spindle health monitoring. The right 
side of the user interface shows general parameter setup 
options, such as data archiving mode and spindle health index 
logging mode. The left side of the user interface has 
integrated previously designed modules and presents the 
machine health conditions in two types of windows: 
simplified spindle condition display and warning window for 
standard machine operators (operator window) and advanced 
parameter-setup and diagnosis window for machine experts 
(expert window).  

The operator window (as shown in Figure 9a) allows 
interactive communication between machine operators and 
the software regarding the current status of the machine 
without the distraction of behind-window calculations. It 
displays the speed, temperature, and vibration signals in real-

time. Furthermore, the health status and health index of the 
spindle are updated online based on the results from the 
embedded modules, and an alarm will be set off when defects 
are detected. A statistical parameter, Kurtosis, is also 
implemented in this operator window to track the status of the 
spindle. The expert window shown in Figure 9b allows the 
experts to interactively adjust input parameters for the 
wavelet envelope spectrum module, such as the wavelet 
center frequency and bandwidth, to conduct a complete 
investigation of machine status, thus enhancing on-line defect 
detection capability. Furthermore, quantitative evaluation of 
the spectrum resulting from each pair of wavelet center 
frequency and bandwidth is conducted on the bottom of the 
expert window, which provides detailed frequency 
information of the vibration signal. 

V.  EXPERIMENTAL EVALUATION 

To experimentally verify the designed software, a custom-
designed spindle system was constructed as shown in Figure 
2. Since the bearings are the most critical and vulnerable 
component in a machine tool spindle, four accelerometers 
were placed at the front and rear ends of the spindle, within 
the loading and unloading zones of the bearings, to measure 
their vibrations. Based on the geometry parameters (i.e., pitch 
diameter, ball diameter, contact angle, and number of balls) 
of the bearing, its defect-rated characteristic frequencies can 
be determined as a ratio to the spindle rotating speed, as listed 
in Table 1.  

Table 1. Defect-related characteristic frequencies of the bearing 

Defect Type Characteristic 
Frequency  

Unbalance fr ≈ rpm/60 

Rolling Element fBSF ≈ 2.346fr 

Outer Raceway fBPFO ≈ 4.414fr 

Inner Raceway fBPFI ≈ 6.586fr 
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The spindle was continuously monitored by the designed 
software system. Figure 9a displays the measured signals, 
where the spindle was operated at 8 400 rad/s, and its 
corresponding analysis results after 700 impacts with a force 
of 13 300 N were consecutively applied to the rotating 
spindle. The software system diagnosed that a localized 
defect on its inner raceway had developed.  This can be 
verified by observing the wavelet envelope spectrum in 
Figure 9b. Based on the equations in Table 1, the frequency 
peak at 935 Hz shown in Figure 9b can be identified as the 
BPFI. Theoretically, the BPFI frequency at 8 400 rad/s is 
calculated as 922 Hz. The 1.4% difference between the 
theoretical and experimental values can be traced back to the 
combined effect of rolling element slippage and the slight 
drift of spindle speed from the nominal input values to the 
spindle drive controller. The spectrum also displayed several 
other frequency peaks at 1 075 Hz, 1,215 Hz, and 1 355 Hz, 
respectively, which can be mathematically specified as 

( ), 1,2,...BPFI k rpm with k n+ ⋅ = , and reflect upon combined 
effect of spindle unbalance and inner raceway defect.  
 

 
(a) Operator window 

 
(b) Expert window 

Fig. 9. A graphical user interface for the software 

VI. CONCLUSION 

An open systems architecture-based software package for 
online spindle health monitoring has been designed and 
implemented. For experimental evaluation conducted on a 
custom-designed spindle test system, the designed software 
was able to detect the bearing defect due to the accumulated 
impacts. The software package is functionally adaptive and 
presents a new tool that enables more effective and efficient 
monitoring and diagnosis of machine spindles, and 
contributes directly to the development of a new generation 
of smart machine tools. In addition to spindles, the software 
can be applied to the health diagnosis of other types of 
machines. 

 
 

** Commercial equipment and software, many of which are 
either registered or trademarked, are identified in order to 
adequately specify certain procedures. In no case does such 
identification imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor does it 
imply that the materials or equipment identified are 
necessarily the best available for the purpose. 
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