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Abstract 
 
 The study of how metal deforms and flows as parts 
are machined yields important insights into the metal 
cutting process. Improvements in high-speed digital 
imaging and image processing software promise to 
improve our understanding of the tool-workpiece 
interface and verify the accuracy of finite element 
modeling simulations. This will ultimately enable 
industry to improve machining processes and make parts 
faster at less cost. This report describes the design and 
results of an automated system to estimate chip 
segmentation frequency. High-speed images of machining 
chips are combined with displacement vector mapping 
and processing. As part of the displacement vector map 
processing, a novel peak detection algorithm using an 
inflection list was developed which minimizes a priori 
assumptions and yields information used in sensitivity 
analysis. However, further work is needed before an 
uncertainty analysis may be completed. 
 Keywords: machining chip segmentation, high-speed 
video, vector map, peak detection. 
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1 INTRODUCTION 
 
 When metal parts are machined, the unwanted pieces 
of removed material are called machining chips. Studying 
how metal is deformed and flows as these chips are 
created yields important insights into the metal cutting 
process, which promise to improve and verify the 
accuracy of finite element modeling simulations of this 
process. These simulations are an important tool for 
process optimization, ultimately allowing industry to 
make parts faster, better, and at less cost. 
 
 There are two basic types of chips, continuous chips 
and segmented chips. Continuous chips are long and 

ribbon-like in shape and can become entangled in the 
machining equipment. Segmented chips have a 
characteristic saw tooth shape and tend to break up into 
small pieces that are much easier to control than 
continuous chips. This makes the manipulation of 
machining conditions to encourage segmented chip 
formation a topic of great interest to the machining 
community. 
 
 The reason segmented chips do not become long 
ribbons is that the metal in the gaps between the segments 
is brittle and breaks easily. Breakage occurs when the 
chip curls back into the workpiece, causing a force to be 
applied to the brittle gap. While most of these gaps do not 
break, enough of them do to keep the chip from getting 
very long. 
 
 Using photomicrographs like the one in Figure 1, the 
final size and shape of the segments can be measured after 
the machining has finished [2]. Even within the same 
chip, the segments sizes and shapes vary widely. 
However, producing these photomicrographs is labor and 
time intensive. Thus, studying the size and shapes of 
segments generally involves small sample sizes, which 
limits researchers to the study of an “average” segment 
with relatively high uncertainties. Additionally, small 
sample sizes make characterization of segment formation 
by statistical or dynamical calculations (such as 
computing the dimension of an attractor [1]) difficult. 
 

 
 

Figure 1: Photomicrograph of an American Iron and 
Steel Institute (AISI) 1045 steel machining chip 
showing how the size and shape of the segments can 
vary widely. Segments are approximately 0.6 mm 

 The machining community interprets the final size 
and shape of the chips to infer how the metal flowed and 
deformed during machining. The validity of these 
inferences are a matter of debate. Fortunately, recent 
advances in high-speed digital imaging technology and 
image processing software make possible the direct 
observation and characterization of metal cutting 



processes [3, 11]. This paper will outline the use of this 
equipment to automatically estimate chip segmentation 
frequency, the rate at which segments form. A novel peak 
detection algorithm used in this application will be 
described in detail. 
  
2 PHYSICAL MEANING OF THE DATA 
 
 Figure 2 shows the experimental setup. The edge of 
an American Iron and Steel Institute (AISI) 1045 steel 
disk is machined and 128 pixel x 128 pixel images of the 
tool workpiece interface are captured using a high-speed 
camera at 60 000 frames per second. 
 

 

 Figure 3 shows a typical image. Movies of cutting 
experiments will often have 20 000 to 100 000 images to 
process. Special “strain mapping” software [4] compares 
adjacent frames of the movie using correlation functions 
and computes a series of displacement vector maps 
describing how the features in the images have moved 
from one frame to the next. An example displacement 
vector map is shown in Figure 4. These displacement 
vectors can provide valuable information to the 
machining community. For example, shear strain can be 
computed and compared to the strain predicted by finite 
element models. 
 

 

Machine Slide Motion 

 

 
 

Figure 4: One frame of displacement vectors. 
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Schematic of chip being formed.

Figure 3: Schematic and typical image of chip being formed. The chip is approximately 0.6 mm 
thick. 
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Figure 2: Schematic of experimental setup. 

Chip 

T 
o
o

Disk Shaped 
Workpiece 

M
a 
c 
h
i 
n
e 

S 
l 
i 
d
e 

Spindle 

T 
o
o

M
a 
c 
h
i 
n
e 

S 
l 
i 
d
e 

Spindle 

H  H  igh Speedigh Speed
Visible Light Visible Light 
CameraCamera  T 

o
o

M
a 
c 
h
i 
n
e 

S 
l 
i 
d
e 

Spindle 

T 
o 
o 
l 

M 
a 
c 
h 
i 
n 
e 

S 
l 
i 
d 
e 

Spindle 

High Speed  
Visible Light 

Camera 



 In order for the strain maps to be accurate, the images 
must be lit properly so that surface features are clearly 
visible. Also, spurious reflections which might confuse 
the strain mapping software should be minimized. A 
visual inspection of the images in the movies confirmed 
that these conditions were met. In addition, the frame rate 
should be high enough to both avoid Nyquist Frequency 
issues and allow the vector mapping software to yield 
accurate results. If the change from one frame to the next 
is too large, the vector mapping software will have 
difficulty computing accurate displacement vectors. This 
issue is revisited later in this paper. 
 
 One important statistic of interest is the rate at which 
segments are formed during cutting, called the chip 
segmentation frequency. To determine this frequency, 
traditional pattern matching could be performed on the 
original images to determine when a segment forms. One 
could design a template to detect the gaps between 
segments. Whenever a new gap appears and is detected by 
the pattern matching filter, a segment has formed. If the 
movie is processed and the number of frames between 
each segment formation is tallied, segmentation frequency 
can be computed. Note that when detecting gaps between 
segments, one is relying on the gaps being large enough 
to be visible. With this method, the pattern matching filter 
is detecting the results of the flow of material as it 
deforms. However, if displacement vectors are used 
instead, the flow of material is directly assessed and 
measured. This enables detection of segments that may be 
missed by traditional pattern matching on the images. 
 
 For the machining conditions currently under study, a 
consistent series of events is observed as segments form. 
As material approaches the tool from left to right, the 
material destined to become a chip comes in contact with 
the tool, stops, rotates, and starts to travel down along the 
rake face of the tool. Displacement vectors near the tool 
exhibit the following repeating cycle: Start at about 0° 
(left to right), rotate toward 90° as the material stops and 
rotates, and become 90° (pointing down) as the material 
travels along the rake face. This process repeats over and 
over – regardless of whether or not a visible gap forms. 
Figures 4 and 5 occurred during the rotate portion of the 
process. 
 
 To detect the segmentation events, a map of the 
vector angle minus 45° is computed. Shown in Figure 5, 
areas where the vectors are near 45° have a value near 
zero and are turned white. Areas with vectors near 0° or 
90° have values near –45° or +45° and are turned black. If 
one considers only the vectors in the portion of the image 
where the rotation occurs and selects n vectors in that 
area, the following measure is used: 
 

n
V

n

j
j∑

=

°−
= 1

45θ
,    (1) 

 
where θ is the vector angle and V is a measure of how 
much a “typical” vector deviates from 45°. As segments 
form, the value of V oscillates between a minimum when 
most of the vectors are near 45°, and a maximum when 
most are either at 0° or 90°. V is, in effect, a matching 
function measuring how well the vectors match a template 
vector of 45°. 

 

 
 
 An example of V as a function of time is shown in 
Figure 6. Note that the amplitudes of the peaks and 
valleys change over time. Included in the figure are 
diamonds marking the “larger” peaks, and squares 
marking an estimation of when new segments form based 
on a visual examination of the movie. 
 

 
 
 The agreement between the larger peaks and the 
human estimation is very good, with only one 
disagreement near frame 320, where the peaks indicated 
the formation of a segment that the examiner did not see. 
Upon re-examination of the movie, it was noticed that 
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Figure 5: An image of the difference between the 
angle of the vectors in Figure 4 and 45°.

Figure 6: V as a function of frame number. Larger peaks 
in V and visual estimations of when segments form are 
marked with diamonds and squares, respectively. 



there was, in fact, a small segment missed by the 
examiner. The human examiner relies primarily on gaps 
between segments to determine when segments are 
formed, similar to the traditional pattern matching 
method. This contrasts to using vector maps, where the 
material flow is used as the criterion. If two segments do 
not form a visible gap, the human operator might miss a 
segment which the vector algorithm would detect. An 
example is shown in Figure 7. This issue will be revisited 
later in the paper. 
 

 
 
 Figure 6 shows “large” peaks indicating segment 
formation and “small” peaks which do not. There are 
several sources of these “small” peaks such as vibration 
of the tool, minor disturbances in the flow of the material, 
and errors in the calculated displacement vectors. A peak 
detection algorithm is required for separating “large,” 
significant peaks indicating a segment formation and 
“small” peaks caused by other phenomenon. 
 
3 SELECTING AND DESIGNING PEAK 
DETECTION ALGORITHMS 
 
 There are many peak detection algorithms available 
[5-9], each with a strategy for differentiating between 
significant (generally large) peaks to accept, and 
insignificant (generally small) peaks to ignore. Each 
algorithm makes assumptions as to the nature of either the 
data or the peaks in the data. Perhaps the most common 
assumption is that the data is stationary. Stationary data 
has the property that the probability distribution of the 
data at a fixed time is the same for all times. Parameters 
such as mean and variance do not change over time. If the 
data is non-stationary, and a peak detection algorithm is 
used which assumes stationary data, then assumptions 
must be made as to an appropriate de-trending function 
to transform the data into stationary data. 
 
 Another common assumption is that the significant 
peaks should have a width greater than some minimum, 
implying that insignificant peaks have a width smaller 
than the significant peaks. Some algorithms assume peaks 
occur at regular intervals, as when detecting harmonic 
frequencies in a Fourier transform. Some assume a fixed 

threshold, while others dynamically compute new 
threshold values based on an analysis of the data in the 
local neighborhood. 
 
 The following assumptions are made regarding V in 
Equation 1: 
• One must assume that there is some characteristic 

which separates important peaks from the 
unimportant ones. We chose to assume that the 
unimportant peaks are smaller in amplitude (not 
necessarily in width) than important ones. This seems 
to be a reasonable assumption given the known error 
sources. For example, apparent motion due to camera 
vibration is very small compared to the motion of the 
material in the images. Also, since V is the average 
behavior of n vectors, even if one or two vectors 
occasionally had large errors, their effect would be 
reduced by averaging. Figure 7: Photomicrograph of a large segment 

sandwiched between two smaller segments. It is 
unclear if the large segment is actually one segment, 
or several smaller segments compressed together. 
Segments are approximately 0.6 mm high. 

• It is acceptable to determine each peak location to the 
nearest frame number (integer X). To interpolate 
between frames, one must assume an interpolation 
model such as a line or parabola. However, we lack a 
physically based reason to intelligently select any 
model. 

 
 Analysis of data from machining experiments yields 
the following desirable characteristics of an appropriate 
algorithm: 
• Allow for non-stationary data without assuming a de-

trending function. As cutting conditions change, the 
local average of V can slowly wander, even within 
the same cut. 

• Make as few assumptions regarding the nature of the 
underlying data as possible. Specifically, no 
assumptions should be made regarding peak width 
because the peak width is strongly related to 
segmentation frequency, which is what we are trying 
to measure. 

• Produce information to aid in sensitivity analysis, 
which determines how sensitive errors in the 
computed segmentation frequency are to errors in 
selecting the “correct” threshold value. This may be 
used to determine the uncertainty [10] of the 
estimated segmentation frequency. 

• We desire to perform statistical and dynamical 
analysis on the data, which requires large data sets. 
Generally, over 20 000 frames will be processed per 
test. In addition, the peak detection algorithm will 
probably need to scan the data repeatedly, not just 
once. Thus, computational efficiency is important. 

 
 Unfortunately, none of the “off-the-shelf” peak 
detection algorithms met all of the desired assumptions 
and characteristics. 



4 AN INFLECTION LIST PEAK DETECTION 
ALGORITHM 
 
 The algorithm developed is based on a data structure 
called an inflection list. An inflection is a value that is 
either higher or lower than both the value immediately to 
the left and the value immediately to the right. If an 
inflection is higher than its neighbors, it is a peak. If it is 
lower, it is a valley. The inflection list is a list of all 
inflections (peaks and valleys) in the data. The idea is to 
scan the full data set only once to compile a complete list 
of the inflections. All subsequent scans are of the shorter 
inflection list, not of the full data set. If the data is 
“smooth,” the inflection list is significantly shorter than 
the full data set. For our data, the inflection list is 
typically about 15 % of the length of the full data set. 
Being smooth is not required for the algorithm to work, 
but it does significantly decrease processing time. 
 

 
 

 Figure 8 shows example data, a section of the 
inflection list, and the periods of the peaks at the arbitrary 
iterations k and k+1 of the algorithm. A period is the time 
between two peaks, measured in number of frames. Each 
entry in the inflection list has three items: The integer X 
value (frame number), the floating point Y value (V), and 
a Boolean flag called status. Status has a value of true if 
the inflection is active, i.e., considered to be significant. 
Status is false if the inflection is to be ignored. When the 
inflection list is initially built, all status flags are set to 
true and the threshold value separating significant and 
insignificant peaks is set to zero. This indicates that all 
inflections are initially considered large enough to be 
significant. As a while loop iterates, the threshold value 
gradually increases and statistical information on the state 
of the list at each threshold is compiled until there are no 
more active inflections. A simplified, conceptual version 
of this process is shown in Figure 9. 
 

 
 
 The actual program used has minor refinements that 
improve efficiency. The full program is implemented in a 
Microsoft Excel macro. Note that the scheme for 
determining the next threshold is a minimum 
consequential step strategy. If the step size (increase) in 
the threshold is smaller, there will be no change in the 
inflection list. If the step size is larger, there may be a loss 
in resolution of the output plot. 
 
 At each iteration k, a histogram of the segmentation 
periods can be plotted. When comparing the periods for 
iteration k and k+1 in Figure 8, one sees that removing a 

Index X  Y  Status 
i Xi  Yi  True 
i+1 Xi+1  Yi+1  True 
i+2 Xi+2  Yi+2  True 
i+3 Xi+3  Yi+3  True 
i+4 Xi+4  Yi+4  True 
 
Effective Periods 
 Xi+2  - Xi 
Xi+4 - Xi+2 

Iteration k 

Figure 8: A section of an inflection list at iteration k 
and k+1. 

Xi, Yi Set threshold to 0 
 
While the number of active items in the inflection 
list is greater than one. 

 
Compile statistics such as average 
segmentation frequency at the current 
threshold and save them for later. 
 
Determine the pair of adjacent active items in 
inflection list with the smallest difference in Y. 
 
Set threshold to the difference in Y for this 
pair. 
 

Xi+2, Yi+2 

Xi+4, Yi+4 
Xi+1, Yi+1 

Xi+3, Yi+3 

Set status for each of these two items to false, 
making one peak and one valley inactive. 
 

Index X  Y  Status 
i Xi  Yi  True 
i+1 Xi+1  Yi+1  False 
i+2 Xi+2  Yi+2  False 
i+3 Xi+3  Yi+3  True 
i+4 Xi+4  Yi+4  True 
 
Effective Periods 
  

Xi+4 - Xi 

End While Xi, Yi 
 

Xi+4, Yi+4 Xi+2, Yi+2 Output a plot of statistical information. 
 
Choose final threshold value based on the plot. Xi+1, Yi+1 

Xi+3, Yi+3 Figure 9: Simplified, conceptual procedure for 
processing the inflection list. 

Iteration k+1 



peak has the effect of giving the time that peak occupied 
to a neighboring peak. Thus, two shorter peaks effectively 
merge into one longer peak. This means that increasing 
the threshold does not simply truncate the histogram, but 
also changes its shape. 
 
5 RESULTS AND DISCUSSION 
 
 There are three output statistics shown in Figure 10: 
Ff, the average frequency, defined in Equation 2; Fp, the 
reciprocal of the average period, defined in Equation 3; 
and the difference between the two. 
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 The number of segments detected in the movie is 
designated by m and periodj is the number of frames 
needed to form segment j. Both Ff and Fp have frequency 
units (peaks per frame, or cycles per unit of time). For our 
data, Ff is consistently higher than Fp by at least 10 %. 
This is important because the machining community 
compares the segmentation frequencies estimated by 
different researchers. If the segmentation frequency by 
one researcher is measured in an Fp manner, and the 
segmentation frequency from a second researcher is 
measured in an Ff  manner, the two will disagree simply 
because we are comparing “apples to oranges.” Note that 
it is inherently easier to measure Fp than it is Ff. To 
measure Fp, one needs only to count the number of 
segments formed in a given period of time. To measure 
Ff, the start and stop times of each segment formation 
must be known. 
 

 Both Ff and Fp in Figure 10 drop off steeply for 
thresholds between 0° and 2°, and less so at thresholds 
greater than 2°. Several data sets were analyzed and, 
empirically, the transition from a steep slope to a shallow 
slope generally yields satisfactory final threshold values 
when the number of periods is large (well over 1000). 
However, for some data sets, the change in slope is very 
small and difficult to detect. In this case, a change in the 
slope of the difference (Ff - Fp) proved satisfactory. Since 
a change in the slope of the difference worked in all test 
cases, it was chosen as the criterion. The precise reason 
for this behavior is not yet determined. However, some of 
the factors are briefly discussed in Appendix A. 
 
 An advantage of having the plot in Figure 10 is that a 
simple sensitivity analysis may be quickly performed to 
assess how sensitive the computed segmentation 
frequency is to the “error” in the threshold. The sensitivity 
of the final segmentation frequency output by the 
algorithm to the threshold value selected by the algorithm 
is the local slope near the selected threshold. If the slope 
is steep, the computed segmentation frequency is highly 
sensitive to the threshold selected. There is less certainty 
about the quality of the computed segmentation frequency 
when the slope is steep than when the slope is shallow. 
However, a method for obtaining the additional 
information needed to express this as a rigorous 
uncertainty statement [10] has yet to be determined. 
 
 Once a final threshold value has been selected, the 
plots in Figure 11 are generated. Each plot is a histogram 
showing the number of occurrences at different segment 
period lengths. The difference between the two plots is 
that the horizontal axis is either period for the upper plot 
or 1/period (frequency) for the lower plot. Vertical bars 
mark the average period and average frequency. 
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Figure 10: Statistics as a function of threshold value. 
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From these histograms, further statistical analysis may be 
performed such as determining variance and skew, and 
classifying the type of distribution. 
 
 Table 1 shows a comparison of segment 
determinations for two machining movies, each 1000 
frames long. One movie imaged “Slow” metal cutting 
(about 10 frames per segment) and the other imaged 
“Fast” metal cutting (about 5 frames per segment). For 
each machining condition, an initial manual determination 
of segment formation was used as a reference. This 
reference was compared to both a vector mapping 
determination (“Vector”) and a second manual 
determination by the same operator on different days 
(“Manual 2”). Two determinations did not have to occur 
at exactly the same frame to be considered in agreement; 
they needed to occur within a few frames of each other to 
be declared in agreement. When two determinations are 
compared, they may either be “In Agreement,” be a 
“False Positive” (Vector or Manual 2 claimed a segment 
had formed when the original manual determination 
claimed that it had not), or be a “False Negative” (Vector 
or Manual 2 claimed a segment had not formed when the 
original manual determination claimed that it had). 
 

Data 
Set 

Re-
measurement 

Method 

In Agreement 
(%) 

False 
Negative 

(%) 

False 
Positive 

(%) 
Slow Vector 93.3 0.0 6.7 
Slow Manual 2 91.9 7.1 1.0 
Fast Vector 86.1 4.3 9.6 
Fast Manual 2 93.5 5.9 0.6 

Table 1: Segment determinations for “Slow” (about 10 
frames per segment) and “Fast” (about 5 frames per 
segment) machining conditions. 
 
 During both Fast and Slow cutting conditions, the 
two manual determinations did not agree to better than 
94 %. In addition, the Vector determinations consistently 
claimed more segments existed, as evidenced by the 
higher False Positive values. Both of these observations 
may be explained by the phenomenon shown in Figure 7. 
Many segments do not have obvious spaces between 
them, making the visual determination of segment 
formation based on these spaces subjective. The Vector 
method of segment determination does not require visible 
spaces between segments. Thus, it seems reasonable that 
it would detect segments which might be missed by a 
visual inspection. 
 
 The Vector determination agreed with the manual 
determination under slow cutting conditions (93.3 %) 
better than under fast cutting conditions (86.1 %). Under 
fast cutting conditions, there is much more change 
between adjacent frames in the movie. This increases 

errors in the vectors produced by the vector mapping 
software. Somewhere between 10 and 5 frames per 
segment, the change in the images from one frame to the 
next becomes too large for the vector mapping software to 
determine the vectors accurately. This indicates that one 
should either set the camera frame rate or machining 
speed such that at least 10 frames are captured in a typical 
segment if possible. 
 
6 CONCLUSIONS AND FUTURE WORK 
 
 High-speed imaging of machining chips, combined 
with displacement vector mapping and processing, are 
powerful techniques to provide valuable chip 
segmentation data to the machining community. As part 
of the displacement vector map processing, a novel peak 
detection algorithm was developed which is efficient, 
minimizes a priori assumptions about the data, and yields 
information that assists in uncertainty analysis of the peak 
detection process. However, further work needs to be 
performed before a rigorous uncertainty analysis may be 
completed. 
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9 APPENDIX A – FACTORS IN THE BEHAVIOR 
OF Ff - Fp 
 
 Figure A1 shows a summary of frequency and period 
determination equations. 
 
 One can model the unimportant peaks as a population 
of peak heights and widths with some distribution. The 
important peaks are of a different population and have a 
different distribution. An appropriate statistic should yield 
different values for each population. When the algorithm 
begins, it tentatively assumes all peaks are important by 
marking them all as active. Thus, at iteration 0, statistics 
describing the data are the result of the two populations 
merged together. As the algorithm progresses, it removes 
the unimportant peaks, one at a time, by marking them as 
inactive. The population looks less and less like the 
merged population and more like the population of only 
important peaks. 
 
 The plot in Figure A2 supports this model. The 
threshold used by the algorithm is plotted as a function of 
iteration for an actual data set. Initially, the algorithm is 
removing the small, unimportant peaks and the threshold 
increases slowly. As the algorithm progresses, there is a 
point where the threshold starts marking the larger, 
important peaks as inactive. This causes the threshold to 
increase at a faster rate due to the difference in population 
characteristics. The transition occurs at about 1.5°, which 
is the threshold the algorithm eventually chose. We are 
investigating using this transition to determine the final 
threshold in lieu of the current Ff - Fp criteria. 
 
 As noted in Section 4, when an active peak is marked 
as inactive, it effectively yields its time to some other 
peak. The effect on the statistics describing the remaining 
population strongly depends on the period of the peak this 

time is yielded to. Computer simulations indicate that the 
Ff  - Fp criteria is able to detect if there is a change in the 
periods of the peaks which are coalescing together. 
 

Determining the 
Typical Frequency 

Determining the 
Typical Period 

Determine typical 
frequency by 
averaging the 
frequencies fj: 

Determine typical 
period by averaging the 
frequencies fj: 

 
 

 
 

Since Ff is the 
arithmetic mean and Fp 
is the harmonic mean 
of f, Ff ≥ Fp. 

Determine typical 
period by averaging the 
periods pj: 

Determine typical 
frequency by averaging 
the periods pj: 

m

p

m

f

P m

j j

m

j
j

f

∑∑
==

==

11

1

11

m

f

F

m

j
j

f

∑
== 1

m

f

m

p

F m

j j

m

j
j

p

∑∑
==

==

11

1

11

m

p

P

m

j
j

p

∑
== 1

Since Pp is the 
arithmetic mean and Pf 
is the harmonic mean 
of p, Pp ≥ Pf. 

Figure A1: Summary of typical frequency and 
period determination equations. 
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Figure A2: Threshold as a function of iteration. 
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