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Abstract 

Measuring structural similarity between XML documents has become a key component in various 

applications, including XML mining, schema matching, and web service discovery, among others. 

This paper presents a novel structural similarity measure incorporating kernel methods into XML 

documents. Results on preliminary simulations show that this approach outperforms conventional 

ones. 
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Introduction 

Nowadays, XML has been rooted as the standard means to express and exchange data among 

enterprise applications. Along with its explosive use, it has several bothersome obstacles including 

profusion, redundancy, and reproduction of similar information contents. The proper manipulation of 

XML content has become a main research issue both in academia and in industry. Two of the main 

issues involve XML formalisms [1, 2, 3] and a variety of similarity measures [1, 3, 4, 5, 6]. Most of 

those measures focus on the semantic/linguistic similarity between data items; in this paper, however, 

we focus on measures of structural similarity.  

 

This paper proposes a novel structural similarity measure for comparison of XML documents. We 

base this measure on well-known kernel methods for structured data. We first introduce an interface 

representation to capture the structure of an XML document, and then deploy the kernel methods to 

manipulate that representation. We use this approach to compute measures for two examples: OAGIS 

BOD1 data and with ACM SIGMOD Records.  

 

The rest of the paper is organized as follows. Section 2 illustrates a motivating example, in which 

software components are replaced based on the semantic similarity between information models. 

Section 3 reviews string kernels. Section 4 describes our use of these kernels to compute the structural 

                                                      
1 The OAGIS BOD (Business Object Document) schemas are open and standard specifications for supporting 
interoperable data exchange by providing enterprise/domain-neutral data structures and definitions. 
http://www.openapplications.org  

http://www.openapplications.org/


similarity between XML documents. Section 5 includes preliminary simulation results, and Section 6 

provides our concluding remarks.  

 

Motivating Example: Component Replacement and Selection 

Consider the following common example.  A company decides to replace a software component that 

is integrated with other software components in the enterprise. This decision may arise because the 

original component provider no longer exists, does not support that particular version of the software 

any longer, or may have a newer version that is deemed to be more powerful. It may also arise when 

another vendor has a better or less expensive alternative. In either case, the principal problem is to 

determine if the new software component is compatible with the functionality of and easily 

integratable with the other existing software component(s). 

 

To find the answer to this problem, an IT manager must perform an information compatibility analysis. 

This analysis is complicated because, as noted above, this replacement must meet both functional and 

connectivity requirements. Fig.1 illustrates this situation with some particular software components. 

Suppose that the company has an Inventory Visibility (IV) system that is integrated already with its 

ERP system and has the necessary Web interfaces to exchange inventory data with its suppliers. The 

IV system can provide status updates to the visualization software and manage the inventory levels 

based on a specific inventory management policy [7]. 

 

 
Fig.1 A software component connectivity scenario 

 

Since the ERP typically does not provide these capabilities, it is common for the ERP and the IV 

system to be separate software components provided by different software vendors. Therefore, an 

integration interface exists between the ERP and the IV systems as indicated by the bold-solid arrow 



connection in Fig.1. This also implies that a mapping between the corresponding information models 

exists. Fig.2 shows part of such a mapping. The most desirable software replacement should have an 

information model compatible with (or similar to) those in the IV system as well as in the ERP. 

 

 
Fig.2 An exemplary mapping of data between the ERP and the IV system 

 

Kernel Methods for Structured Data 

Kernel methods, such as support vector machines [9], use non-linear algorithms to map samples in 

one space X into other samples in a higher-dimensional Hilbert space H.  They work very well on 

small problems, but often have a computational explosion for larger problems [8]. Fortunately, the so-

called kernel trick can reduce the magnitude of the explosion by getting the scalar product implicitly 

computed in H when an algorithm solely depends on the inner product between vectors. Recent kernel 

methods for structured data employ this kernel trick to incorporate types of data other than numerical 

and vector data. In particular, they can now deal with string data. The following definition is critical. 

 



 
 

Since a direct computation of these features would involve  time and space, a recursive 

computation in  is provided in [10]. The K(s, t), the inner product of the feature vectors, 

is defined as the similarity between the strings s and t [11]. In addition, an extension to the basic string 

kernel is found in [12, 13], where the characters are replaced with words or syllables -- word 

sequence kernel -- and soft matching is allowed. This extension yields a significant improvement in 

computation efficiency for large documents. 

 

Furthermore, one of the most critical factors to determine kernels' performance is the choice of the 

decay factor λ. Compared with the original string kernel, which uses the same λ for every character, 

[12] introduces a different λ -weighting strategy that assigns a different weight (λc) to each character 

( ). The weighted string kernel Kw of two strings s and t is defined as  

 
The evaluation of Kw can be computed recursively using a technique similar to the one used in the 

original string kernel [12]. The use of different decay factors is one way of incorporating prior 

knowledge, such as synonymous relationships between words, into the string kernel. We discuss the 

determination of weights again later in the paper.  

 

Kernel-based Measurement of XML Structural Similarity 

Our approach to computing structural similarity between XML documents using the kernel trick has 



two steps. First we represent tree-structured XML documents in normalized plain documents.  Then, 

we apply the word sequence kernel to the normalized documents. We discuss these two steps in the 

following sections. 

  

Interface Representation 

Recall that an XML document, both XML schema and XML instance, is expressed modularly in a tree 

structure, which is more restricted than plain text. In such as structure, the semantics and importance 

of a node (including its contents) depends on its depth and order. That is, an upper node represents a 

more general and contextual meaning than its descendant nodes; whereas, leaf nodes often capture the 

specific atomic data that the XML document ultimately describes. Therefore, the interface 

representation should explicitly retain node order - parent-to-child and left-to-right, for example. Here, 

we make a hypothesis to use a sequence of node labels ordered by a depth-first traversal. The 

construction procedure is made up of abstraction, serialization, and normalization, as shown in Fig.3. 

 

 
Fig.3 Construction of an interface representation from an XML document 

 

The abstraction process removes unnecessary or accessory descriptions from the XML document, 

thereby simplifying and restructuring the original peculiar tree structure. This process is needed 

because XML's native DOM (Document Object Model) tree unnecessarily expresses more than the 

structural information. It results in an abstract tree representation that captures only the intrinsic 



structure to a schema when it is instantiated. The abstract tree is the most fundamental but expressive 

tree capturing the common structural information among various instances with the same schema. The 

tree is fundamental in that it disallows inclusive/duplicate structures. This means that each path, which 

is a sequence of element/attribute names from the root node to a leaf node2 , cannot contain 

element/attribute names from any other path to that node. The tree is expressive in that any content in 

an XML instance must be reachable by the tree. This means that the abstract tree is the collection of 

the longest (or most general) paths between the root and the leaf nodes3. For more on this process, see 

[14].  

 

Second, the serialization process transforms the abstract tree representation into a sequence of words. 

This serialization process is the key idea to manipulating the XML's modularity because it enables us 

to apply the word sequence kernel without any modification. We visit every node by a depth-first 

traversal of the tree producing a long sentence, which is a sequence of node labels from the root node 

to the rightmost leaf node. 

 

Third, the normalization process deals with the problems that each word is often a compound word 

comprised of several unique terms – for example, QuantityOnHand and AvailableQuantity in Fig.2. 

The normalization process recursively consists of (1) tokenization, which separates a compound word 

into atomic dictionary words; (2) lemmatization, which analyzes these words morphologically in 

order to find all their possible basic forms; (3) elimination, which discards meaningless stop words 

such as article, preposition, and conjunction, and, (4) stemming, which finds a stem form of a given 

inflected word [14, 15]. 

 

Take the QuantityOnHand schema document in Fig.2, for example. The serialization process yields 

QuantityOnHand, Item, SiteId, Identifier, ContactUrl, AvailableQuantity, MinQuantity, and 

MaxQuantity. The normalization process yields Quantity, Hand, Item, Site, Identifier, Identifier, 

Contact, Universal, Resource, Locator, Available, Quantity, Minimum, Quantity, Maximum, and 

Quantity. Note, the elimination procedures removes the preposition On from QuantityOnHand; the  

lemmatization process changes Id into Identifier and Url into Universal, Resource, and Locator. 

 

Structural Similarity Measure 

We compute structural similarity measures only for normalized documents. For two XML documents 

d1 and d2 and a kernel function K, we define their structural similarity as Sim(d1, d2) = K(s1, s2), where 

s1 and s2 are their respective normalized strings. We use a modified, word-sequence kernel that reads a 

                                                      
2 A leaf node can be either an element or an attribute, while other nodes must be elements. 
3 For XML instance documents, this abstraction step is unnecessary, but we use their DOM trees. 



pair of strings, generates two feature vectors, and then calculates their inner product < , >. The final 

inner product is the structural similarity.  

 

As noted above, we use assign different weights, decay factor λ, to different nodes. To make this 

assignment, we introduce a depth-dependent decay factor λn = λ0/depth(n)r, where depth(n) is the 

depth of the node n (depth(root) = 1) and r >= 1 is a relevant factor. Since, as shown in the example 

below, the size of inputs, length of strings is usually not a constant, the kernel value is sometimes 

normalized in [0, 1] by  if and 

only if strings s and t are identical. 

 

Take an illustrative example to compute the structural similarity between Inventory and 

QuantityOnHand (in Fig.2 above). For simplicity, we assign the following alphabets to stand for 

corresponding words: A(vailable), C(ontact), H(and), I(dentifier), L(ocator), M(inimum), N(ame), 

P(oint), Q(uantity), R(esource), S(ite), T(Item), U(niversal), V(Inventory), X(Maximum), Y(Capacity). 

Through the interface representation transformation, we get the Inventory document as 

'VTSNICPVQVY' and the QuantityOnHand document as 'QHTSIICURLAQMQXQ'. The common 

subsequences are {C, I(2), Q(4), S, T, CQ(3), IC(2), ..., TSICQ(6)}4. Accordingly, as detailed in Fig.4, their 

similarity is easily computed as Kw = 2.1399 and Kw = 0.6149 with respect to r = 1 and r = 2 by 

equation (2) with λ0 = 1, whereas K = 2.3699 by equation (1) with λ = 0.5. 

 

 
Fig.4 Exemplary structural similarity computation using the proposed kernel method with relevant 

                                                      
4 Numbers in parentheses indicate the number of possible occurrences. 



factor r = 1 and r = 2 

 

Preliminary Experiments 

To evaluate the proposed method, we performed experiments with XML schema documents from 

OAGIS. We designed two types of experiments. The first was just to show that the proposed method 

is well suited to human judgment; the second was to verify that the proposed similarity measures 

could discriminate valuable information from less related information in the perspective of 

information retrieval. 

 

For the first experiment, we randomly selected 200 pairs of CC's (Core Components) and let four 

human experts (based on their own domain and linguistic knowledge) score every pair to assign their 

degree of relatedness in [0, 1]. We implemented four algorithms -- TED (Tree Edit Distance)5; VSM 

by means of cosine of the angle; kernels both with a fixed penalty (i.e., λn = c) and with a variant 

penalty (i.e., λn = f(λ0, depth(n), r)). The experimental result is depicted in Fig.5 in terms of 

correlation with the experts' average score. 'Kern.1' and 'Kern.2' implemented a fixed weighting 

scheme with to λ = 1 and ½ respectively. 'Kern.3' and 'Kern.4' implemented a variable weighting 

scheme with relevant factors r = 1 and 2 respectively.  

 

As shown in the figure, the kernel methods outperform the conventional measures, TED and VSM. 

Although VSM is a special type of kernel methods, the proposed ones give better performance 

because they preserve the parent-child relationship between elements in XML documents. On other 

words, the bag-of-words model, VSM, gives the same importance between, for example, the root node 

and a leaf node. It is also noted that the proposed depth-dependent λ-weighting gives a more accurate 

measure than the fixed one does. 

 

 

                                                      
5 A state-of-the-art similarity measure for tree structures [16]. 



Fig.5 Correlation between human judgment and various structural similarity measures -- TED (Tree 

Edit Distance), VSM with cosine of the angle, and Kernel-based measures 

 

The second experiment was a mapping test that evaluates whether mappings established by an 

algorithm are correct compared with true mappings. We configured four experiment sets, each of 

which consisted of two data sets having 10 CC's and 20 CC's. Between the two data sets, an algorithm 

and human operators selected no more than 10 plausible mappings6 . Then, we compared the 

selections using three widely-used performance metrics: Precision, Recall, and F-Measure.  Let A$ 

be a set of alignments mapped by an algorithm, and T be the set of true mappings by human experts. 

Then the metrics are defined as follows: Precision = xx, Recall = yy, and F-Measure = xy. The 

experimental results are depicted in Fig.6. Same as the first experiment, the kernel-based measures 

give better performance than TED- and VSM-based ones do. 

 

 
Fig.6 Precision, Recall and F-measure. 

 

We conducted additional experiments with XML instance documents from ACMSIGMOD Records. 

We prepared two groups of XML instances. Each group had 50 documents randomly selected, but 

conforming to the same DTD (Document Type Definition). The two DTDs shared several common 

element definitions. Conforming to the same DTD apparently means its instances are structurally 

similar. We tried to discriminate the documents using the PAM (Partitioning Around Medoids) 

algorithm [17] with ten replications. The clustering results are depicted in Table 1, in which the low 

structural diversity among documents, particularly in the second group, makes them well-separated, 

except TED. Another implication from the result is the interface representation is a good means to 

express XML's tree structure. It should be noted the experiment does not care about contents in those 

documents, but their structure only. For all that, the proposed kernel-based measures require a 

significant modification to reduce computation time for large datasets. 

                                                      
6 The humans selected the true mappings; the algorithm selected the test mappings. 



 

Table 1. Clustering results for ACMSIGMOD Record: A comparison matrix 

 
 

Conclusion 

This paper presented a novel approach to compute the structural similarity between XML documents 

by incorporating a modified string kernel. After introduction of kernel methods, we proposed an 

interface representation for XML documents and a λ-weighted word sequence kernel for structural 

similarity computation. The experimental results showed that the proposed kernel-based measure 

outperforms state-of-the-art approaches (i.e., TED and VSM). In particular, the research output helps 

web services to be discovered, selected, and composed when those activities are performed based on 

the message type. Moreover, we also expect that the result of this research will improve significantly 

the performance of many XML-based applications including XML-document clustering and 

classification, schema matching, XML message mapping, and ontology reconciliation.  

 
Disclaimer 
 
Certain commercial software products are identified in this paper. These products were used only for 
demonstration purposes. This use does not imply approval or endorsement by NIST, nor does it imply 
that these products are necessarily the best available for the purpose. 
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