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1.  Fiber Deflection Probing
The stylus and probing system of a traditional Coordinate Mea-
suring Machine (CMM) is limited at the low end of its measure-
ment range because of large stylus diameter and high contact
forces. In order to measure micro features and small holes of the
order of 100 µm diameter, novel low force probing technologies

are required. There are several such systems reported in the lit-
erature, which are summarized in a recent review by Wecken-
mann et al. [1]

At the National Institute of Standards and Technology
(NIST), we have developed a new probing system for measur-
ing holes of diameter 100 µm. We refer to this technique as
Fiber Deflection Probing (FDP) and it is based on imaging a
thin fiber stem using simple optics. The advantages of this tech-
nique are the large aspect ratio achievable (5 mm depth in 100
µm hole), an inexpensive probe that can be easily replaced, large
over-travel protection of approximately 1 mm before probe
damage, extremely low contact force (; 1 µN) to avoid part
damage, and extremely small uncertainties (0.07 µm, k = 2 on
diameter).

The measurement principle is shown in Fig. 1(a). A thin fiber
(50 µm diameter, 20 mm long), with a microsphere (80 µm
diameter) bonded on the end, serves as the probe. The deflec-
tions of the stem upon contacting a surface are detected by opti-
cally imaging the stem, a few millimeters below the ball. The
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optical setup used is shown in Fig. 1(b). The stem of this fiber
is illuminated from two orthogonal directions to detect deflec-
tions in X and Y. The resulting shadows are imaged using objec-
tives and a camera. Upon contact with a test surface, the fiber
deflects and also bends. By determining the position of the fiber
in the deflected state and also in the free state, and using a pre-
viously determined scale factor (in units of µm/pixel) that
accounts for both the bending and deflection, we can correct the
machine’s final coordinates to determine surface coordinates.
The probing system is currently a heavy prototype that is placed
on the bed of the machine, with the probe pointing upwards. All
measurements are carried out on the Moore M48 [2] measuring
machine at NIST. The machine is used primarily as a fine three-
axis positioning stage; its Movamatic probing system is
removed from the ram to allow the placement of the test arti-
facts. A detailed description of the technique along with valida-
tion results and small hole measurement data can be found in
[3]. Here, we discuss different error sources involved and
provide an uncertainty budget for diameter measurements.

2.  Error Sources Overview
We provide an overview of the different sources of error in
measuring artifacts such as a small hole. In subsequent sections,
we describe them in greater detail and tabulate an uncertainty
budget.
Sources of error that are specific to our fiber probe:

1. As mentioned in the previous section, we determine any
coordinate on a surface from knowledge of the fiber’s free
and deflected state and the machine coordinates at the
deflected state. There is an uncertainty in determining both
the machine’s position at the deflected state and the fiber’s
position (imaging uncertainty). This contributes to an
uncertainty in determining every coordinate in space and
consequently impacts diameter.

2. In order to determine the magnitude of the fiber’s deflection
in units of length, we require a scale factor that converts the
fiber’s deflection in pixels to micrometers. Uncertainty in
determining the scale factor will contribute to an uncer-
tainty in part diameter, not directly but in combination with

other factors as described in Sections 3.2 and 4.
3. The two optical axes of the fiber probe are not necessarily

aligned with the machine’s axes. This non-orthognality/mis-
alignment introduces an error in diameter. We typically
compensate this term in software, but a small residual can
remain.

Other general sources of error:
1. As with any traditional coordinate measurement process,

we have to calibrate the probe ball diameter (and form)
using a master ball of known diameter (and form). The
uncertainty in master ball diameter is therefore another
term in our budget.

2. Uncertainty in determining the equatorial plane of the
master ball and tilt angle of the test hole contribute to an
uncertainty in final diameter.

3. Temperature effects are not significant for dimensional
measurement of small holes, but may impact master ball
diameter measurement.

For purposes of this error budget, we consider a 3000 µm
nominal diameter ruby sphere as the master ball and a 100 µm
nominal diameter ceramic hole as the test artifact. All results are
based on Least Squares (LS) algorithm with 16 points sampled
along the surface. Nominal probe ball diameter is assumed to be
80 µm. 

3.  Uncertainty in Determining a Coordinate
in Space – u(coordinates)

3.1  Errors in Determining Fiber Center by Shadow Imaging
While an uncertainty budget for diameter measurements is pre-
sented later on, we discuss the uncertainty in determining the
fiber center due to imaging here. This term, along with the
machine’s positioning repeatability, is used later to determine
the uncertainty in obtaining any coordinate in space. Figure 2(a)
shows two thin white bands of light that represent a portion of
the fiber stem viewed from two orthogonal directions. (The
glass fiber behaves as a cylindrical lens and focuses light on the
image plane to produce the bands; we monitor the position of
these bands instead of the outer boundaries of the shadow. One

Figure 1.  (a) Measurement principle. 
(b) Optical setup showing fiber and two axes.
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band corresponds to motion along X, another to motion along
Y). These bands after image processing are shown in Fig. 2(b).
We determine a center position for the stem (in pixel coordi-
nates) in each direction by least squares fitting (using data from
an edge finding routine applied to each row) and averaging (left
and right edge for each band). 

We use a 640 by 480 pixel array Charge Coupled Device
(CCD) camera, where the width of each pixel is 8500 nm. With
an optical magnification of 35, the pixel resolution is 8500/35
= 243 nm. Therefore, the center can lie within – 122 nm and
+122 nm with equal probability. Assuming a rectangular distri-
bution, the standard uncertainty is 122 / M3 = 70 nm. This is the
uncertainty in determining the center using just one row of
pixels. We average over 400 rows (out of the total possible 480
rows, a few are discarded because of outliers) to reduce this
uncertainty. In the absence of noise, a slight tilting of the fiber
relative to the field of view is needed to average over the quan-
tization error of discrete pixels; this is a very standard imaging
technique that has close analogs in other fields such as electron-
ics [4]. The mathematical details differ slightly from one imple-
mentation of the technique to the next depending on the
averaging algorithm employed (for us, the least squares fit). The
reduction in uncertainty due to averaging is a complex function
of the angle of the fiber relative to the pixel array. If the fiber is
misaligned relative to the pixel array so that it crosses more than
three pixels in the horizontal direction, then the error due to
pixel resolution is reduced below ±0.04 pixels (±10 nm).
Assuming a rectangular distribution of errors, this ±10 nm
range of possible errors corresponds to a standard uncertainty
of 6 nm. For some angles the uncertainty might be considerably
smaller, but as long as the angle is large enough that at least

three horizontal pixels are crossed, the uncertainty will not
exceed this value. Also, as a consequence of the fact that we
measure both the left and right edge of the band, the uncertainty
will be reduced to a value on the order of  (6 /M2 ) nm = 4 nm.
Thus we might hope to see roughly a 4 nm (which is equivalent
to about 0.015 pixels, at a nominal scale factor of 300 nm/pixel)
uncertainty in detecting the position of the probe in space under
ideal conditions. We have carried out measurements that indi-
cate that this small uncertainty for the imaging system is prob-
ably attainable, but under realistic conditions our uncertainties
are much larger, with the imaging uncertainty contributing neg-
ligibly to the overall uncertainty budget. Although the 4 nm
uncertainty might be improved further by sophisticated sub-
pixel interpolation, there is no practical advantage to doing so.

3.2  Uncertainty in Determining a Coordinate in Space
The coordinate of any point on the surface is determined from
knowledge of the fiber center in both the free state and in the
deflected state. We know the machine’s coordinates at the
deflected state and the magnitude of the fiber’s deflection. From
these, we can infer the coordinates of the center of the probe tip
when it is in contact with the surface. Thus, the final coordinate
(X, Y) on the surface after correcting for the fiber’s deflection
is given by:

X = (Px – Pxo)*SFx + Xo , (1)

Y = (Py – Pyo)*SFy + Yo , (2)

where (Xo, Yo) are the CMM readings in micrometers at the
deflected state of the fiber, (Px,Py) are the fiber centers in pixels
at the deflected position, (Pxo, Pyo) are the fiber centers in pixels
at the free undeflected state and SFx and SFy are the scale (or
calibration) factors in  µm/pixel along X and Y. The uncertainty
in any coordinate (X,Y), given by (u(X), u(Y)), is therefore a
function of uncertainties in each of the quantities on the right
hand side of Eqs. (1) and (2) and is given by:

, (3)

,     (4)

where the coefficients are the partial derivatives as described in
the US Guide to the Expression of Uncertainty in Measurement.
[5]

Before we proceed with the evaluation of the different uncer-
tainties in the right hand side of Eqs. (3) and (4), we make the
following observations/assumptions: 

• First, we assume that the uncertainties are not directionally
dependent. Therefore, u(Px) = u(Py), u(Pxo) = u(Pyo) and
u(Xo) = u(Yo). This simplifies our discussion to only terms
on the right hand side of Eq. 3. 

• Second, we observe that the uncertainties in scale factors,
u(SFx) and u(SFy), have only a very small effect on typical
measurements, where the measurements are performed at
nearly the same deflection as used when the probe is cali-
brated. If the measured scale factor is smaller than the true

Figure 2. (a) Image as recorded by the camera. (b) Binary image
after processing.
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value, the master ball diameter appears smaller, resulting in
a smaller value for the fiber probe ball diameter. Because
we use the same scale factor for test artifact (small hole)
measurement, the smaller scale factor, combined with a
smaller probe ball diameter produces the correct hole diam-
eter, in essence canceling out the effect of u(SFx) and
u(SFy). Some error will remain because the probe deflec-
tion is not exactly the same for calibration and for test arti-
fact measurement, but typically this is a small error. We
discuss this source in Section 4. 

• Third, determining the free state of the fiber is not critical
because this term only serves to translate the center coor-
dinates and does not influence diameter or form. Therefore,
we can ignore the free state in all computations and simply
report a coordinate as X = Px *SFx + Xo. 

From this, the uncertainty in determining a coordinate can be
simplified as:

. (5)

Using                   = 300 nm/pixel (nominal scale factor value),

= 1, u(Px) = 0.015 pixels (from previous section)

and u(Po) = 35 nm, the combined standard uncertainty in deter-
mining the X (and Y) coordinate of any point in space using the
fiber probing technique is 35 nm. The uncertainty is dominated
by u(Xo), and the value given here for u(Xo) was determined
experimentally as the standard deviation of repeated measure-
ments of a point on a surface. This lack of repeatability is large
relative to other sources of uncertainty. The source of repeata-
bility errors is still under investigation, but it is likely that they
arise primarily from CMM positioning errors. 

Note that we do not include probe non-orthogonality in Eq.
(1) and (2) because we compensate for this error in software
(see Section 9). We also do not treat non-orthogonality in CMM
axes separately. The Moore M48 is well characterized and error
mapped. Therefore, we do not separately treat its errors. Instead
we lump motion related errors into one term: its single point
repeatability of 35 nm. For a more detailed discussion of error
sources and uncertainty budgets for the NIST Moore M48
CMM, we refer to [6].

3.3  Contribution of Uncertainty in Coordinates
to Uncertainty in Diameter

The contribution of this term to diameter uncertainty is deter-
mined using Monte Carlo Simulation (MCS). [7] With 35 nm
standard deviation Gaussian noise, and using 16 sampling
points with a LS fitting routine, we determine the standard
uncertainty in diameter to be 18 nm. This term is the largest
contributor to the overall uncertainty budget, and affects every
coordinate measured using the fiber probe. Therefore this term
affects both the calibration and test artifact measurement. 

4.  Uncertainty in Scale Factor Combined
with Unequal Fiber Deflection – u(SF)

As mentioned in Section 3.2, the uncertainty in the scale factor
will not directly impact the final diameter if we use the same
scale factor value for both the calibration and test artifact meas-
urement. This is true under the circumstance that the fiber
deflects by the same nominal amount at all angular positions
(sampling locations) of both the master ball and test artifact. In
reality, the fiber will not deflect by identical amounts at all
angular positions of any artifact because of centering and part
form error. Assuming a 2 µm centering error in the test artifact
(the master ball is assumed to be well centered), a nominal scale
factor of 300 nm/pixel, 0.5 nm/pixel standard uncertainty in the
scale factor, and 15 µm nominal deflection, the uncertainty in
diameter is 1 nm. Also, the fiber will not necessarily deflect by
the same nominal amount for both the calibration and test arti-
fact measurement. Assuming typical nominal deflections are
held to within a 2 µm range between the calibration and test
artifact measurement, the uncertainty in diameter is 7 nm.

5.  Master Ball Diameter Uncertainty – u(master)
For purposes of calibrating the diameter (and form) of the
probe ball, we use a 3 mm nominal diameter ruby sphere
mounted on a stem (a CMM stylus), as the master ball. The
diameter of this master ball is determined to be 3000.79 µm
with a standard uncertainty of 5 nm using interferometry at
NIST. The master ball diameter uncertainty was determined by
measuring two point diameters at different locations and there-
fore samples some form error also.

6.  Uncertainty in Determining Equatorial Plane
of Master Ball – u(height)

Determining the equatorial plane of a sphere is important
during calibration to obtain an accurate diameter of the probe
ball. The equatorial plane is found iteratively as follows. We first
determine the approximate center of the circle at some arbitrary
plane near the equatorial plane. Using this center, we determine
the location of the pole point along Z, and then evaluate the new
location of the equatorial plane from knowledge of the ball’s
diameter. We repeat this process several times to refine the loca-
tion of the equatorial plane. The error in determining the Z loca-
tion of the equator is ±1.5 µm from this method. The standard
uncertainty in determining calibration artifact diameter is there-
fore 1 nm. 

7.  Temperature Effects – u(temperature)
Temperature effects are typically not significant for dimensional
measurement of small objects. If temperature can be controlled
to within ±0.05 °C, the change in diameter is 0.8 nm for the
master ball. The radial expansion of the probe tip and the test
hole are negligible. Therefore, assuming a rectangular distribu-
tion, the standard uncertainty in determining master ball diam-
eter because of non-standard temperature is 0.5 nm. 
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8.  Uncertainty in Aligning Hole Axis 
with Machine’s Z axis – u(tilt)

The tilt angle of a hole’s axis affects final diameter values.
Assuming tilt can be controlled to within ±0.5 °, the standard
uncertainty in diameter is 1 nm.

9.  Uncertainty in Aligning Optical Axis
with Machine’s X & Y axes – u(AM)

9.1  Introduction to Axis-misalignment
The two optical axes of the probe measurement system are not
necessarily aligned with the machine’s axes. This misalignment
introduces an error in diameter (and form), which if uncompen-
sated can be a significant portion of the total uncertainty
budget. We discuss this error source and our approach to com-
pensating it. A residual error will remain; it is itemized in the
uncertainty budget.  It is worthwhile to emphasize that these
alignment errors, which are usually of only minor importance
for measurements of typical engineering metrology artifacts,
take on much greater significance when probe deflections are
comparable in magnitude to machine motions, such as, for
example, when measuring the inside diameter of a 100 µm hole
with an 80 µm diameter probe. 

Figure 3(a) shows a schematic of the measurement system.
The fiber probe stem (top view) is shown at the origin, with the
optical axis 1 misaligned with the machine’s Y axis by θ1, and
the optical axis 2 misaligned with the machine’s X axis by θ2.
When the machine deflects the probe along the X axis, optical
axis 1 (which is aligned with the Y axis) senses the displacement
and is therefore the X-axis sensor. The ‘+ve’ and ‘–ve’ signs
show the sign convention in pixel coordinates as explained in
the figure caption.

In a typical measurement process, the test part (either the

master ball or the hole) is brought in contact with the fiber at a
certain angle (α) and further translated by P along the same
direction. If the two optical axes are perfectly aligned, axis 1
(that is, the X-axis sensor) senses a displacement of Pcosα,
while axis 2 senses a displacement of Psinα (the sign conven-
tions for the two optical axes are shown in Fig. 3). These dis-
placements (Pcosα, Psinα) are then corrected from the machine
coordinates at that location to determine the coordinates on the
surface. However, if the optical axes are aligned as shown in Fig.
3 (a), axis 1 senses a displacement of Pcos(α – θ1), while axis 2
senses a displacement of Psin(α – θ2). The displacement correc-
tions are therefore incorrect resulting in errors in part diameter
and form. 

Figure 3(b) shows experimental evidence of the presence of
this error. As the part is brought in contact with the fiber along
the machine’s X axis and displaced back and forth in steps of
1.5 µm over a travel of 15 µm (active axis – optical axis 1 read-
ings), optical axis 2 (non-active axis) records a motion of
approximately 0.4 µm, indicating that optical axis 2 is not
aligned with the machine’s X axis. 

9.2  Understanding its Impact
Axis misalignment can potentially be a large component of the
overall error budget, if left uncompensated. In order to under-
stand its impact, we consider two cases. If θ1 = θ2, the resulting
coordinates after displacement correction are rotated to a new
point, either inside or outside the true surface. Thus, the impact
is only on diameter, not on form. (Form errors will occur, how-
ever, if there are variations in the magnitude of the probe dis-
placement from point to point.) If θ1 0 θ2, the resulting coordinates
after displacement correction are not only rotated but also
stretched and compressed along two orthogonal axis (causing
an apparent ovality), resulting in errors in diameter and form.
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Figure 3. (a) Axis misalignment schematic. Optical axes
1 and 2 are misaligned by θ1 and θ2 with the correspon-
ding machine axis. (b) Reading of active and nonactive
axes as the probe is cycled (note the different scales for the active and  non-active axis), moving first toward a surface and then back out
from the surface. Positive θ is as shown in the figure. The sign conventions shown for each probe refer to pixel coordinates; that is, deflec-
tion of the fiber to the right of optical axis 1 is considered positive for that axis and deflection to the left for optical axis 2 is considered posi-
tive.

(a) (b)



MEASURE  | 43Vol. 1 No. 3 • September 2006

TECHNICAL PAPERS

Most of the misalignment induced errors cancel between the
master ball and test hole measurement. There is however a
residue, which is not insignificant, as shown here. Although
probe errors that are strictly along the radial direction are inde-
pendent of the diameter of the object being measured, errors
along a direction tangent to the measurement direction have
much greater influence on the calculated diameter when probe
deflections become comparable to machine motions; in a diam-
eter measurement, the tangential errors represent second-order
cosine errors of negligible magnitude when measuring a circle
of large radius but become much larger when measuring a very
small circle. This effect is particularly important when the cal-
ibration artifact is macroscopic and the test artifact, a hole, is
only slightly larger that the probe diameter. For a 5° misalign-
ment angle in one axis, no misalignment in the other, the error
in diameter when measuring a 3 mm ball (80 µm probe tip with
15 µm nominal deflection) is – 57 nm (diameter appears to be
smaller for outer diameter features). For the same conditions,
the error in diameter for a 100 µm hole is 121 nm (diameter
appears to be larger for inner diameter features). Thus, if the
3 mm ball measurement is used to calibrate the probe tip diam-
eter prior to a measurement of the diameter of the 100 µm hole,
the net diameter error is 64 nm. Because the axes are not
orthogonal, there is also a residual out-of-roundness error of
approximately 86 nm. For a 0.5° misalignment in one axis, these
numbers are much smaller. The residual errors in diameter and
out-of-roundness are only 1 nm. Thus, if we can estimate axis
misalignment angles to within 0.5°, our compensation will sig-
nificantly reduce the contribution of this term to the overall
budget. 

Typically observed misalignment angles are between – 5° and
+ 5° in both axes (note that while these angles may seem large,
these angles represent a combination of physical and optical
misalignment). It is therefore necessary to compensate diame-
ter and form for axis misalignment. We discuss next a procedure
to evaluate the magnitude of this misalignment. Then, we
discuss our approach to correcting for it.

9.3  Estimating Axis Misalignment Angles
Our procedure for estimating axis misalignment angles involves
monitoring both optical axes while deflecting the fiber along
two of the machine’s principal directions. As mentioned earlier,
if the optical axes are well aligned with the machine’s axes, and
the fiber is deflected along the machine’s X axis, optical axis 1
senses all of the deflection while optical axis 2 senses no deflec-
tion at all. The same is true for deflections along the machine’s
Y axis, where optical axis 1 senses no deflection and optical axis
2 senses the complete deflection.

If however, the optical axes are aligned as shown in Fig. 3,
then we follow the procedure outlined here to estimate θ1 and
θ2. First, we let the test part contact (at point O, the origin) and
deflect the probe (to point A) as the part moves along the
machine’s positive X direction. Let the deflection of the probe,
OA, be P. Let the magnitude of the observed probe deflections
by optical axis 1 and optical axis 2 be XA and YA pixels. Also,
let the scale factors in X and Y be Sx and Sy, expressed in units
of µm/pixel if the deflection P is measured in micrometers.

Then,

(6)

We then contact the probe and displace it to point B along the
positive Y direction, again by P. Let the magnitude of the
observed deflection seen by optical axis 1 and optical axis 2 be
XB pixels and YB pixels. Then, 

(7)

From Equations 6 and 7, we get:

(8)

Sx and Sy can also be obtained from these equations. Similar
equations can be written for deflections in the opposite direc-
tions yielding another set of values for θ1, θ2. The results can
then be averaged to obtain axis misalignment angles. 

9.4  Compensating Axis Misalignment Error
After the angles are determined, we can estimate the magnitude
of the correction as described here. Let the fiber be deflected by
some distance at an arbitrary angle α. Let a and b be the
observed readings (in pixels) of optical axis 1 and optical axis
2 respectively. Let u and v be the true deflections along the X
and Y directions. Then u and v can be determined from the fol-
lowing system of equations:

(9)

Thus, from the observed deflection (a, b) at every angle α, we
can determine the true deflection (u, v) and compensate for axis
misalignment. 

10.  Other Miscellaneous Errors
Hertzian deformations of the probe tip and workpiece are neg-
ligible because measurement forces are only 0.16 µN when the
probe is deflected by 20 µm. We have therefore not discussed
this error source. A complete accounting of errors would also
include a component due to incomplete sampling of the part
form errors; for purposes of our discussion here we ignore this
potential complication.

The emphasis in this paper has been on the fiber probe, and
therefore we have not explicitly discussed CMM scale and posi-
tioning errors. For our M48 CMM, these errors (interferomet-
ric scale related and other machine errors) are primarily
manifested as part of the 35 nm repeatability discussed previ-
ously. Previous studies of the M48 show that other positioning
errors that would affect these small-scale diameter measure-
ments (errors such as hysteresis or, more likely on the M48,
errors of short spatial period associated with the roller bearings)
might contribute as much as 20 nm uncertainty to a two-point
diameter measurement at a particular spot on the table. This
uncertainty should be reduced to 14 nm for a four-point diam-
eter measurement that samples independent errors associated
with measurements along the x and y axes. For two-artifact
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measurement (master ball and test hole), this translates to
an effective uncertainty of about 20 nm in diameter. 

Finally, there are errors associated with dust settling on
either the test part or the master ball. Dust is a persistent
problem when using low-force probing outside of a clean
room. Most often, a particle of dust will produce a large,
obvious error, and can be corrected by cleaning, but if a very
small piece of dust produced a radial error under 50 nm, this
error might go undetected. However, it is unlikely that this
would occur at more than 1 of the 16 measurement points,
and therefore the resulting diameter error would be less
than 3 nm.

Experimentally, we have determined the standard uncer-
tainty in diameter to be of the order of 20 nm. This repeata-
bility samples the different error sources we have outlined
in previous sections. It is however possible that there are
other sources we have not sampled, such as those described
in this section and any other unknown sources. To account
for these, we itemize a 20 nm uncertainty in diameter in our
budget.

11.  Summary:  Overall Uncertainty Budget 
Finally, we tabulate in Table 1 the contributions of the dif-
ferent sources towards the uncertainty in diameter for a 100
µm hole. From Table 1, the combined standard uncertainty
in diameter is 34 nm. Thus, the expanded uncertainty is 0.07
µm (k = 2) on diameter. 

Note that the uncertainty in diameter will be smaller than
the uncertainty in determining a position (35 nm) because
of the averaging involved. We sample 16 points along the
circumference of a circle. The uncertainty in each coordinate
is (±35 nm, ±35 nm). As explained in section 3.3, the uncer-
tainty in diameter (based on 16 sampling points, LS best fit)
is reduced to only 18 nm. Adding in other terms as shown in
the uncertainty budget in Table 1, the final combined stan-
dard uncertainty in diameter is 34 nm.

12.  Conclusions
We have discussed different error sources involved in measur-
ing the diameter of 100 µm nominal diameter holes using a new
fiber deflection probe for CMMs. The probing uncertainty,
which is the imaging term, is of the order of 4 nm. Experimen-
tally determined single point repeatability using the fiber probe,
on a CMM is approximately 35 nm. A substantial portion of this
rather large difference is attributable to the machine’s position-
ing repeatability. However, we are still investigating the pres-
ence of any other systematic effects that might contribute to this
loss in performance. Overall, our analysis indicates expanded
uncertainty of only 0.07 µm (k = 2) on diameter. This value is
amongst the smallest reported uncertainties in the literature for
micro holes measured using a CMM. Our current focus is on
expanding the technique to 3D and profile measurements and
in understanding the error sources involved therein.
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Error 
Source Description

ucal(Coordinates)
Uncertainty in probe ball diameter due to
uncertainty in determining coordinates (X, Y)
of probing points. This is primarily because of
imaging uncertainty and machine repeatability.

18

u(Coordinates) Same as 1, but on test artifact. 18

u(SF) Uncertainty in scale factor combined with cen-
tering error.

1

Uncertainty in scale factor combined with
unequal nominal deflections between master
ball and test artifact measurement.

7

ucal (Height) Error in determining the equatorial plane (Z
height) on master ball.

1

ucal (Master)
Uncertainty in master ball diameter and form.

5

ucal (T) Uncertainty in diameter due to nonstandard
temperature. This affects calibration sphere
diameter primarily because of larger nominal
diameter. Test artifact diameter is much smaller
and temperature effects are ignored.

1

u(Tilt) Error in determining tilt angle on test artifact 1

u(AM) Probe axis misalignment introduces an error in
diameter, some of which cancels out when
measuring the cal-ball and later the test artifact.
Also, most of this error is software corrected.
The residual error is tabulated here. 

1

u(Other Sources) Contribution from machine positioning and
other sources.

20

Table 1. Error sources contributing to uncertainty in diameter.
Expanded uncertainty is 0.07 µm (k = 2) on diameter. Note that the sub-
script ‘cal’ indicates calibration process.

Uncertainty
(nm)


