
2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

Object-oriented Model for IEEE 1588 Standard

Kang Lee Eugene Song
National Institute of Standards and Technology National Institute of Standards and Technology

100 Bureau Drive, MS# 8220 100 Bureau Drive, MS# 8220
Gaithersburg, Maryland USA 20899-8220 Gaithersburg, Maryland USA 20899-8220

E-Mail: kang.lee@nist.gov E-Mail: ysong@nist.gov

Abstract

The IEEE 1588 standard specifies a protocol enabling

precise synchronization of clocks in measurement and control
systems implemented with technologies such as network com-
munication, and distributed objects. The Unified Modeling
Language (UML) is a powerful tool for object-oriented model-
ing, design, and development of complex distributed systems.
This paper describes an object-oriented model for the IEEE
1588 standard-v2, which has been developed using UML tool at
National Institute of Standards and Technology (NIST). This
model consists of the data types, datasets, entities, and devices
of IEEE 1588 standard-v2. The model has been used to produce
C++ source codes, and create C++ libraries for the IEEE
1588 standard-v2. With the help of this object model, the devel-
opment time of IEEE 1588-basd distributed measurement and
control applications can be reduced dramatically.

Keywords: Time Synchronization, IEEE 1588, Object-oriented
Model, Precision Time Protocol

1. Introduction

The IEEE 1588 standard defines a precision time
protocol (PTP) enabling precise synchronization of
clocks in measurement and control systems implemented
with technologies such as network communication, local
computing, and distributed objects [1]. The protocol is
applicable to systems communicating via packet net-
works. The protocol supports system-wide synchroniza-
tion accuracy in the sub-microsecond range with minimal
network and local clock computing resources. This IEEE
1588 protocol is applicable to distributed measurement
and control systems consisting of one or more nodes,
communicating over a network. Nodes are modeled as
containing a real-time clock that may be used by applica-
tions within the node for various purposes such as gener-
ating timestamps for data or ordering events managed by
the node.

Object-oriented development methodology is a ro-
bust and flexible software development approach because
it provides a better way to organize software allowing the
developer to build better, scalable, and more complex
software with less effort [2]. UML (Unified Model Lan-
guage) is a modeling language for supporting object-
oriented modeling, design, and development by express-
ing the constructs and the relationships of the compo-
nents of a complex distributed system. It combines the
methods of Booch, Rumbaugh, and Jacobson [3-5]. The

Object Management Group (OMG) accepted UML as its
standard for modeling object-oriented systems in 1997
[6]. The new SEMI standard defines a clock object,
which allows a host system or the factory to query about
the equipment or application time synchronization qual-
ity and status. The attributes of the clock object are based
on selected attributes defined in Network Time Protocol
(NTP), and used to access the clock object and to enable
or disable time synchronization through the factory net-
work [7-8]. So far, no object-oriented model of the IEEE
1588 standard exists today. NIST researchers are inter-
ested in developing an object-oriented model for the
IEEE 1588 standard in order to reduce development time
for IEEE 1588 applications.

2. Object-Oriented Model for IEEE 1588
Standard

In an object-oriented design approach, the designer
uses classes to define data types. A class may add func-
tionality to an existing type or extend the current type
capabilities to create a completely new type, a derived
type. The IEEE 1588 data types, datasets entities, and
devices can be modeled based on object-oriented model
approach using the UML tool.

2.1. Object-oriented Data Object Model of IEEE 1588
Data Types

The IEEE 1588 data types can be classified into
primitive data types and derived data types (or structured
data type). The primitive data types include Boolean,
Integers (signed and unsigned 8 bits, 16 bits, 32bits, and
64 bits), and Octet (an 8 bit unsigned char). The derived
data types of the IEEE 1588 shall be derived from these
primitive data types. The derived data type includes ar-
rays of the primitives, structs, and enumerations. The
following describes the object-oriented data model of the
IEEE 1588 standard-v2 in UML tool.

2.1.1. Mapping Primitive Data Types of IEEE 1588 to
C++

The primitive data types of IEEE 1588 include Boo-
lean, Integers (signed and unsigned 8 bits, 16 bits, 32 bits
and 64 bits), and Octet (an 8 bit unsigned char). There
are exactly mapping the primitive types in C++ language,
referred to as bool, char, short, int, long. So the IEEE
1588 primitive data types can be directly mapped into

1-4244-1064-9/07/$25.00 ©2007 IEEE 7

2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
For Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

C++ primitive data types. For example, we use typedef
to define UInteger8 as unsigned char in C++. Table 1
shows the mapping of IEEE 1588 primitive data types to
C++.

Table 1 Mapping primitive data types of IEEE

1588 to C++

IEEE 1588
primitive
data types

C++
Primitive
Data Types

Definition

Boolean bool typedef bool Boolean
Octet Unsigned

char
typdef unsigned char UInteger8

Integer8 char typedef char Integer8
Integer16 short typedef short Integer16
Integer32 int typedef int Integer32
Integer64 long typedef long Integer64
UInteger8 unsigned

char
typdef unsigned char UInteger8

UInteger16 unsigned
short

typdef unsigned short UInte-
ger16

UInteger32 unsigned
int

typdef unsigned int UInteger32

UInteger64 Unsigned
long

typdef unsigned long UInteger64

2.1.2 Definitions of Derived Data Types in C++

The derived data types of the IEEE 1588 include ar-
rays of primitive data types, enumerations, and structs.
C++ is an object-oriented programming language, so all
derived data types for IEEE 1588 can be defined as
classes in C++. Table 2 shows the mapping of derived
data types of IEEE 1588 to C++. We define these struc-
tured data types as classes.

Table 2 Mapping derived data types to
C++

IEEE 1588
Derived Data Types

C++

array class
Enumeration enum
typedef subclass or attrib-

utes of class
struct class

Integer16Array

integer16s : int*
size:int

Integer32Array

integer32s : int*
size:int

Integer64Array

integer64s : long*
size:int

Integer8Array

integer8s:char*
size:int

UInteger16Array

size:int
uinteger16s : unsigned short*

UInteger32Array

size:int
uinteger32s : unsigned int*

UInteger64Array

size:int
uinteger64s : unsigned long*

UInteger8Array

size:int
uinteger8s : unsigned char*

OctetArray

octets : unsigned char*
size:int

ClockIdentity

Figure 1. Arrays of primitive data types
of IEEE 1588.

2.1.2.1. Definitions of Array of Primitive Data Types
All the arrays of primitive types can be defined as a

class in C++. For example, Integer8Array can be defined
as a class and Integer8 can be mapped into a char in C++.
So Integer8Array can be defined as a class with attributes
integer8s (array of char) and a size of the array.

Figure 1 shows the class definitions of all arrays of
primitive data types of the IEEE 1588 standard. These
classes include OctetArray, Integer8Array, Inte-
ger16Array, Integer32Array, Integer64Array, UInte-
ger8Array, UInteger16Array, UInteger32Array, and UIn-
teger64Array.

2.1.2.2. Subclass Definition of Typedef

The typedef of C++ can be used to define user data
types based on the existing data types. It is normally
based on primitive data types. When the existing data
types are classes, the typedef can be used to define a new
data type by deriving a sub-class from the existing
classes. For example, typedef Octet[8] ClockIden-

tity, Octet[] can be defined as a class OctetArray,
which is array of Octet (unsigned char), so clockIdentity
is a subclass of OctetArray. Figure 1 shows the inheri-
tance relationship between ClockIdentity and OctetArray.

2.1.2.3. Definitions of Struct Data Types

The struct data type of IEEE 1588 can be mapped to
a C++ class with the same name. The members of struct
can be mapped to the attributes of the class. The attrib-
utes of a class can also be represented through the asso-
ciations. The struct data types of IEEE 1588 include
TimeInterval, Timestamp, PortIdentity, PortAddress,
ClockQuality, TLV, PTPText, and FaultRecord. Figure
2 shows class definitions of these struct data types.

PortAddress

networkProtocol:Enumeration16
addressLength : UInteger16*
address : OctetArray*

PortIdentity

clockIdentity : ClockIdentity*
portNumber : UInteger16*

TimeInterval

scaledNanoseconds : Integer64*

Timestamp

seconds : UInteger48*
nanoseconds : UInteger32*

TLV

tlvType:Enumeration16
length : UInteger16*
value : OctetArray*

PTPText

length : UInteger8*
text : OctetArray*

FaultRecord

faultRecordLength : UInteger16*
faultTime : Timestamp*
severity:Enumeration8
faultName : PTPText*
faultValue : PTPText*
faultDescription : PTPText*

ClockQuality

clockAccuracy:Enumeration8
offsetScaledLogVariance : UInteger8*

Figure 2. Classes of struct types.

There are some data types defined in IEEE 1588-v2,

which are not based on smallest native data types (byte,
or char), such as UInteger4, UInteger48, and Enumera-
tion4. Although the smallest native data type of C++ is
char, the language does enable us to manipulate bits di-
rectly without resorting to assembly programming or

8

2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
For Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

inefficient libraries. A bit-field is a data member of a
struct or a class which contains one or more bits. The
underlying type can be signed char, short, int, long, un-
signed counterparts. For example, Nibble, UInteger4, and
UInteger48 can be defined as struct in the following.

typedef struct Nibble {
 unsigned char nibble:4;
} Nibble;

typedef struct UInteger4 {
 unsigned char uinteger4:4;
} UInteger4;

typedef struct UInteger48 {
 unsigned short first:16;
 unsigned short second:16;
 unsigned short third:16;
} UInteger48;

2.1.2.4. Definitions of Enumeration
The enumerations of IEEE 1588 can be directly

mapped into enum of C++. These enumerations include
Enumeration4, Enumeration8, Enumeration16, ClockAc-
curacy, ClockType, TimeSource, PTPState, Delay-
Mechanism, MessageType, Control, Action, Initializa-
tionKey, FaultLog, ManagementErrorID, TrustState,
ChallengeType, PTPTimeScale, TimeAccuracy, Port-
State, Version, MessageClass, MessageTransmissionIn-
tervals, GeneralMessage, EventMessage, PTPNetwork-
Protocol, and AddressType. For example, the enumera-
tion MessageType can be defined in the following.

enum MessageType
{
 SYNC,
 DELAY_REQ,
 PDELAY_REQ,
 PDELAY_RESP,
 FOLLOW_UP,
 DELAY_RESP,
 PDELAY_RESP_FOLLOW_UP,
 ANNOUNCE,
 SIGNALING,
 MANAGEMENT
};

OBClockPortDataset

portIdentity : PortIdentity*
portState:PortState
logMinMeanDelayReqInterval : TimeInterval*
peerMeanPathDelay : TimeInterval*
logMeanAnnounceInterval : TimeInterval*
announceReceipTimeout : UInteger8*
logMeanSyncInterval : TimeInterval*
delayMechanism:DelayMechanism
logMinMeanPdelayReqInterval : TimeInterval*
versionNumber:Version

TClockPortDataset

portIdentity : PortIdentity*
logMinMeanPdelayReqInterval : TimeInterval*
faulty : Boolean*
peerMeanPathDelay : TimeInterval*

Figure 3. Port dataset of clock.

2.2. Definitions of IEEE 1588 Datasets
2.2.1. Port Dataset

There are two kinds of port datasets defined in IEEE
1588. They are ordinary and boundary clock port data set
and transparent clock port dataset. Figure 3 shows Port-
Dataset of ordinary and boundary clock, and PortDataset
of transparent clock. The OBClockPortDataset in Figure

3 is a port dataset of ordinary and boundary clocks.
TClockPortDataset in Figure 3 is port dataset of transpar-
ent clock.

2.2.2. Ordinary and Boundary Clock Dataset

The ordinary and boudary clocks have four datasets:
DefaultDataset, CurrentDataset, TimePropertyDataset,
and ParentDataset. Figure 4 shows ordinary and bound-
ary clock dataset, which includes DefaultDataset, Cur-
rentDataset, TimePropertyDataset, and ParentDataset.
Each dataset can be defined as a class.

OBClockDefaultDataset

twoStepClock : Boolean*
clockIdentity : ClockIdentity*
numberPorts : UInteger16*
clockQuality : ClockQuality*
priority1 : UInteger8*
priority2 : UInteger8*
domainNumber:PTPDomain
slaveOnly : Boolean*

OBClockParentDataset

parentPortIdentity : PortIdentity*
parentStats : Boolean*
observedParentOffsetScaledLogVariance : PTPVariance*

OBClockTimePropertiesDataset

currentUtcOffset : TimeInterval*
currentUtcOffsetValid : Boolean*
leap59 : Boolean*
leap61 : Boolean*
timeTraceable : Boolean*
frequencyTraceable : Boolean*
pTPTimescale:PTPTimescale
timeSource:TimeSource

OBClockCurrentDataset

stepsRemoved : UInteger16*
offsetFromMaster : TimeInterval*
meanPathDelay : TimeInterval*

Figure 4. Ordinary and boundary clock
datasets.

2.2.3. Transparent Clock Dataset
The transparent clock has two datasets: default data-

set and current dataset. Figure 5 shows the object model
of transparent clock dataset,. TClockDefaultDataset is the
default dataset; TClockCurrentDataset is the current data-
set.

TClockCurrentDataset

syntoni zed : Boolean
domainSyntonization : Boolean*
scaledFractionalFrequencyOffset : OctetArray*

TClockDefaultDataset

clockIdentity : ClockIdentity*
numberPorts : UIntegr16*
delayMechanism:DelayMechanism
primaryDomain:PTPDomain

Figure 5. Transparent clock dataset.

2.3. Definitions of IEEE 1588 Entities

The IEEE 1588 PTP entities include PTPMessage,
PTPTimeouts, PTPPort, PTPVariance,
P2PResidenceTimeBridge, E2EResidnceTimeBridge and
FlagIndicator. These entities can be defined as classes
shown in Figure 6. The PTP port is a logical access point
of a PTP clock for PTP communications to the commu-
nications network. Each port on a PTP ordinary, bound-
ary , and transparent clock is modeled as supporting two
interfaces, event and general. The event interface is used
to send and receive event messages, which are time-
stamped by the timestamp generation block based on the
value of the local clock. The general interface is used to
send and receive general messages.

Figure 6 shows the definition of PTPPort class. The
PTP Port has one PortIdentity, one PortAddress, one
EventInterface (PTPMessage), one GeneralInterface
(PTPMessage), one TimeStamp, one PortState, one Path
DelayMechanism, and one Version. The state machine

9

2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
For Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

sign is shown in upper-right corner of class diagram of
PTPTPort. The PTPPort C++ source code (PTPPort.h
and PTPPort.cpp) generated from this model is de-
scribed in the following.

FlagIndicator

unicast : Boolean*
faultTolerance : Boolean*
twoStepClock : Boolean*

PTPPort

state:PortState
version:Version
pathDelayMechanism:DelayMechanism

PTPVariance

estimateVariance : UInteger64*
logarithmToBase : UInteger16*
logarithm : UInteger16*
scaledValue : UInteger16*
reportedValue : Integer16*
offsetScaledReportedValue : UInteger16*

PortIdentity

clockIdentity : ClockIdentity*
portNumber : UInteger16*

1 portIdentity

PortAddress

networkProtocol:Enumeration16
addressLength : UInteger16*
address : OctetArray*

1 portAddress

Timestamp

seconds : UInteger48*
nanoseconds : UInteger32*

1
timestamp

PTPMessage

messageClass:MessageClass
messageSourcePortIdentity : PortIdentity*
messageType:MessageType
messageSequenceNumber : UInteger16*
flagIndicator : FlagIndicator*

1 generalInterface

PTPTimeouts

announceReceiptTimeout : UInteger8*

PTPMessage

messageClass:MessageClass
messageSourcePortIdentity : PortIdentity*
messageType:MessageType
messageSequenceNumber : UInteger16*
flagIndicator : FlagIndicator*

1eventInterface

PTPMessage

messageClass:MessageClass
messageSourcePortIdentity : PortIdentity*
messageType:MessageType
messageSequenceNumber : UInteger16*
flagIndicator : FlagIndicator*

E2EResidenceTimeBridge

DelayFollowUpMsg:Timestamp
DelayPdelayRespFollowUpMsg:Timestamp

P2PResidenceTimeBridge

DelayPdelayReqMsg:Timestamp
DelayPdelayRespMsg:Timestamp

Figure 6. Class of PTP entities.

// PTPPort.h

class PTPPort : public OMReactive {

PTPPort(OMThread* p_thread = OMDefaultThread);
PTPPort(const PTPPort& a, OMThread* p_thread =
OMDefaultThread);
~PTPPort();

public :
const PTPPort& operator=(const PTPPort& a);

// Attributes
protected :

DelayMechanism pathDelayMechanism;
PortState state;
Version version;

//Relations and components
protected :

OBClockPortDataset* bClockPortDataset;
PTPMessage* eventInterface;
PTPMessage* generalInterface;
PortAddress* portAddress;
PortIdentity* portIdentity;
Timestamp* timestamp;

};

// PTPPort.cpp
PTPPort::PTPPort(OMThread* p_thread) {

 setThread(p_thread, FALSE);
 bClockPortDataset = NULL;
 eventInterface = NULL;
 generalInterface = NULL;
 portAddress = NULL;
 portIdentity = NULL;
 timestamp = NULL;
 initStatechart();

}

PTPPort::PTPPort(const PTPPort& a, OMThread*
p_thread) {
 timestamp = NULL;
 portIdentity = NULL;
 portAddress = NULL;
 generalInterface = NULL;
 eventInterface = NULL;
 bClockPortDataset = NULL;
 setThread(p_thread, FALSE);
 initStatechart();
 (PTPPort&)*this=(PTPPort&)a;
}

PTPPort::~PTPPort() {
 cleanUpRelations();
}

const PTPPort& PTPPort::operator=(const PTPPort&
a) {
 (PTPPort&)*this=(PTPPort&)a;
 return *this;
}

2.4. Object Modeling of the IEEE 1588 Devices

A clock is capable of providing a measurement of
the passage of time since a defined epoch. A PTP clock is
a clock that participates in the PTP protocol. Different
clocks have different datasets. There are five types of
PTP devices: LocalClock, Ordinary clock, Boundary
clock, End-to-end transparent clock, Peer-to-peer trans-
parent clock, and Management node. A LocalClock is a
physical clock with a timestamp. All other PTP devices
are identified by a clock identity attribute, which is in-
cluded in PortIdentity.

OrdinaryClock

priority1 : UInteger8*
priority2 : UInteger8*
clockClass : UInteger8*
clockAccuracy:TimeAccuracy
pTPVariance:PTPVariance
timeSource:TimeSource
numberPorts:UInteger16=1

PTPPort

1 pTPPort

OBClockDefaultDataset

1
oBClockDefaultDataset

OBClockCurrentDataset

1
oBClockCurrentDataset

OBClockParentDataset

1oBClockParentDataset

OBClockPortDataset

1 bClockPortDataset

OBClockTimePropertiesDataset

1oBClockTimePropertiesDataset

LocalClock

1

localClock

Figure 7. Object model of ordinary clock.

10

2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
For Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

2.4.1. Object Model of IEEE 1588 Ordinary Clock

An ordinary clock communicates with the network
via two logical interfaces based on a single physical port.
The ordinary clock can be the grandmaster clock in a
system or it can be a slave clock in the master-slave hier-
archy. Figure 7 shows the object model of ordinary
clock. Each ordinary clock has one LocalClock, one
OBClockDefaultDataset, one OBClockCurrentDataset,
one OBClockParentDataset, one TimePropertiesDataset,
and only one OBClockPortDataset. The ordinary clocks
are characterized by the attributes: priority1, priority2,
clockClass, clockAccuracy, timeSource, pTPVariance
and numberPorts. Each ordinary clock may have only
one PTPPorts.

2.4.2. Object Model of IEEE 1588 Boundary Clock

A boundary clock translates the PTP protocol mes-
sages between regions implementing different transport
and messaging protocols. A boundary clock typically has
several physical ports with each physical port communi-
cating with the network via two logical event and general
interfaces. Each port of a boundary clock is like the port
of an ordinary clock with the following exceptions. The
clock data sets are common to all ports of the boundary
clock. The local clock is common to all ports of the
boundary clock.

BoundaryClock

priority1 : UInteger8*
priority2 : UInteger8*
clockClass : UInteger8*
clockAccuracy:TimeAccuracy
timeSource:TimeSource
pTPVariance : PTPVariance*
numberPorts : UInteger16*
observedParentOffsetScaledLogVariance : Integer16*
observedParentClockPhaseChangeRate : Integer32*

OBClockDefaultDataset

1oBClockDefaultDataset

OBClockCurrentDataset

1
oBClockCurrentDataset

OBClockParentDataset

1oBClockParentDataset

OBClockPortDatasetOBClockTimePropertiesDataset

1oBClockTimePropertiesDataset

PTPPort

1..* pTPPort

1 bClockPortDataset

LocalClock

1 localClock

Figure 8. Object model of boundary clock.

Figure 8 shows the object model of boundary clock,
which has one LocalClock, one OBClockDefaultDataset,
one OBClockCurrentDataset, one OBClockParentData-
set, one TimePropertiesDataset, and one or many
PTPPorts. Each PTPPort has one OBClockPortDataset.
The boundary clocks are characterized by the attributes:
priority1, priority2, clockClass, clockAccuracy,
timeSource, pTPVariance, and numberPorts.

2.4.3 Object Model of IEEE 1588 End-To-End Trans-
parent Clock

A transparent clock translates the PTP protocol mes-
sages between regions implementing different transport
and messaging protocols. The end-to-end transparent
clock forwards all messages just as a normal switch,
router, or repeater. However for PTP event messages, the
residence time bridge measures the residence time of
PTP event messages. These residence times are accumu-
lated in a special field, the correction field, of the PTP
event message or the associated follow up message.

EndToEndTransparentClock

PTPPort

1..*pTPPort

TClockDefaultDataset

1tClockDefaultDataset

TClockCurrentDataset

1tClockCurrentDataset

TClockPortDataset

1 tClockPortDataset

E2EResidenceTimeBridge

1 e2EResidenceTimeBridge

LocalClock

1localClock

Figure 9. End-to-end transparent clock.

Figure 9 shows the object model of end-to-end

transparent clock. Each end-to-end transparent clock has
one LocalClock, one TClockDefaultDataset, one
TClockCurrentDataset, one TClockPortDataset, one
E2EResidenceTimeBridge, and one or many PTPPorts.

PeerToPeerTransparentClock

TClockPortDataset

1tClockPortDataset

PTPPort

1..* pTPPort

TClockDefaultDataset

1tClockDefaultDataset

TClockCurrentDataset

1
tClockCurrentDataset

P2PResidenceTimeBridge

1 p2PResidenceTimeBridge

LocalClock

1 localClock

Figure 10. Peer-to-peer transparent
clock.

2.4.4 Object Model of IEEE 1588 Peer-To-Peer
Transparent clock

The peer-to-peer transparent clock differs from the
end-to-end transparent clock in the way it corrects and
handles the PTP timing messages. The peer-to-peer trans-
parent clock can be associated with an ordinary clock in
exactly the same way as an end-to-end transparent clock.
The peer-to-peer transparent clock has an additional per
port block. This block is used to compute the link delay
between each port and a similarly equipped port on an-
other node sharing the link, i.e., the link peer. The link
peer will be in another clock supporting the peer delay
mechanism since non-peer-to-peer devices are not ex-
pected between peer-to-peer transparent clocks. Figure

11

2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
For Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

10 shows the object model of peer-to-peer transparent
clock. Each peer-to-peer transparent clock has one Lo-
calClock, one TClockDefaultDataset, one TClockCur-
rentDataset, TClockPortDataset, and one or many
PTPPorts.

3. Library Building and Application of

IEEE 1588

This model has been used to generate C++ source

code, and successfully compiled and built a C++ library
that includes a set of classes of the IEEE 1588 standard.
Figure 11 shows the interface of library building of ob-
ject-oriented model of the IEEE 1588 standard. IEEE
1588 application developers can use it to implement their
IEEE 1588 applications based on the established library.

A PTP system is a distributed, networked system
consisting of a combination of PTP and non-PTP de-
vices. PTP devices include ordinary clocks, boundary
clocks, transparent clocks, and management nodes. De-
vices in a PTP system communicate with each other via a
communication network. The network may include trans-
lation devices between segments implementing different
network communication protocols.

Figure 11. Interface of library building
for IEEE 1588.

Within sensor networks, establishing the precise

time that a particular observation or measurement is
made is of crucial importance. For instance, when raw
sensor data is fused from multiple sources it is imperative
that the data was generated at the exact same moment as
when the event occurred. It is important to synchronize
the time of sensor nodes for sensor data fusion. It is pos-
sible to integrate the IEEE 1451 and the IEEE 1588 stan-

dards for distributed and synchronized measurement and
control applications using this model. An IEEE 1451
Network Capable Application Processor (NCAP) uses a
boundary (master) clock with one or more PTP ports; An
IEEE 1451 Transducer Interface Module (TIM) uses an
ordinary (slave) clock with one port. So a number of
TIMs can synchronize with the NCAP to implement syn-
chronized and distributed measurement and control.

4. Conclusion

We have developed the object-oriented model for the
IEEE 1588 standard-v2. The model has been used to pro-
duce C++ source codes, and create a C++ library for the
IEEE 1588 standard. Using this object-oriented model,
the development time of IEEE 1588 applications can be
reduced dramatically.

Our future work is to develop the reference imple-
mentation of the IEEE 1588 standard based on this ob-
ject-oriented model, and to integrate with the IEEE 1451
standard to do synchronized measurement and control.

** Commercial equipment and software, many of which
are either registered or trademarked, are identified in
order to adequately specify certain procedures. In no case
does such identification imply recommendation or en-
dorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for
the purpose.

References:

[1] IEEE P1588D2.1, Draft Standard for a Precision

Clock Synchronization Protocol for Networked
Measurement and Control Systems, 2007.

[2] Lee, Kang, Song, Eugene Y. UML Model for the
IEEE 1451.1 Standard, IEEE Instrumentation and
Measurement Technology Conference, Vail, CO,
May 2003.

[3] Fowler, Martin., Scott, Kendall. UML Distilled (sec-
ond edition) - A brief guide to the standard object
modeling language, Addison-Wesley, 1999.

[4] Douglass, Bruce. Real-time Object-oriented Model
(second edition): Developing efficient objects for
embedded systems, Addison-Wesley, 1999.

[5] James, Rumbaugh., Ivar, Jacobson., Grady, Booch.
The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[6] UML, http://www.omg.org/uml/ [last updated; Janu-
ary 02, 2007]

[7] Gino Crispieri, Software Timing Synchronization,
http://www.future-fab.com/documents.asp?d_ID=4405
[last updated: 7/9/2007]

[8] NTP, http://www.ntp.org/ [last updated: August 06,
2007.]

12

