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ABSTRACT 
 
   A critical aspect of smart machining systems is 
the appropriate management of knowledge and 
information to support effective decision-making. 
The uncertainty of model-based predictions of 
machining performance plays an important role 
in decision-making for machining optimization 
and adaptive control optimization. This paper 
presents a technique for managing modeling 
and measurement uncertainties for optimization 
and control. The resulting model provides a 
basis for predicting cutting performance to 
facilitate effective decision-making in a real-time 
control environment. The cutting performance is 
optimized when a balance of quality 
improvement versus cost reduction is obtained. 
The approach is demonstrated for an American 
Iron and Steel Institute (AISI) 1045 steel 

workpiece machined on a lathe under a range of 
controlled process conditions. Measurements of 
product quality resulting from the changes in 
process conditions form a basis for model-based 
robust optimization and adaptive control 
optimization that address uncertainties 
encountered in production environments.  
 
 
INTRODUCTION 
 
   The goal of the Smart Machining Systems 
(SMS) program at the National Institute of 
Standards and Technology (NIST) is to develop, 
validate, and demonstrate the metrology, 
standards, and infrastructural tools that enable 
industry to characterize, monitor, and improve 
the accuracy, reliability, and productivity of 
machining operations, leading to the realization 
of autonomous machining systems. The 
characteristics of a Smart Machining System 
are: 1) self-recognition and communication of its 
capabilities to other parts of the manufacturing 
enterprise, 2) self-monitoring and optimization of 
its operations, 3) self-assessment of the quality 
of its work, and 4) self-learning and performance 
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improvement over time (Deshayes et al. 2005; 
Jurrens et al. 2003). This paper reports progress 
in the development of capabilities for self-
monitoring and optimization of operations by a 
Smart Machining System. 
 
   The selection of appropriate process 
parameters for machining operations plays a 
vital role in the cost of production and in the 
resulting part quality. In the effort to reduce the 
cost of production while maintaining adequate 
part quality, a variety of approaches to the 
selection of appropriate values for controllable 
process variables have been utilized, including 
handbook recommendations, process modeling 
(Armarego and Ostafiev 2001; Hong and Lian 
2001; Ivester et al. 2006; Sun et al. 2005), virtual 
machining simulation (Karpat et al. 2005), and 
adaptive control optimization (Ivester et al. 1997; 
Jeong and Cho 2002; Liang et al. 2004; Lim and 
Story 2001; Masory and Koren 1985). One of 
the most difficult aspects of using any of these 
approaches stems from a lack of confidence that 
the resulting process behavior and part quality 
will be acceptable. Process behavior and part 
quality for machining processes vary under 
nominally identical conditions (Ivester et al. 
2000) due to a variety of uncontrolled factors, 
such as the machine environment, homogeneity 
of the workpiece material, and performance 
consistency of the machine, tooling, and coolant.  
 
   This paper presents a technique for model-
based hierarchical supervisory control of a 
turning operation that adaptively optimizes the 
production of a complex turned part. The 
supervisory level in the hierarchy uses a novel 
robust optimization technique to select process 
parameters that allows for variability of process 
behavior, part quality, and uncertainties 
associated with modeling and measurement. 
Process and product measurements from each 
fabricated part provide a means to update 
relevant models and repeat the robust 
optimization.  The robust optimization provides 
updated values for the set points of the 
controllers for each of the process variables. 
This leads to an adaptive behavior that is similar 
to adaptive control optimization but relies on the 
inherent stability of existing individual controllers 
for each of the machining process variables.   
 
MODEL DEVELOPMENT 
 
   Experiments have been performed for the 
development of empirical models to predict 

process behavior in terms of spindle torque, 
cutting forces, surface roughness, and tool wear. 
All experiments were performed on a 22 kW 
lathe. The workpiece material for all experiments 
was American and Iron and Steel Institute (AISI) 
1045 steel cold rolled rod stock. Controller 
signals for spindle load and spindle speed were 
measured along with cutting, thrust, and axial 
forces from a 3-axis dynamometer. Analog 
filtering of the signals at 50 Hz before 
conversion to digital recordings by an 
oscilloscope avoided potential aliasing effects. 
Surface roughness measurements were made 
with a portable surface profilometer. Eight 
measurements were collected in a random 
pattern across the surface and averaged 
together. The average flank wear was measured 
using an optical microscope connected to a 
digital camera.  Images of the inserts were 
compared to images of a calibrated length 
reference as a quantitative basis for converting 
dimensions in pixels to millimeters. 
 
   Several sets of experiments were performed 
under different experimental plans that focus on 
a combination of different machining and 
metrology aspects. Table 1 provides a list of 
inserts used and data collected for each. 
Simultaneous dynamometer and spindle load 
measurements for a range of forces, feeds, 
depths, and speeds establish a model to 
translate measured spindle load into estimated 
cutting forces. Experiments were performed for 
each of the four insert types to establish surface 
roughness models.  
 
 
TABLE 1. KENNAMETAL INSERT DESIGNATIONS 
AND TESTS PERFORMED. 
 

Insert
Information

ANSI
Catalog #

CNMG432RN X X X X X
CPGM32505 X X X

VCMR331 X X
VPGR3305 X
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Spindle Torque Model 
 
   It is necessary to avoid excessive cutting 
forces that can lead to tool breakage, spindle 
overload, and unacceptable workpiece 
deflection. However, traditional dynamometry for 
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measuring cutting forces sacrifices stiffness and 
limits the machining setup to one cutting tool.  In 
order to measure and control cutting forces 
while fabricating parts under practical conditions, 
a simple model has been developed and 
validated to relate cutting forces measured by 
dynamometry to the measured spindle load.    
Multiplying the measured cutting force by the 
working radius leads to the (zero-intercept) 
linear relationships shown in Figure 1 of 
measured torque versus net spindle load.  The 
net spindle load is obtained by subtracting the 
“idle” load measured at the same spindle speed 
without cutting.  The variation of the ratios (of 
torque to the measured values of net spindle 
load) with spindle speed, as shown in Figure 2, 
resembles the torque curve of the spindle motor. 
The combination of a constant ratio for speeds 
up to 70.2 rad/s and a ratio that is a power 
function of spindle speed above 70.2 rad/s as 
shown in Figure 2 provides a basis for modeling 
cutting force as a function of the spindle load. 
Equations 1, 2, and 3 capture this relationship 
as generated by curve fitting of the lathe’s 
experimental data for the particular combination 
of motor and spindle, where L is the spindle load 
signal in volts, D is the working diameter in mm, 
and φ is the spindle speed in rad/s and m is the 
ratio between torque and spindle load.   
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FIGURE 1. MEASURED TORQUE VERSUS 
SPINDLE LOAD AT DIFFERENT SPINDLE SPEEDS. 
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FIGURE 2. SLOPE VERSUS SPINDLE SPEED. 
 
 
   This model of cutting torque as a function of 
spindle load and speed has been tested and 
verified for various cutting tools across a range 
of practical cutting diameters.  The uncertainty 
associated with this model was determined by 
comparing the calculated torque with the spindle 
load signal for each data point.  Calculating the 
±2s standard deviation of the differences 
produces the uncertainties of the ratios (slopes) 
in Figure 1 as Δm=±0.21 [Taylor and Kuyatt, 
1994].  Force uncertainty is calculated using the 
propagation of errors in Equation 4. 
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Cutting Force Models 
 
   The cutting force models used in this paper 
were developed by regression analysis of a 
linearized power-law relationship through 
logarithmic transformation. Cutting force (Fc) 
models for the four different insert types are of 
the form in Equation 5 as functions of the depth 
(d) in mm, feed (f) in mm, and surface speed (v) 
in m/min. The parameters K, a, b, and c for each 
insert are given in Table 2. Model uncertainties 
were determined as the range of K (±ΔK) that 
encompasses all of the points in the data set. 
Radial and axial force models were derived 
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using the same techniques but are beyond the 
scope of this paper.  
 

cba vfdKFc ***=            (5) 
 
 
TABLE 2. CUTTING MODEL PARAMETERS AND 
ASSOCIATED UNCERTAINTIES  
 

Insert K ΔK a b c
(N) (N)

CNMG432RN 2130 150 0.888 0.783 -0.0395
CPGM32505 3855 380 0.976 0.779 -0.196

VCMR331 343 105 0.942 0.729 0.219
VPGR3305 343 105 0.942 0.729 0.219

Cutting Force Model Variables

 
 
 
   CNMG432RN and CPGM32505 insert force 
models were derived from dynamometer force 
data, whereas the VCMR331 and VPGR3305 
insert force model was derived using the spindle 
load signal and Equation 1. The same force 
model is used for the VCMR331 and VPGR3305 
inserts since the only differences between the 
two are in relief angle, nose radius, and 
dimensional tolerances. The VCMR331 and 
VPGR3305 insert models have a greater 
uncertainty when compared to CNMG432RN 
and CPGM32505 models due to their 
dependency on the modeled relationship 
between force and spindle load. The role of this 
larger uncertainty in the context of robust 
optimization and adaptive control optimization 
will be discussed later in the paper.  
 
 
Surface Roughness Models 
 
   As with the cutting force models used in this 
paper, the surface roughness models were 
developed by regression analysis of a linearized 
power-law relationship through logarithmic 
transformation. Surface roughness models for 
the four different insert types are of the form in 
Equation 6 as functions of the depth (d) in mm, 
feed (f) in mm, and surface speed (v) in m/min. 
Values for the parameters K, a, b, and c are 
given in Table 3. 
 

cba vfdKRa ***=            (6) 
 
   This model does not explicitly account for the 
effects of tool wear on surface roughness, so 
roughness measurements were made for 

various levels of tool wear.  Consequently, ΔK 
accounts for both process variation and insert 
wear. This uncertainty is associated with the K 
value where it can be inserted into the 
propagation of errors equation (Equation 7).  
Model uncertainties were determined as the 
range of K (ΔK) that encompasses all of the 
points in the data set. 
 
 
TABLE 3. SURFACE ROUGHNESS MODEL 
PARAMETERS AND ASSOCIATED 
UNCERTAINTIES FOR THE K-VALUE. 
 

Insert K ΔK a b c
(μm) (μm)

CNMG432RN 54 14 -0.006 1.284 -0.261
CPGM32505 21 8 -0.086 1.123 -0.002

VCMR331 23 3.7 0.151 1.225 0.010
VPGR3305 40.5 14 0.033 1.095 -0.034

Surface Finish Model Variables
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Tool Life Model 
 
   The wear patterns on the inserts were 
characterized in terms of nose wear, notch wear, 
peak flank wear, and average flank wear.  For 
purposes of optimization and control, average 
flank wear was selected for modeling due to its 
impact on surface finish and dimensional 
accuracy.  The volume of material that can be 
removed (mr) in mm3 for a given level of 
allowable flank wear in mm, w, is expressed as 
a power-law relationship together with the depth 
(d) in mm, feed (f) in mm, and surface speed (v) 
in m/min. The tool life model for the 
CNMG432RN insert is given in Equation 8.  Tool 
life model uncertainty (Δmr) is expressed in 
Equation 9 where ΔK = ± 4.7 * 108. 
 

241.1821.0045.0488.08 ****10*9 wvfdmr −=        (8) 
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This model predicts the number of producible 

parts per insert for the roughing operation.  The 
degree of tool wear per part for the remaining 
operations was deemed negligible for this 
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application, but similar tool wear models could 
be developed for the other inserts if required. 
 
ROBUST OPTIMIZATION 
 
   Robust optimization is a general term for 
optimization techniques that allow for uncertainty 
in controlled variables, constrained variables, 
their relationships, and the objective function.  In 
this case, we have to determine the combination 
of feed, speed, and depth of cut that maximizes 
the material removal rate for each operation 
while constraining the allowable surface 
roughness and cutting torque.  The robust 
optimization of the part shown in Figure 3 
demonstrates this technique for optimization of 
the process plan prior to production. The design 
requirements for the grooves and contour of the 
part include tight tolerances for form, 
dimensions, and surface roughness.  These 
design requirements translate into constraints in 
the optimization problem.  The process plan for 
this part includes six operations on the outside 
diameter (OD), as given in Table 4.  The 
optimization problem for each operation takes 
the following form:  
 
Maximize:  v*f*d         (10) 
Such that:  F  <  Fmax - ΔF       (11) 
  R  <  Rmax - ΔR       (12) 
  mr  <  mrmax - Δmr       (13) 
 
with F, ΔF, R, ΔR, mr, and Δmr are defined as in 
Equations (1) - (9).  The resulting optimization 
problem is then linearized through a logarithmic 
transformation and solved using the simplex 
algorithm. Conservative (large) estimates of the 
modeling uncertainties and the other 
uncertainties propagated through Equations 4, 
7, and 9 lead to a somewhat conservative 
starting point for production, but this increases 
the probability that the first part will be of 
acceptable quality. Online measurements of 
process performance and part quality then 
provide a basis for adjusting the uncertainties 
and repeating the optimization problem for 
online Adaptive Control Optimization. Figure 4 
shows the process parameters (feed and depth) 
and constrained process variables (cutting force 
and surface finish) for the first operation, 
roughing of the outer diameter (OD). The 
horizontal and vertical bars for the process 
variables are ± 2σ measurement uncertainties. 
The maximum allowable input values for the 
constrained process variables correspond to the 
edges of the graph in Figure 4a. Figures 4a and 

4b illustrate the input values and corresponding 
output values for the control (C), robust (R) and 
adaptive control values AC1 and AC2. 
 
TABLE 4. TOOLING AND ALLOWABLE MAXIMUM 
SURFACE ROUGHNESS FOR OD OPERATIONS IN 
PRODUCTION OF DEMONSTRATION PART.  
 

Finish
Insert Tool Holder (μm)

1 Rough OD CNMG432RN MCLNR-164D 4.0
2 Rough Grooves VCMR331 MCLNR-164D 2.0
3 Rough Contour VCMR331 NVLCL-163D 3.0
4 Finish OD CPGM32505 NVLCR-163D 2.5
5 Finish Grooves VPGR3305 NVLCL-163D 2.0
6 Finish Contour VPGR3305 NVLCR-163D 2.0

Process Steps
Tooling

 
 

 
 
FIGURE 3. TEST PRODUCTION PART.  
 
 
ADAPTIVE CONTROL OPTIMIZATION 
 
   The spindle load signal (Figure 5) provides an 
assessment of the current cutting conditions 
relative to the predetermined maximum 
conditions. Process-intermittent measurements 
of surface roughness and tool wear 
measurements after each lot of parts provide 
similar assessments.   
 
   Using the power/force conversion model 
developed earlier, the maximum cutting force 
and the associated uncertainty can be 
calculated after each pass of the cutting tool. If 
the measured maximum values plus the 
associated uncertainties for cutting force, 
surface roughness, and tool wear are below 
their respective allowable maximum values, then 
one or more of the uncertainty parameters is 
reduced by a fraction (0.25) of the difference. 
This allows the process input values to be 
changed, producing process output values 
closer to the maximum allowable values. As 
such, the Adaptive Control Optimization 
technique used here, Recursive Constraint 
Bounding (RCB) is loosely equivalent to a 
Proportional-Integral-Derivative (PID) control 
system wherein the P term is updated based on 
an analysis of the model, the measurement, and 
the uncertainty and the I and D terms are zero. 
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The advantage of RCB over a traditional PID 
control system is that the term is not static. 
Repeating the optimization problem with the 
reduced uncertainty parameter(s) then leads to 
more aggressive process parameters. After one 
or more parts are produced using the new 
process parameters, the adaptive control 
process can be repeated.  
 
   When all of the measurements of process 
behavior and product quality remain within their 
respective uncertainties, the process parameters 
remain the same. By setting the ratio for 
conservatively reducing the uncertainty 
parameters (0.25 in this case), the stability of the 
adaptive control system is high at the expense 
of responsiveness. The probability of 
overshooting the constraints is low provided the 
modeling uncertainties have been appropriately 
determined and the model is representative of 
the actual system behavior.   
 
 
RESULTS 
 
   The results of this process for the test part in 
Figure 3 can be seen in Table 5. For purposes 
of comparison, parts were produced under 
conditions as recommended by the tooling 
vendor’s catalog, labeled as “C” in the first 
column. Parts produced using the robust 
optimum process parameters as the initial and 

final settings for adaptive control are labeled as 
“R” and “AC”, respectively. Across all inserts and 
process plan steps, the robust optimum from the 
process plan consistently met the maximum 
force and surface finish requirements.  The 
surface roughness measurements and tool wear 
measurements were consistently within the 
ranges predicted by their respective models and 
associated ± 2σ uncertainties.  
 
   The differences between the process 
measurements and the maximums of their 
respective model prediction ranges enabled 
uncertainty reduction to enable more aggressive 
optimization. The final resulting process 
parameters are indicated by the rows labeled 
“AC” in the first column of Table 5. The spindle 
load signal for all six operations in the process 
plan for the initial and final adaptive control 
conditions in Figure 5 provides a graphic 
indication of the increase in spindle load and the 
more than 28 % decrease in cycle time. Overall, 
the approach successfully increased removal 
rate while meeting process behavior constraints.  
 
 
CONCLUSION 
 
   Through integration of model-based process 
knowledge with modeling uncertainties, robust 
optimization, and adaptive control, this paper 

 
 
TABLE 5. CONSERVATIVE CATALOG (C), ROBUST (R), AND FINAL (AC) CONDITIONS FOR EACH PROCESS 
STEP AND COMPARISON OF MODEL PREDICTIONS AND MEASUREMENTS. 
 

Removal

d f v Rate

(mm) (mm/rev) (m/min) (cm3/min)

C 1.3 0.25 187 59.37          758 ± 22 2.34 ± 0.61 742 ± 5 2.07 ± 0.04

R 3.0 0.32 200 190.72         1867 ± 131 3.12 ± 0.81 1565 ± 12 3.06 ± 0.09

AC1 2.6 0.38 200 195.32         1874 ± 132 3.91 ± 1.01 1535 ± 14 3.78 ± 0.08

AC2 2.1 0.48 200 201.60         1778 ± 125 4.24 ± 1.10 1504 ± 15 4.15 ± 0.04

C 0.5 0.20 256 25.60          186 ± 57 3.05 ± 0.49 204 ± 4 3.47 ± 0.02

R 3.0 0.10 200 60.00          574 ± 176 1.71 ± 0.27 581 ± 8 1.82 ± 0.07

AC1 3.0 0.13 200 78.00          695 ± 213 2.35 ± 0.38 675 ± 4 2.15 ± 0.02

C 0.5 0.20 130 13.00          160 ± 49 3.03 ± 0.49 221 ± 3 3.63 ± 0.06

R 3.0 0.14 130 54.60          667 ± 204 2.57 ± 0.41 753 ± 3 2.48 ± 0.06

AC1 3.0 0.18 130 70.20          802 ± 245 3.49 ± 0.56 916 ± 3 3.40 ± 0.09

C 0.2 0.10 190 3.80            55 ± 5 1.80 ± 0.68 36 ± 2 2.23 ± 0.04

R 1.0 0.08 190 15.20          222 ± 22 1.61 ± 0.65 141 ± 3 1.81 ± 0.03

AC1 1.0 0.10 190 19.00          264 ± 26 1.98 ± 0.80 118 ± 80 2.69 ± 0.03

C 0.3 0.10 200 6.00            66 ± 20 2.61 ± 0.90 74 ± 2 1.97 ± 0.05

R 2.0 0.05 190 19.00          234 ± 72 1.30 ± 0.45 226 ± 2 1.00 ± 0.06

AC1 2.0 0.08 190 30.40          333 ± 102 2.18 ± 0.75 296 ± 2 1.54 ± 0.05

C 0.3 0.10 110 3.30            58 ± 18 2.67 ± 0.92 76 ± 2 2.20 ± 0.06

R 2.0 0.05 110 11.00          207 ± 63 1.33 ± 0.46 240 ± 2 1.16 ± 0.07

AC1 2.0 0.08 110 17.60          292 ± 89 2.22 ± 0.77 301 ± 2 1.88 ± 0.04
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demonstrates the potential for optimal 
achievement of first part correct production. The 
adaptive control optimization technique 
presented in this paper can sufficiently model 
process behavior while allowing for uncertainties 
and fluctuations encountered in real-world 
production. By monitoring process performance 
and product quality at the machine, Smart 
Machining Systems can vary cutting conditions 
to operate at maximum efficiency and enable 
better understanding of processes and their 
respective sources of uncertainty. 
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FIGURE 4: INPUT PARAMETERS (A) AND OUTPUT 
PARAMETERS (B) FOR SUPERVISORY ADAPTIVE 
CONTROL OF PROCESS PERFORMANCE 
THROUGH ADJUSTMENT OF INPUT PROCESS 
PARAMETERS. 
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FIGURE 5. TEST PART SPINDLE LOAD SIGNAL. 
INITIAL ROBUST CUTTING CONDITIONS (A), 
FINAL ADAPTIVE CONTROL CONDITIONS (B). 
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