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Abstract 

 
The IEEE 1588 standard specifies a protocol enabling 

precise synchronization of clocks in measurement and control 
systems implemented with technologies such as network com-
munication, and distributed objects. The Unified Modeling 
Language (UML) is a powerful tool for object-oriented model-
ing, design, and development of complex distributed systems. 
This paper describes an object-oriented model for the IEEE 
1588 standard-v2, which has been developed using UML tool at 
National Institute of Standards and Technology (NIST). This 
model consists of the data types, datasets, entities, and devices 
of IEEE 1588 standard-v2. The model has been used to produce 
C++ source codes, and create C++ libraries for the IEEE 
1588 standard-v2. With the help of this object model, the devel-
opment time of IEEE 1588-basd distributed measurement and 
control applications can be reduced dramatically. 
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1. Introduction 
 

The IEEE 1588 standard defines a precision time 
protocol (PTP) enabling precise synchronization of 
clocks in measurement and control systems implemented 
with technologies such as network communication, local 
computing, and distributed objects [1]. The protocol is 
applicable to systems communicating via packet net-
works. The protocol supports system-wide synchroniza-
tion accuracy in the sub-microsecond range with minimal 
network and local clock computing resources. This IEEE 
1588 protocol is applicable to distributed measurement 
and control systems consisting of one or more nodes, 
communicating over a network. Nodes are modeled as 
containing a real-time clock that may be used by applica-
tions within the node for various purposes such as gener-
ating timestamps for data or ordering events managed by 
the node. 

Object-oriented development methodology is a ro-
bust and flexible software development approach because 
it provides a better way to organize software allowing the 
developer to build better, scalable, and more complex 
software with less effort [2]. UML (Unified Model Lan-
guage) is a modeling language for supporting object-
oriented modeling, design, and development by express-
ing the constructs and the relationships of the compo-
nents of a complex distributed system. It combines the 
methods of Booch, Rumbaugh, and Jacobson [3-5]. The 

Object Management Group (OMG) accepted UML as its 
standard for modeling object-oriented systems in 1997 
[6]. The new SEMI standard defines a clock object, 
which allows a host system or the factory to query about 
the equipment or application time synchronization qual-
ity and status. The attributes of the clock object are based 
on selected attributes defined in Network Time Protocol 
(NTP), and used to access the clock object and to enable 
or disable time synchronization through the factory net-
work [7-8]. So far, no object-oriented model of the IEEE 
1588 standard exists today. NIST researchers are inter-
ested in developing an object-oriented model for the 
IEEE 1588 standard in order to reduce development time 
for IEEE 1588 applications. 

 
2.  Object-Oriented Model for IEEE 1588 
Standard 
 

In an object-oriented design approach, the designer 
uses classes to define data types.  A class may add func-
tionality to an existing type or extend the current type 
capabilities to create a completely new type, a derived 
type. The IEEE 1588 data types, datasets entities, and 
devices can be modeled based on object-oriented model 
approach using the UML tool.  
 
2.1. Object-oriented Data Object Model of IEEE 1588 
Data Types  

The IEEE 1588 data types can be classified into 
primitive data types and derived data types (or structured 
data type). The primitive data types include Boolean, 
Integers (signed and unsigned 8 bits, 16 bits, 32bits, and 
64 bits), and Octet (an 8 bit unsigned char). The derived 
data types of the IEEE 1588 shall be derived from these 
primitive data types. The derived data type includes ar-
rays of the primitives, structs, and enumerations. The 
following describes the object-oriented data model of the 
IEEE 1588 standard-v2 in UML tool.  

 
2.1.1. Mapping Primitive Data Types of IEEE 1588 to 
C++ 

The primitive data types of IEEE 1588 include Boo-
lean, Integers (signed and unsigned 8 bits, 16 bits, 32 bits 
and 64 bits), and Octet (an 8 bit unsigned char). There 
are exactly mapping the primitive types in C++ language, 
referred to as bool, char, short, int, long. So the IEEE 
1588 primitive data types can be directly mapped into 
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C++ primitive data types.  For example, we use typedef 
to define UInteger8 as unsigned char in C++. Table 1 
shows the mapping of IEEE 1588 primitive data types to 
C++. 

 
Table 1 Mapping primitive data types of IEEE 

1588 to C++ 
 

IEEE 1588 
primitive  
data types 

C++  
Primitive 
Data Types 

Definition 

Boolean bool typedef bool Boolean 
Octet Unsigned 

char 
typdef unsigned char UInteger8 

Integer8 char typedef char Integer8 
Integer16 short typedef short Integer16 
Integer32 int typedef int Integer32 
Integer64 long typedef long Integer64 
UInteger8 unsigned 

char 
typdef unsigned char UInteger8 

UInteger16 unsigned 
short 

typdef unsigned short UInte-
ger16 

UInteger32 unsigned 
int 

typdef unsigned int UInteger32 

UInteger64 Unsigned 
long 

typdef unsigned long UInteger64 

 
2.1.2 Definitions of Derived Data Types in C++   

The derived data types of the IEEE 1588 include ar-
rays of primitive data types, enumerations, and structs. 
C++ is an object-oriented programming language, so all 
derived data types for IEEE 1588 can be defined as 
classes in C++. Table 2 shows the mapping of derived 
data types of IEEE 1588 to C++. We define these struc-
tured data types as classes. 
 

Table 2 Mapping derived data types to 
C++ 

IEEE 1588  
Derived Data Types 

C++  

array  class  
Enumeration enum 
typedef subclass or attrib-

utes of class 
struct class 

 
Integer16Array

integer16s : int*
size:int

Integer32Array

integer32s : int*
size:int

Integer64Array

integer64s : long*
size:int

Integer8Array

integer8s:char*
size:int

UInteger16Array

size:int
uinteger16s : unsigned short*

UInteger32Array

size:int
uinteger32s : unsigned int*

UInteger64Array

size:int
uinteger64s : unsigned long*

UInteger8Array

size:int
uinteger8s : unsigned char*

OctetArray

octets : unsigned char*
size:int

ClockIdentity

 
 
Figure 1. Arrays of primitive data types 
of IEEE 1588. 

2.1.2.1. Definitions of Array of Primitive Data Types 
All the arrays of primitive types can be defined as a 

class in C++. For example, Integer8Array can be defined 
as a class and Integer8 can be mapped into a char in C++.  
So Integer8Array can be defined as a class with attributes 
integer8s (array of char) and a size of the array.  

Figure 1 shows the class definitions of all arrays of 
primitive data types of the IEEE 1588 standard.  These 
classes include OctetArray, Integer8Array, Inte-
ger16Array, Integer32Array, Integer64Array, UInte-
ger8Array, UInteger16Array, UInteger32Array, and UIn-
teger64Array. 

 
2.1.2.2. Subclass Definition of Typedef 

The typedef of C++ can be used to define user data 
types based on the existing data types. It is normally 
based on primitive data types. When the existing data 
types are classes, the typedef can be used to define a new 
data type by deriving a sub-class from the existing 
classes. For example, typedef Octet[8] ClockIden-

tity, Octet[] can be defined as a class OctetArray, 
which is array of Octet (unsigned char), so clockIdentity 
is a subclass of OctetArray.  Figure 1 shows the inheri-
tance relationship between ClockIdentity and OctetArray. 
 
2.1.2.3. Definitions of Struct Data Types  

The struct data type of IEEE 1588 can be mapped to 
a C++ class with the same name. The members of struct 
can be mapped to the attributes of the class. The attrib-
utes of a class can also be represented through the asso-
ciations. The struct data types of IEEE 1588 include 
TimeInterval, Timestamp, PortIdentity, PortAddress, 
ClockQuality, TLV, PTPText, and FaultRecord.  Figure 
2 shows class definitions of these struct data types.  

 

PortAddress

networkProtocol:Enumeration16
addressLength : UInteger16*
address : OctetArray*

PortIdentity

clockIdentity : ClockIdentity*
portNumber : UInteger16*

TimeInterval

scaledNanoseconds : Integer64*

Timestamp

seconds : UInteger48*
nanoseconds : UInteger32*

TLV

tlvType:Enumeration16
length : UInteger16*
value : OctetArray*

PTPText

length : UInteger8*
text : OctetArray*

FaultRecord

faultRecordLength : UInteger16*
faultTime : Timestamp*
severity:Enumeration8
faultName : PTPText*
faultValue : PTPText*
faultDescription : PTPText*

ClockQuality

clockAccuracy:Enumeration8
offsetScaledLogVariance : UInteger8*

   
 
Figure 2. Classes of struct types. 
 
There are some data types defined in IEEE 1588-v2, 

which are not based on smallest native data types (byte, 
or char), such as UInteger4, UInteger48, and Enumera-
tion4. Although the smallest native data type of C++ is 
char, the language does enable us to manipulate bits di-
rectly without resorting to assembly programming or 
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inefficient libraries. A bit-field is a data member of a 
struct or a class which contains one or more bits. The 
underlying type can be signed char, short, int, long, un-
signed counterparts. For example, Nibble, UInteger4, and 
UInteger48 can be defined as struct in the following. 

 
typedef struct Nibble { 
     unsigned char nibble:4; 
} Nibble; 
 
typedef struct UInteger4 { 
     unsigned char uinteger4:4; 
} UInteger4; 
 
typedef struct UInteger48 { 
   unsigned short first:16;    
   unsigned short second:16;    
   unsigned short third:16;     
} UInteger48; 
 

2.1.2.4. Definitions of Enumeration 
The enumerations of IEEE 1588 can be directly 

mapped into enum of C++. These enumerations include 
Enumeration4, Enumeration8, Enumeration16, ClockAc-
curacy, ClockType, TimeSource, PTPState, Delay-
Mechanism, MessageType, Control, Action, Initializa-
tionKey, FaultLog, ManagementErrorID, TrustState, 
ChallengeType, PTPTimeScale, TimeAccuracy, Port-
State, Version, MessageClass, MessageTransmissionIn-
tervals, GeneralMessage, EventMessage, PTPNetwork-
Protocol, and AddressType. For example, the enumera-
tion MessageType can be defined in the following. 

 
enum MessageType 
{ 
  SYNC, 
  DELAY_REQ, 
  PDELAY_REQ, 
  PDELAY_RESP, 
  FOLLOW_UP, 
  DELAY_RESP, 
  PDELAY_RESP_FOLLOW_UP, 
  ANNOUNCE, 
  SIGNALING, 
  MANAGEMENT 
}; 

 
OBClockPortDataset

portIdentity : PortIdentity*
portState:PortState
logMinMeanDelayReqInterval : TimeInterval*
peerMeanPathDelay : TimeInterval*
logMeanAnnounceInterval : TimeInterval*
announceReceipTimeout : UInteger8*
logMeanSyncInterval : TimeInterval*
delayMechanism:DelayMechanism
logMinMeanPdelayReqInterval : TimeInterval*
versionNumber:Version

TClockPortDataset

portIdentity : PortIdentity*
logMinMeanPdelayReqInterval : TimeInterval*
faulty : Boolean*
peerMeanPathDelay : TimeInterval*

 
 

Figure 3. Port dataset of clock. 
 

2.2. Definitions of IEEE 1588 Datasets  
2.2.1. Port Dataset 

There are two kinds of port datasets defined in IEEE 
1588. They are ordinary and boundary clock port data set 
and transparent clock port dataset. Figure 3 shows Port-
Dataset of ordinary and boundary clock, and PortDataset 
of transparent clock. The OBClockPortDataset in Figure 

3 is a port dataset of ordinary and boundary clocks. 
TClockPortDataset in Figure 3 is port dataset of transpar-
ent clock. 

 
2.2.2. Ordinary and Boundary Clock Dataset 

The ordinary and boudary clocks have four datasets: 
DefaultDataset, CurrentDataset, TimePropertyDataset, 
and ParentDataset. Figure 4 shows ordinary and bound-
ary clock dataset, which includes DefaultDataset, Cur-
rentDataset, TimePropertyDataset, and ParentDataset. 
Each dataset can be defined as a class. 
 

OBClockDefaultDataset

twoStepClock : Boolean*
clockIdentity : ClockIdentity*
numberPorts : UInteger16*
clockQuality : ClockQuality*
priority1 : UInteger8*
priority2 : UInteger8*
domainNumber:PTPDomain
slaveOnly : Boolean*

OBClockParentDataset

parentPortIdentity : PortIdentity*
parentStats : Boolean*
observedParentOffsetScaledLogVariance : PTPVariance*

OBClockTimePropertiesDataset

currentUtcOffset : TimeInterval*
currentUtcOffsetValid : Boolean*
leap59 : Boolean*
leap61 : Boolean*
timeTraceable : Boolean*
frequencyTraceable : Boolean*
pTPTimescale:PTPTimescale
timeSource:TimeSource

OBClockCurrentDataset

stepsRemoved : UInteger16*
offsetFromMaster : TimeInterval*
meanPathDelay : TimeInterval*

 
 
Figure 4. Ordinary and boundary clock 
datasets. 
 

2.2.3. Transparent Clock Dataset 
The transparent clock has two datasets: default data-

set and current dataset. Figure 5 shows the object model 
of transparent clock dataset,. TClockDefaultDataset is the 
default dataset; TClockCurrentDataset is the current data-
set.  

TClockCurrentDataset

syntoni zed : Boolean
domainSyntonization : Boolean*
scaledFractionalFrequencyOffset : OctetArray*

TClockDefaultDataset

clockIdentity : ClockIdentity*
numberPorts : UIntegr16*
delayMechanism:DelayMechanism
primaryDomain:PTPDomain

 
 

Figure  5. Transparent clock dataset. 
 
2.3. Definitions of IEEE 1588 Entities  

The IEEE 1588 PTP entities include PTPMessage, 
PTPTimeouts, PTPPort, PTPVariance, 
P2PResidenceTimeBridge, E2EResidnceTimeBridge and 
FlagIndicator. These entities can be defined as classes 
shown in Figure 6.  The PTP port is a logical access point 
of a PTP clock for PTP communications to the commu-
nications network. Each port on a PTP ordinary, bound-
ary , and  transparent clock is modeled as supporting two 
interfaces, event and general. The event interface is used 
to send and receive event messages, which are time-
stamped by the timestamp generation block based on the 
value of the local clock. The general interface is used to 
send and receive general messages.  

Figure 6 shows the definition of PTPPort class. The 
PTP Port has one PortIdentity, one PortAddress, one  
EventInterface (PTPMessage), one GeneralInterface 
(PTPMessage), one TimeStamp, one PortState, one Path 
DelayMechanism, and one Version. The state machine 
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sign is shown in upper-right corner of class diagram of 
PTPTPort. The PTPPort C++ source code (PTPPort.h 
and PTPPort.cpp) generated from this model is de-
scribed in the following.  

 

FlagIndicator

unicast : Boolean*
faultTolerance : Boolean*
twoStepClock : Boolean*

PTPPort

state:PortState
version:Version
pathDelayMechanism:DelayMechanism

PTPVariance

estimateVariance : UInteger64*
logarithmToBase : UInteger16*
logarithm : UInteger16*
scaledValue : UInteger16*
reportedValue : Integer16*
offsetScaledReportedValue : UInteger16*

PortIdentity

clockIdentity : ClockIdentity*
portNumber : UInteger16*

1 portIdentity

PortAddress

networkProtocol:Enumeration16
addressLength : UInteger16*
address : OctetArray*

1 portAddress

Timestamp

seconds : UInteger48*
nanoseconds : UInteger32*

1
timestamp

PTPMessage

messageClass:MessageClass
messageSourcePortIdentity : PortIdentity*
messageType:MessageType
messageSequenceNumber : UInteger16*
flagIndicator : FlagIndicator*

1 generalInterface

PTPTimeouts

announceReceiptTimeout : UInteger8*

PTPMessage

messageClass:MessageClass
messageSourcePortIdentity : PortIdentity*
messageType:MessageType
messageSequenceNumber : UInteger16*
flagIndicator : FlagIndicator*

1eventInterface

PTPMessage

messageClass:MessageClass
messageSourcePortIdentity : PortIdentity*
messageType:MessageType
messageSequenceNumber : UInteger16*
flagIndicator : FlagIndicator*

E2EResidenceTimeBridge

DelayFollowUpMsg:Timestamp
DelayPdelayRespFollowUpMsg:Timestamp

P2PResidenceTimeBridge

DelayPdelayReqMsg:Timestamp
DelayPdelayRespMsg:Timestamp

 
 

Figure 6.  Class of PTP entities. 
 
// PTPPort.h 
 
class PTPPort : public OMReactive {     
 
PTPPort(OMThread* p_thread = OMDefaultThread);    
PTPPort(const PTPPort& a, OMThread* p_thread = 
OMDefaultThread);    
~PTPPort(); 
 
public :     
const PTPPort& operator=(const PTPPort& a); 

 
//    Attributes     
protected :   

DelayMechanism pathDelayMechanism;  
PortState state;   
Version version;   
 

//Relations and components   
protected : 

OBClockPortDataset* bClockPortDataset;       
PTPMessage* eventInterface;       
PTPMessage* generalInterface;       
PortAddress* portAddress;       
PortIdentity* portIdentity;       
Timestamp* timestamp;   

}; 
 
// PTPPort.cpp 
PTPPort::PTPPort(OMThread* p_thread) { 

    setThread(p_thread, FALSE); 
    bClockPortDataset = NULL; 
    eventInterface = NULL; 
    generalInterface = NULL; 
    portAddress = NULL; 
    portIdentity = NULL; 
    timestamp = NULL; 
    initStatechart(); 
 
} 
 
PTPPort::PTPPort(const PTPPort& a, OMThread* 
p_thread) { 
    timestamp = NULL; 
    portIdentity = NULL; 
    portAddress = NULL; 
    generalInterface = NULL; 
    eventInterface = NULL; 
    bClockPortDataset = NULL; 
    setThread(p_thread, FALSE); 
    initStatechart(); 
    (PTPPort&)*this=(PTPPort&)a; 
} 
 
PTPPort::~PTPPort() { 
    cleanUpRelations(); 
} 
 
const PTPPort& PTPPort::operator=(const PTPPort& 
a) { 
    (PTPPort&)*this=(PTPPort&)a; 
    return *this; 
} 

 
2.4. Object Modeling of the IEEE 1588 Devices 

A clock is capable of providing a measurement of 
the passage of time since a defined epoch. A PTP clock is 
a clock that participates in the PTP protocol.  Different 
clocks have different datasets. There are five types of 
PTP devices:  LocalClock, Ordinary clock, Boundary 
clock, End-to-end transparent clock, Peer-to-peer trans-
parent clock, and Management node. A LocalClock is a 
physical clock with a timestamp. All other PTP devices 
are identified by a clock identity attribute, which is in-
cluded in PortIdentity. 

 

OrdinaryClock

priority1 : UInteger8*
priority2 : UInteger8*
clockClass : UInteger8*
clockAccuracy:TimeAccuracy
pTPVariance:PTPVariance
timeSource:TimeSource
numberPorts:UInteger16=1

PTPPort

1 pTPPort

OBClockDefaultDataset

1
oBClockDefaultDataset

OBClockCurrentDataset

1
oBClockCurrentDataset

OBClockParentDataset

1oBClockParentDataset

OBClockPortDataset

1 bClockPortDataset

OBClockTimePropertiesDataset

1oBClockTimePropertiesDataset

LocalClock

1

localClock

 
Figure 7. Object model of ordinary clock. 
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2.4.1. Object Model of IEEE 1588 Ordinary Clock 

An ordinary clock communicates with the network 
via two logical interfaces based on a single physical port. 
The ordinary clock can be the grandmaster clock in a 
system or it can be a slave clock in the master-slave hier-
archy. Figure 7 shows the object model of ordinary 
clock. Each ordinary clock has one LocalClock, one 
OBClockDefaultDataset, one OBClockCurrentDataset, 
one OBClockParentDataset, one TimePropertiesDataset, 
and only one OBClockPortDataset.  The ordinary clocks 
are characterized by the attributes: priority1, priority2, 
clockClass, clockAccuracy, timeSource, pTPVariance 
and numberPorts.  Each ordinary clock may have only 
one PTPPorts. 

 
2.4.2. Object Model of IEEE 1588 Boundary Clock 

A boundary clock translates the PTP protocol mes-
sages between regions implementing different transport 
and messaging protocols. A boundary clock typically has 
several physical ports with each physical port communi-
cating with the network via two logical event and general 
interfaces. Each port of a boundary clock is like the port 
of an ordinary clock with the following exceptions. The 
clock data sets are common to all ports of the boundary 
clock. The local clock is common to all ports of the 
boundary clock.  

 

BoundaryClock

priority1 : UInteger8*
priority2 : UInteger8*
clockClass : UInteger8*
clockAccuracy:TimeAccuracy
timeSource:TimeSource
pTPVariance : PTPVariance*
numberPorts : UInteger16*
observedParentOffsetScaledLogVariance : Integer16*
observedParentClockPhaseChangeRate : Integer32*

OBClockDefaultDataset

1oBClockDefaultDataset

OBClockCurrentDataset

1
oBClockCurrentDataset

OBClockParentDataset

1oBClockParentDataset

OBClockPortDatasetOBClockTimePropertiesDataset

1oBClockTimePropertiesDataset

PTPPort

1..* pTPPort

1 bClockPortDataset

LocalClock

1 localClock

  
 

Figure 8. Object model of boundary clock. 
 

Figure 8 shows the object model of boundary clock, 
which has one LocalClock, one OBClockDefaultDataset, 
one OBClockCurrentDataset, one OBClockParentData-
set, one TimePropertiesDataset, and one or many 
PTPPorts.  Each PTPPort has one OBClockPortDataset. 
The boundary clocks are characterized by the attributes: 
priority1, priority2, clockClass, clockAccuracy, 
timeSource, pTPVariance, and numberPorts.  
 

2.4.3 Object Model of IEEE 1588 End-To-End Trans-
parent Clock 

A transparent clock translates the PTP protocol mes-
sages between regions implementing different transport 
and messaging protocols. The end-to-end transparent 
clock forwards all messages just as a normal switch, 
router, or repeater. However for PTP event messages, the 
residence time bridge measures the residence time of 
PTP event messages. These residence times are accumu-
lated in a special field, the correction field, of the PTP 
event message or the associated follow up message.  

 

EndToEndTransparentClock

PTPPort

1..*pTPPort

TClockDefaultDataset

1tClockDefaultDataset

TClockCurrentDataset

1tClockCurrentDataset

TClockPortDataset

1 tClockPortDataset

E2EResidenceTimeBridge

1 e2EResidenceTimeBridge

LocalClock

1localClock

  
 
Figure 9.  End-to-end transparent clock. 

 
Figure 9 shows the object model of end-to-end 

transparent clock. Each end-to-end transparent clock has 
one LocalClock, one TClockDefaultDataset, one 
TClockCurrentDataset, one TClockPortDataset, one 
E2EResidenceTimeBridge, and one or many PTPPorts. 
 

PeerToPeerTransparentClock

TClockPortDataset

1tClockPortDataset

PTPPort

1..* pTPPort

TClockDefaultDataset

1tClockDefaultDataset

TClockCurrentDataset

1
tClockCurrentDataset

P2PResidenceTimeBridge

1 p2PResidenceTimeBridge

LocalClock

1 localClock

  
 
Figure 10. Peer-to-peer transparent 
clock. 
 

2.4.4 Object Model of IEEE 1588 Peer-To-Peer 
Transparent clock 

The peer-to-peer transparent clock differs from the 
end-to-end transparent clock in the way it corrects and 
handles the PTP timing messages. The peer-to-peer trans-
parent clock can be associated with an ordinary clock in 
exactly the same way as an end-to-end transparent clock. 
The peer-to-peer transparent clock has an additional per 
port block. This block is used to compute the link delay 
between each port and a similarly equipped port on an-
other node sharing the link, i.e., the link peer. The link 
peer will be in another clock supporting the peer delay 
mechanism since non-peer-to-peer devices are not ex-
pected between peer-to-peer transparent clocks. Figure 
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10 shows the object model of peer-to-peer transparent 
clock. Each peer-to-peer transparent clock has one Lo-
calClock, one TClockDefaultDataset, one TClockCur-
rentDataset, TClockPortDataset, and one or many 
PTPPorts. 

 
3. Library Building and Application of 

IEEE 1588 
 
This model has been used to generate C++ source 

code, and successfully compiled and built a C++ library 
that includes a set of classes of the IEEE 1588 standard. 
Figure 11 shows the interface of library building of ob-
ject-oriented model of the IEEE 1588 standard. IEEE 
1588 application developers can use it to implement their 
IEEE 1588 applications based on the established library.   

A PTP system is a distributed, networked system 
consisting of a combination of PTP and non-PTP de-
vices. PTP devices include ordinary clocks, boundary 
clocks, transparent clocks, and management nodes. De-
vices in a PTP system communicate with each other via a 
communication network. The network may include trans-
lation devices between segments implementing different 
network communication protocols.  

 

 
 

Figure 11. Interface of library building 
for IEEE 1588. 
 
Within sensor networks, establishing the precise 

time that a particular observation or measurement is 
made is of crucial importance. For instance, when raw 
sensor data is fused from multiple sources it is imperative 
that the data was generated at the exact same moment as 
when the event occurred. It is important to synchronize 
the time of sensor nodes for sensor data fusion. It is pos-
sible to integrate the IEEE 1451 and the IEEE 1588 stan-

dards for distributed and synchronized measurement and 
control applications using this model. An IEEE 1451 
Network Capable Application Processor (NCAP) uses a 
boundary (master) clock with one or more PTP ports; An 
IEEE 1451 Transducer Interface Module (TIM) uses an 
ordinary (slave) clock with one port. So a number of 
TIMs can synchronize with the NCAP to implement syn-
chronized and distributed measurement and control. 
 
4. Conclusion 
 

We have developed the object-oriented model for the 
IEEE 1588 standard-v2. The model has been used to pro-
duce C++ source codes, and create a C++ library for the 
IEEE 1588 standard. Using this object-oriented model, 
the development time of IEEE 1588 applications can be 
reduced dramatically.  

Our future work is to develop the reference imple-
mentation of the IEEE 1588 standard based on this ob-
ject-oriented model, and to integrate with the IEEE 1451 
standard to do synchronized measurement and control. 
 
** Commercial equipment and software, many of which 
are either registered or trademarked, are identified in 
order to adequately specify certain procedures. In no case 
does such identification imply recommendation or en-
dorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials or 
equipment identified are necessarily the best available for 
the purpose. 
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