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Abstract 
Cutting force models, often developed from a narrow set of empirical data, provide insight into the physical 
properties of cutting, but the extreme physical phenomena of metal cutting and the many uncertainties in an 
industrial setting (machine tool, workpiece material, tooling, environmental conditions) hinder predictability.  In 
order to improve the practicality of model-based decision making in an industrial machining environment, this 
paper introduces a method to adapt parameters of a traditional empirical model in response to on-line 
measures of process performance.  This method enables Smart Machining Systems to self-monitor 
production performance and adapt models and process parameters to the conditions encountered in 
production environments, reducing the need for expensive empirical tests. 
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INTRODUCTION 
In 1998, Merchant estimated that 15 % of the value of all 
mechanical components manufactured worldwide is 
derived from machining operations [1].  Despite the 
economic and technical importance of machining, the 
cost of research limits industrial capability to improve 
machining efficiency.  Large empirical databases and 
guidelines [2][3][4] aid in process design, but their 
relevance diminishes with the introduction of new tool 
materials, machines, and workpiece materials. 
Recent, dramatic improvements in the capabilities of 
high-speed machining centers have enabled speeds and 
feed rates to increase by an order of magnitude, 
rendering previously established databases and 
handbook tables essentially useless.  Smart Machining 
Systems (SMS) provide a means for industry to keep 
pace with changing production capabilities while avoiding 
costly experimentation.  The SMS research program at 
the National Institute of Standards and Technology 
(NIST) defines a Smart Machining System as having the 
following characteristics: 1) self-knowledge and 
communication of its capabilities to other parts of the 
manufacturing enterprise, 2) self-monitoring and 
optimization of its operations, 3) self-assessment of the 
quality of its work, and 4) self-learning and performance 
improvement over time [5][6][7].   
Smart Machining Systems use predictive models and 
associated uncertainties to provide robust predictions of 
forces and other criteria that approach, but do not 
exceed, process limitations in order to improve 
manufacturing efficiency.  However, the extreme physical 
phenomena inherent in machining systems and the many 
uncertainties in industrial environments render the 
realization and application of predictive machining 
models difficult. The extremely complex plastic flow of the 
workpiece material into the expended chip makes 
prediction difficult even with sophisticated finite element 
modeling (FEM) software [8, 9]. Basic flow stress data on 
material behavior under such complex conditions is 

unavailable for most materials [10][11]. Therefore, FEM 
software relies on empirical application dependant data 
to model fundamental material behavior.  Additionally, the 
variability in tooling, workpiece material, machine tools, 
and environmental conditions in production applications 
significantly increases the uncertainty of the most 
accurate models.  This has limited the industrial 
application of machining models, particularly for small 
corporations or small job sizes which impose practical 
limitations on experimentation.   
This paper presents a method for machine tools to 
monitor cutting performance during production operations 
to reduce reliance on testing.  Dynamometer tests 
provide a model between the Spindle Load Voltage (SLV) 
signal, available in most controllers, and the measured 
cutting force.  The model of the relationship between 
spindle load and cutting force provides a means to 
monitor cutting performance during part production.  The 
resulting cutting performance information enables 
adaptation of cutting force model parameters to account 
for differences between the experimental and production 
environment.  
Non-intrusive methods for production environment data 
collection increase understanding of operations and 
provide a competitive advantage.  Furthermore, 
production data enlarges the modeling dataset to account 
for more process variations than traditional experiments.   
 
EXPERIMENTAL METHOD 
This paper presents results for turning American Iron and 
Steel Institute (AISI) 1045 steel cold-rolled stock on a 
22 kW lathe.  Experimental tests performed on 127 mm 
and 51 mm diameter stock included steady-state cuts 
with a variety of inserts to develop cutting force models 
and the relationship between spindle load and cutting 
force.  Analog low-pass filtering at 50 Hz of 3-axis 
dynamometer force measurements and machine 
controller SLV before conversion to digital signals 



prevented aliasing effects.  Production of test parts 
(Figure 1) from 51 mm diameter stock involved the same 
methodology for monitoring SLV as in the experimental 
test; however, part production included use of coolant 
while experimental tests did not.  
For production of the test part, we selected a CNMG432-
RN 80° coated carbide insert to rough cut the outer 
diameter (OD) and the face, and a VCMR331 35° coated 
carbide insert to rough cut the complex features and 
finish the OD.   
 
CUTTING FORCE EMPIRICAL MODEL 
Creation of dimensionless cutting force model power-law 
relationships as a function of depth (d�), feed (f�), and 
surface speed (v�) (Equation 1) requires converting (d�),  
(f�), and (v�) to their respective dimensionless forms d, f, 
and v, through division by their unity dimensions, 
dO=1 mm, fO=1 mm/rev, and vO=1 m/min (Equation 2).  
Conversely, converting the dimensionless predicted 
cutting force FP into predicted cutting force FP′, requires 
multiplication by the unity dimensioned FPo=1 N 
(Equation 3). 
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An iterative approach to single variate regression 
analysis of the relationships between dimensionless 
forces FP and process parameters v, f, and d requires the 
introduction of three dimensionless intermediate 
correlation parameters Cd, Cf, and Cv (Equation 4).  
Calculation of the coefficient K relies on assumed Initial 
conditions of a=1, b=1, c=1.  Repeated regression on Cd, 
Cf, and Cv led to converged values at K=2156, a=0.906, 
b=0.787, and c=-0.040 (Figure 2).  Note that the vertical 
scales in Figure 2 are different for plots A, B, and C.   
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Equation 5 provides an estimate for the expanded 
uncertainty ΔFP describing the variability of the data with 
a coverage factor of 2, using data set size (N = 143) and 
dimensionless cutting force for an individual test (Fi) [12].  
Equation 6 presents the model of cutting force for the 
CNMG-432RN insert as a function of depth, feed, and 
speed resulting from the iterative regression analysis.   
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SMART MACHINE SELF-MONITORING 
The data from the experimental tests establishes a 
relationship between SLV and cutting force.  By 
subtracting the average SLV before tool engagement 
from the average steady-state SLV after tool 
engagement, we obtained the net spindle load as the 
portion of the SLV attributable to cutting force.  Figure 3 
shows the relationship between measured dynamometer 
force (F), average net SLV (L), and diameter (D) which 
has been measured after each test.  The least-squares 
method yielded four zero-intercept linear relationships 
(Equation 7), where m is the linear fit slope. 
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Equation 8 provides an estimate for the expanded 
uncertainty describing the variation in observed m values 
for each experiment (Δm, ±2σ) using the spindle speed 
data set size (n) and the linear slope of an individual data 
point (MI).  Equation 9 calculates Mi using measured 
force (Fi ), diameter (Di ), and SLV (Li ).  Table 1 shows m 
and Δm for each spindle speed (φ).  

Figure 2:  CNMG-432RN Model Plots for Depth (A), 
Feed (B), and Speed (C) 
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Figure 1:  Test Part 
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Figure 4 presents the relationship used to calculate the 
predicted m value (mP) for the range of spindle speeds 
from Table 1.  The modeled data indicates two trends 
with a transition point at a spindle speed of 70.2 rad/s 
(670 rpm).  The predicted slope mP conforms to a 
constant value below the transition point (Equation 10).  
The predicted slope follows a power law trend above the 
transition point (Equation 11).  The aggregate of the Δm 
values produces the predicted m value uncertainty (ΔmP). 
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Equation 12 determines the calculated force (FC) from 
the SLV signal.  Equation 13 quantifies the propagation 
of uncertainty for calculating cutting force uncertainty 
(ΔFC) with a coverage factor of 2 based on the 
uncertainties associated with the model parameters mp, 
L, and D.  SLV noise (ΔL), along with part deflection and 
machine error which affect the diameter uncertainty (ΔD) 
affect the calculation of cutting force during part 
production.   
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CUTTING PROCESS MONITORING 
Since the spindle damping characteristics, workpiece 
inertia, sampling frequency, and controller response time 
significantly affect the SLV process signal, we consider 
only steady-state cutting during the production of the test 
part.  The spindle load required to maintain desired 
spindle speeds varies during part production due to 
changes in spindle speed, decreasing workpiece inertia 
from the material loss, and changes in spindle efficiency 
as a result of temperature and load fluctuations.  Figure 5 
shows the raw SLV signal obtained during the test part 
production.  Subtracting the average SLV signal before 
the engagement of a cut from the steady-state SLV 
signal during a cut determined the net SLV value 
attributable to the cutting force.  Load spikes attributable 
to spindle speed changes and cut engagements and 
disengagements have been removed from Figure 5a for 
clarity and have been retained in Figure 5b to properly 
illustrate signal analysis concerns. 
Interpretation of the numerical control instructions for part 
production provides values for the instantaneous cutting 
diameter and spindle speed to convert the net SLV to 
cutting force.  Figure 6 compares the SLV calculated 
cutting force and uncertainty bands with Equation 12 and 
Equation 13 and the modeled cutting force and 
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Figure 4:  Relationship of m and Spindle Speed 
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Table 1:  Spindle Speed, m, Δm, and data set size 

Figure 5:  Gross SLV Production Signal of Test Part for 
Entire Process (A), and OD Roughing (B) 
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uncertainty bands from Equation 5 and Equation 6.  
Using the same process produces similar results for the 
other OD roughing pass.  Table 2 shows the process 
parameters, predicted cutting forces, and steady state 
calculated cutting forces for these passes.  
 
SMART MACHINE LEARNING 
When a machine tool is able to monitor its operations, it 
can record data for use by an operator or use the data to 
adapt to changing conditions.  More specifically, the 
machine can use the steady-state cutting force data to 
improve upon optimization models by increasing the size 
of the model creation datasets.  It is beneficial to 
incorporate the production force data into the model 
construction dataset for three reasons: 1) to identify or 
account for uncontrolled changes in the process due to 
factors such as material inhomogeneity (as illustrated by 
the hardness profile given in Figure 7), 2) to expand the 
model application range, and 3) to improve the model 
trend accuracy through an increasing dataset.  The 
average calculated cutting forces from Table 2 have 
been added to the model dataset (Figure 8).  Adjusting 
the power fit to the new dataset results in the new cutting 
force model in Equation 14.   
 

055.0755.0819.0 ***2286 −= vfdFp               (14) 

 
SUMMARY 
The methodology discussed in this paper equipped a 
turning center with the necessary tools to monitor 
process cutting forces.  The acquired force data enables 
the machine to adapt force models to account for chan 

Figure 8:  CNMG-432RN Model Plots for Depth (A), 
Feed (B), and Speed (C) with the Addition of Production 
Data Points (Circles) 
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changes in workpiece material and other uncontrolled 
process parameters, thus reducing the need for 
application specific empirical testing while improving 
machining efficiency without increasing cost.   
Although the uncertainty of force measurements using 
the SLV method is higher than dynamometer 
measurements, monitoring cutting force through the SLV 
signal may be a more industrially-viable method than 
dynamometers due to the compromises in dynamic and 
static stiffness and limited resistance to coolant 
introduced by dynamometers.  Additionally, the SLV 
signal allows the cutting force to be monitored without 
sacrificing stiffness, thereby maintaining machine tool 
accuracy and part quality.  Because the SLV method 
enables industry to collect process data which would 
otherwise be unknown, the SLV method remains 
valuable despite the increased measurement uncertainty 
when comparing the SLV method data to dynamometer 
data. 
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Figure 7: Hardness Profile for 127 mm Diameter Stock 
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Table 2: CNMG-432RN Production OD Roughing Passes
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