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Abstract 
Accurate identification of spindle health in real-time is an important feature of next generation smart 
machining systems that are capable of self-diagnosis. This paper presents a software design for an 
automated spindle health monitoring system based on open systems architecture. An analytic wavelet-
based envelope spectrum algorithm is proposed and coded in software for effective and efficient spindle 
degradation identification, defect localization, and damage growth tracking. The software is functionally 
adaptive and contributes directly to the development of a new generation of smart machine tools. 
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1. INTRODUCTION 
Spindles are important components of machine tools in 
machining systems. Unexpected failure of a spindle can 
cause severe part damage and costly machine downtime, 
affecting overall production logistics and productivity. Any 
intelligent capability that can be added to a spindle for the 
purpose of monitoring the health of the spindle and 
predicting its impending failure based on the sensor 
measurement data will enhance the overall performance 
of machining systems. A spindle with such added 
capability is called a “smart spindle.” Smart spindles are 
key components of the next generation of smart machine 
tools that will be capable of self-diagnosis, leading to 
condition-based, “intelligent” maintenance. This paper 
addresses the subsequent need for accurate identification 
of spindle health in real-time by presenting the 
architectural design of a dynamic data-driven and 
knowledge-based integrated software package for 
condition monitoring and health diagnosis of spindles. The 
purpose of the developed system is to reduce machine 
maintenance costs by improving maintenance planning 
and logistics support. It will also help to achieve improved 
operational flexibility by accurate prognostics that will 
enable machine operators to make tactical, mission- 
specific decisions with full knowledge of the remaining 
useful life of machine tool spindle. 
 
2. OPEN SYSTEMS ARCHITECTURE 
The design of the real-time spindle condition monitoring 
and diagnosis system based on sensor input uses a 
modular approach by adopting the Open Systems 
Architecture for Condition Based Maintenance (OSA-
CBM) [1,2], which is a standardized framework accepted 
by industry. The OSA-CBM architecture consists of seven 
layers including 1) Sensing and Data Acquisition, 2) 
Signal Processing, 3) Condition Monitoring, 4) Health 
Assessment, 5) Prognostics, 6) Decision Support, and 7) 
Human-Machine Interface. Data communication among 
the layers is enabled by the OSA-CBM interface 
standards. The layered architecture facilitates the 
integration and interchangeability among sensors, 
electronics, and software components, with each layer 
representing a functional decomposition of a condition-
based monitoring application. Higher layers use the 
information produced by lower layers. For instance, a 
signal measured by the Data Acquisition layer is used by 
the Signal Processing layer to perform machine condition- 

related information extraction. Such information is in turn 
used by the Condition Monitoring layer to compare against 
expected values and output condition indicators. The 
Health Assessment layer then utilizes the input from the 
Condition Monitoring layer to derive the current state of 
the system, which is subsequently used by the 
Prognostics layer to predict the future performance of the 
system. The current state and predictions are fed into the 
Decision Support layer to provide recommended actions 
for system maintenance. In addition, the current state and 
predictions, together with all measured and computed 
data, are displayed by the Human-Machine Interface layer 
such that the users can have visual interaction with the 
system [3]. 
In actual modular design of the condition monitoring 
system, a module may implement functionality of one or 
more layers. Modules of the Human-Machine Interface 
layer usually do not implement any OSA-CBM layers, as it 
displays the information produced by other layers to 
users. In Figure 1, typical data flow among the first four 
layers, together with the Human-Machine Interface layer, 
is illustrated. Different types of sensor measurement data 
obtained in the Sensing and Data Acquisition layer are 
transferred to the Signal Processing layer and then 
processed to extract features that characterize the spindle 
dynamics. Several advanced signal processing algorithms 
are embedded in this layer, which includes an analytic 
wavelet-based algorithm, called Wavelet Envelope 
Spectrum [4], for spindle degradation identification, defect 
localization, and damage growth tracking. Characteristic 
frequencies extracted by the Signal Processing layer are 
fed into the Condition Monitoring layer, where the ratio of 
the magnitude of each characteristic frequency to the 
noise floor is compared against a predefined threshold. 
The result is an enumerated condition indicator, which 
describes the operational state of the spindle. Based on 
the trending information recorded in the system, the 
output of the Condition Monitoring layer is assessed in the 
Health Assessment layer to determine if the system health 
is degraded, and to specify the type and location of the 
identified degradation. 
 
3. SOFTWARE IMPLEMENTATION 
Based on open systems architecture standards, the 
software design was realized using the graphical 
programming language of LabVIEW **. At this stage, the 
Data Acquisition, the Signal Processing, the Condition 
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Figure 1. Data flow and functional diagram of the software system 

Monitoring, the Human-Machine Interface, and preliminary 
Health Assessment layers have been implemented. The 
modular design approach of the OSA-CBM standards was 
adopted in coding the software, resulting in functional 
modules that are transferable to other CBM software 
implementations. In the Human-Machine Interface layer, 
machine health states are presented in two windows: a 
simplified spindle condition display and warning window 
for standard machine operators (operator window) and an 
advanced parameter-setup and sophisticated diagnosis 
window for machine experts (expert window).  
The operator window allows efficient communication with 
machine operators regarding current status of the 
machine without the distraction of behind-the-window 
calculations. It displays the speed, temperature, statistics, 
and health index of the machine in real-time and sets off 
alarms when defects are detected. The expert windows 
allow the expert to interactively adjust data analysis 
algorithms (specifically the Wavelet Envelope Spectrum 
method), and to conduct a complete investigation of the 
machine status, thus enhancing on-line defect detection 
capability. 

3.1 Signal Processing Algorithm 
The developed analytic wavelet-based envelope spectrum 
algorithm for spindle defect-related feature extraction is 
the core function of the Signal Processing layer of the 
system. The extracted features, i.e., the magnitude and 
location of the defect-induced characteristic frequency, 
are used as the inputs to monitor the condition and assess 
the health status of the spindle system. 
Combining the advantages of enveloping and the wavelet 
transform, the algorithm extracts defect-induced impulses 
from the spindle vibrations and constructs their envelopes 
in a single step. This eliminates the need for intermediate 
operations such as a convolution and a Hilbert transform, 
thus improving the computational efficiency [5]. In 
addition, the analytic wavelet uses flexible windows, and 
is therefore adaptive to the signal under investigation. 
An analytic wavelet ψ(t) is defined as a complex wavelet 
whose imaginary part is the Hilbert transform of its real 
part:  

)(~)()( twjtwt +=ψ  (1)
where )(tw  denotes the real part of the complex wavelet. 
The imaginary part ( )w t%  is the Hilbert transform of the real 
part )(tw . According to the linearity property of the 
Fourier transform, the analytic wavelet ψ(t) can be 
expressed in the frequency domain as: 

)(~̂)(ˆ)(ˆ fWjfWf +=ψ  (2)

where ˆ ( )W f and ˆ ( )W f%  are the Fourier transforms of 
)(tw and its Hilbert transform ( )w t% , respectively, and  their 

relationship can be expressed as: 
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Equation (3) indicates that when the frequencies are 
negative, the spectra of the real part of the analytic 
wavelet ˆ ( )W f  and its Hilbert transform ˆ ( )W f%  cancel each 
other out, thus resulting in an analytic wavelet with a one-
sided spectrum. Therefore, the wavelet transform of a 
signal ( )x t  using an analytic wavelet results in the 
corresponding wavelet coefficients being an analytic 
function. Since the continuous wavelet transform is by 
nature the convolution between the signal and the wavelet 
function in the time domain, it can be computed in the 
frequency domain by direct multiplication of the Fourier 
transform of the signal ˆ( )x f  with the Fourier transform of 
the wavelet function ˆ ( )fψ  [6]. The wavelet coefficient is 
then the inverse Fourier transform of the product of ˆ( )x f  
and ˆ ( )fψ  (as illustrated in Figure 2): 
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Equation (4) indicates that the wavelet transform of a 
signal ( )x t at scale s can be viewed as the signal passing 
through a band-pass filter, which is a contracted (by a 
frequency factor of s) and amplified (by a factor of 1/ 2s ) 
version of the wavelet function. Furthermore, the 
advantage of the analytic wavelet coefficients is that their 
envelopes can be readily calculated from their modulus 
as: 

( , ) ( , )A s CWT sτ τ=  (5)
Subsequently, the Fourier transform is performed 
repetitively on the envelope signal at each scale s, 
resulting in an “envelop spectrum” of the original signal at 
the various scales. The implementation of the algorithm 
using LabVIEW is given in Figure 3. 

To obtain effective characteristic frequency feature 
extraction for defect detection of the spindle, an 
appropriate wavelet function should be chosen before 
applying the developed algorithm to the sensor 
measurement data. In accordance with the essence of the 
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Figure 2. Algorithm for performing analytic wavelet 

transform. 

 
Figure 3. Coded algorithm for performing the wavelet 

envelop spectrum 
wavelet transform, i.e., to measure “similarity” between 
the measured data and the wavelet function at various 
scales, correlation analysis (measuring the relationship 
between two signals using correlation coefficient) can be 
naturally used to evaluate the performance of different 
wavelet functions when analyzing the measured data. 
Considering that an appropriate wavelet function should 
be capable of effectively extracting the characteristic 
frequency features, the corresponding wavelet coefficients 
will show relatively high similarities to the signal. This 
leads to a higher correlation coefficient than those 
obtained by other wavelet functions. Accordingly, the 
complex Morlet wavelet is chosen as the wavelet function 
for the developed algorithm, as it has the maximum 
correlation coefficient among various types of analytic 
wavelet functions (e.g., complex Gaussian wavelet, 
Harmonic wavelet, Shannon wavelet, etc.). 

3.2 Data-Driven Scheme 
To achieve accurate spindle health assessment in the 
Health Assessment layer, appropriate selection of the 
extracted features is performed in the Condition 
Monitoring layer. The spectrum contained in each wavelet 
scale needs to be compared and evaluated. The scales 
containing the most defect-induced characteristic 
frequencies need to be chosen. To achieve efficient and 
fast feature selection, a data-driven scheme is 
implemented in the Condition Monitoring layer. As 
illustrated in Figure 4, with dynamic data feedback from 
the Condition Monitoring layer to the Signal Processing 
layer, the appropriate scales of the wavelet envelope 
spectrum algorithm can be dynamically modified by the 
program, based on the energy contained in each scale of 
the wavelet envelope. As a result, scales that do not 
contain significant energy content will be automatically 
removed to improve the algorithm efficiency. Trending 
information on the rate of magnitude increase of the 
defect-related characteristic frequencies is recorded to 
construct a database, which is used subsequently for 
setting up a spindle health index, as illustrated in Figure 5. 

 
Figure 4. Code for wavelet scale selection 

3.3 XML-Based Data Format 
In addition, the software archives the raw data and logs 
the machine condition data in a unified format 
automatically or upon user command. Presently, the 
eXtensible Markup Language (XML )-based data format is 
adopted in the developed software, which can be used 
with any networking technology for data transfer [7]. All of 
the information stored with such a format can be retrieved 
through web-based applications. Figure 6 illustrates an 
example of the XML-based data format, where the health 
index and status of the spindle bearing are logged during 
one sampling period. 

 

 
Figure 5. Code for spindle status and health index indication 

 
4. CASE STUDY 
The developed system has been evaluated on a spindle 
test bed consisting of four support ball bearings, as shown 
in Figure 7. Based on the bearing pitch diameter D, rolling 
element diameter d, and number of rolling elements n, 

defect-related characteristic frequencies of the spindle 
bearings can be analytically determined as a ratio to the 
shaft rotational speed. In Table 1, formulae used to 
calculate four major defect types are shown. 
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Figure 6. Representation of health index and status of the 

spindle using XML-based data format 
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Figure 7. The spindle test bed used for the experimental 

verification of the designed software 

 

Table 1. Defect related characteristic frequencies of the 
spindle bearings 

Defect Type Characteristic Frequency Test Bearing  

Unbalance rpm/60 fr ≈ rpm/60 

Rolling Element 21 ( / ) /(2 )rf D d D d⎡ ⎤−⎣ ⎦  fBSF ≈ 2.346fr 

Outer Raceway [ ]1 / / 2rnf d D−  fBPFO ≈ 4.414fr 

Inner Raceway [ ]1 / / 2rnf d D+  fBPFI ≈ 6.586fr 

 
Dynamic impact in the form of a 13,300 N impulse lasting 
about 25 ms was consecutively applied to the spindle 
system under a constant rotational speed of 3,600 rpm, 
for a total of 1,100 times. The spindle was constantly 
monitored by the designed system and an inner raceway 
defect on one of the front bearings was detected by the 
system. Figure 8 illustrates an example of the results. As 
shown in Figure 8, three frequency peaks have been 
found in the <500 Hz range, which are associated with the 
spindle shaft rotating frequency fr = rpm/60 and its two 
harmonics 2fr and 3fr. Under the shaft rotational speed of 
8,400 rpm, these peaks are located at 140 Hz, 280 Hz, 
and 420 Hz, respectively. The increase of these 
frequency components can be related to the increase of 
impact-induced spindle unbalance, which is the offset 
between the center of mass of the rotating spindle and its 
center of rotation. Structural unbalance can be 
represented in effect as a radial force that excites a 
rotating shaft at the frequency fr. Based on the equations 
shown in Table 1, the frequency peak at 935 Hz can be 
identified as the Ball Pass Frequency of the Inner 
raceway (BPFI). The existence of such a frequency 
component in the spectrum indicates that one of the 

spindle front bearings has developed a localized defect on 
its inner raceway, as the result of dynamic impact. 
Theoretically, the BPFI frequency at 8,400 rpm is 
calculated as 922 Hz. The 1.4% difference between the 
theoretical and experimental values can be traced back to 
the combined effect of rolling element slippage and the 
slight drift of spindle speed from the nominal input values 
to the spindle drive controller. The spectrum also 
displayed several other frequency peaks at 1,075 Hz, 
1,215 Hz, and 1,355 Hz, respectively, which can be 
specified as ( ), 1,2,...BPFI k rpm with k n+ ⋅ = , and reflect 
upon combined effect of spindle unbalance and inner 
raceway defect.  
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Figure 8. An example result of the automated spindle 

health monitoring system 
 

5. CONCLUSION 
In conclusion, the software design is functionally adaptive 
and presents a new tool that enables more effective and 
efficient monitoring and diagnosis of machine spindles. It 
also contributes directly to the development of a new 
generation of smart machine tools. In addition to spindles, 
the software can be applied to the health diagnosis of 
other types of machines. 
 
** Certain commercial equipment and software are identified in 
order to adequately specify certain procedures. In no case does 
such identification imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor does it imply 
that the materials or equipment identified are necessarily the best 
available for the purpose. 
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