
A Novel Approach to Measuring Structural Similarity between

XML Documents
Buhwan Jeong, Daewon Lee, Hyunbo Cho, and Boonserm Kulvatunyou

Abstract

Measuring structural similarity between XML documents has become a key component in various

applications, including XML mining, schema matching, and web service discovery, among others.

This paper presents a novel structural similarity measure incorporating kernel methods into XML

documents. Results on preliminary simulations show that this approach outperforms conventional

ones.

Keywords: Information compatibility analysis, kernel methods, string kernel, structural similarity,

XML mining

Introduction

Nowadays, XML has been rooted as the standard means to express and exchange data among

enterprise applications. Along with its explosive use, it has several bothersome obstacles including

profusion, redundancy, and reproduction of similar information contents. The proper manipulation of

XML content has become a main research issue both in academia and in industry. Two of the main

issues involve XML formalisms [1, 2, 3] and a variety of similarity measures [1, 3, 4, 5, 6]. Most of

those measures focus on the semantic/linguistic similarity between data items; in this paper, however,

we focus on measures of structural similarity.

This paper proposes a novel structural similarity measure for comparison of XML documents. We

base this measure on well-known kernel methods for structured data. We first introduce an interface

representation to capture the structure of an XML document, and then deploy the kernel methods to

manipulate that representation. We use this approach to compute measures for two examples: OAGIS

BOD1 data and with ACM SIGMOD Records.

The rest of the paper is organized as follows. Section 2 illustrates a motivating example, in which

software components are replaced based on the semantic similarity between information models.

Section 3 reviews string kernels. Section 4 describes our use of these kernels to compute the structural

1 The OAGIS BOD (Business Object Document) schemas are open and standard specifications for supporting
interoperable data exchange by providing enterprise/domain-neutral data structures and definitions.
http://www.openapplications.org

http://www.openapplications.org/

similarity between XML documents. Section 5 includes preliminary simulation results, and Section 6

provides our concluding remarks.

Motivating Example: Component Replacement and Selection

Consider the following common example. A company decides to replace a software component that

is integrated with other software components in the enterprise. This decision may arise because the

original component provider no longer exists, does not support that particular version of the software

any longer, or may have a newer version that is deemed to be more powerful. It may also arise when

another vendor has a better or less expensive alternative. In either case, the principal problem is to

determine if the new software component is compatible with the functionality of and easily

integratable with the other existing software component(s).

To find the answer to this problem, an IT manager must perform an information compatibility analysis.

This analysis is complicated because, as noted above, this replacement must meet both functional and

connectivity requirements. Fig.1 illustrates this situation with some particular software components.

Suppose that the company has an Inventory Visibility (IV) system that is integrated already with its

ERP system and has the necessary Web interfaces to exchange inventory data with its suppliers. The

IV system can provide status updates to the visualization software and manage the inventory levels

based on a specific inventory management policy [7].

Fig.1 A software component connectivity scenario

Since the ERP typically does not provide these capabilities, it is common for the ERP and the IV

system to be separate software components provided by different software vendors. Therefore, an

integration interface exists between the ERP and the IV systems as indicated by the bold-solid arrow

connection in Fig.1. This also implies that a mapping between the corresponding information models

exists. Fig.2 shows part of such a mapping. The most desirable software replacement should have an

information model compatible with (or similar to) those in the IV system as well as in the ERP.

Fig.2 An exemplary mapping of data between the ERP and the IV system

Kernel Methods for Structured Data

Kernel methods, such as support vector machines [9], use non-linear algorithms to map samples in

one space X into other samples in a higher-dimensional Hilbert space H. They work very well on

small problems, but often have a computational explosion for larger problems [8]. Fortunately, the so-

called kernel trick can reduce the magnitude of the explosion by getting the scalar product implicitly

computed in H when an algorithm solely depends on the inner product between vectors. Recent kernel

methods for structured data employ this kernel trick to incorporate types of data other than numerical

and vector data. In particular, they can now deal with string data. The following definition is critical.

Since a direct computation of these features would involve time and space, a recursive

computation in is provided in [10]. The K(s, t), the inner product of the feature vectors,

is defined as the similarity between the strings s and t [11]. In addition, an extension to the basic string

kernel is found in [12, 13], where the characters are replaced with words or syllables -- word

sequence kernel -- and soft matching is allowed. This extension yields a significant improvement in

computation efficiency for large documents.

Furthermore, one of the most critical factors to determine kernels' performance is the choice of the

decay factor λ. Compared with the original string kernel, which uses the same λ for every character,

[12] introduces a different λ -weighting strategy that assigns a different weight (λc) to each character

(). The weighted string kernel Kw of two strings s and t is defined as

The evaluation of Kw can be computed recursively using a technique similar to the one used in the

original string kernel [12]. The use of different decay factors is one way of incorporating prior

knowledge, such as synonymous relationships between words, into the string kernel. We discuss the

determination of weights again later in the paper.

Kernel-based Measurement of XML Structural Similarity

Our approach to computing structural similarity between XML documents using the kernel trick has

two steps. First we represent tree-structured XML documents in normalized plain documents. Then,

we apply the word sequence kernel to the normalized documents. We discuss these two steps in the

following sections.

Interface Representation

Recall that an XML document, both XML schema and XML instance, is expressed modularly in a tree

structure, which is more restricted than plain text. In such as structure, the semantics and importance

of a node (including its contents) depends on its depth and order. That is, an upper node represents a

more general and contextual meaning than its descendant nodes; whereas, leaf nodes often capture the

specific atomic data that the XML document ultimately describes. Therefore, the interface

representation should explicitly retain node order - parent-to-child and left-to-right, for example. Here,

we make a hypothesis to use a sequence of node labels ordered by a depth-first traversal. The

construction procedure is made up of abstraction, serialization, and normalization, as shown in Fig.3.

Fig.3 Construction of an interface representation from an XML document

The abstraction process removes unnecessary or accessory descriptions from the XML document,

thereby simplifying and restructuring the original peculiar tree structure. This process is needed

because XML's native DOM (Document Object Model) tree unnecessarily expresses more than the

structural information. It results in an abstract tree representation that captures only the intrinsic

structure to a schema when it is instantiated. The abstract tree is the most fundamental but expressive

tree capturing the common structural information among various instances with the same schema. The

tree is fundamental in that it disallows inclusive/duplicate structures. This means that each path, which

is a sequence of element/attribute names from the root node to a leaf node2 , cannot contain

element/attribute names from any other path to that node. The tree is expressive in that any content in

an XML instance must be reachable by the tree. This means that the abstract tree is the collection of

the longest (or most general) paths between the root and the leaf nodes3. For more on this process, see

[14].

Second, the serialization process transforms the abstract tree representation into a sequence of words.

This serialization process is the key idea to manipulating the XML's modularity because it enables us

to apply the word sequence kernel without any modification. We visit every node by a depth-first

traversal of the tree producing a long sentence, which is a sequence of node labels from the root node

to the rightmost leaf node.

Third, the normalization process deals with the problems that each word is often a compound word

comprised of several unique terms – for example, QuantityOnHand and AvailableQuantity in Fig.2.

The normalization process recursively consists of (1) tokenization, which separates a compound word

into atomic dictionary words; (2) lemmatization, which analyzes these words morphologically in

order to find all their possible basic forms; (3) elimination, which discards meaningless stop words

such as article, preposition, and conjunction, and, (4) stemming, which finds a stem form of a given

inflected word [14, 15].

Take the QuantityOnHand schema document in Fig.2, for example. The serialization process yields

QuantityOnHand, Item, SiteId, Identifier, ContactUrl, AvailableQuantity, MinQuantity, and

MaxQuantity. The normalization process yields Quantity, Hand, Item, Site, Identifier, Identifier,

Contact, Universal, Resource, Locator, Available, Quantity, Minimum, Quantity, Maximum, and

Quantity. Note, the elimination procedures removes the preposition On from QuantityOnHand; the

lemmatization process changes Id into Identifier and Url into Universal, Resource, and Locator.

Structural Similarity Measure

We compute structural similarity measures only for normalized documents. For two XML documents

d1 and d2 and a kernel function K, we define their structural similarity as Sim(d1, d2) = K(s1, s2), where

s1 and s2 are their respective normalized strings. We use a modified, word-sequence kernel that reads a

2 A leaf node can be either an element or an attribute, while other nodes must be elements.
3 For XML instance documents, this abstraction step is unnecessary, but we use their DOM trees.

pair of strings, generates two feature vectors, and then calculates their inner product < , >. The final

inner product is the structural similarity.

As noted above, we use assign different weights, decay factor λ, to different nodes. To make this

assignment, we introduce a depth-dependent decay factor λn = λ0/depth(n)r, where depth(n) is the

depth of the node n (depth(root) = 1) and r >= 1 is a relevant factor. Since, as shown in the example

below, the size of inputs, length of strings is usually not a constant, the kernel value is sometimes

normalized in [0, 1] by if and

only if strings s and t are identical.

Take an illustrative example to compute the structural similarity between Inventory and

QuantityOnHand (in Fig.2 above). For simplicity, we assign the following alphabets to stand for

corresponding words: A(vailable), C(ontact), H(and), I(dentifier), L(ocator), M(inimum), N(ame),

P(oint), Q(uantity), R(esource), S(ite), T(Item), U(niversal), V(Inventory), X(Maximum), Y(Capacity).

Through the interface representation transformation, we get the Inventory document as

'VTSNICPVQVY' and the QuantityOnHand document as 'QHTSIICURLAQMQXQ'. The common

subsequences are {C, I(2), Q(4), S, T, CQ(3), IC(2), ..., TSICQ(6)}4. Accordingly, as detailed in Fig.4, their

similarity is easily computed as Kw = 2.1399 and Kw = 0.6149 with respect to r = 1 and r = 2 by

equation (2) with λ0 = 1, whereas K = 2.3699 by equation (1) with λ = 0.5.

Fig.4 Exemplary structural similarity computation using the proposed kernel method with relevant

4 Numbers in parentheses indicate the number of possible occurrences.

factor r = 1 and r = 2

Preliminary Experiments

To evaluate the proposed method, we performed experiments with XML schema documents from

OAGIS. We designed two types of experiments. The first was just to show that the proposed method

is well suited to human judgment; the second was to verify that the proposed similarity measures

could discriminate valuable information from less related information in the perspective of

information retrieval.

For the first experiment, we randomly selected 200 pairs of CC's (Core Components) and let four

human experts (based on their own domain and linguistic knowledge) score every pair to assign their

degree of relatedness in [0, 1]. We implemented four algorithms -- TED (Tree Edit Distance)5; VSM

by means of cosine of the angle; kernels both with a fixed penalty (i.e., λn = c) and with a variant

penalty (i.e., λn = f(λ0, depth(n), r)). The experimental result is depicted in Fig.5 in terms of

correlation with the experts' average score. 'Kern.1' and 'Kern.2' implemented a fixed weighting

scheme with to λ = 1 and ½ respectively. 'Kern.3' and 'Kern.4' implemented a variable weighting

scheme with relevant factors r = 1 and 2 respectively.

As shown in the figure, the kernel methods outperform the conventional measures, TED and VSM.

Although VSM is a special type of kernel methods, the proposed ones give better performance

because they preserve the parent-child relationship between elements in XML documents. On other

words, the bag-of-words model, VSM, gives the same importance between, for example, the root node

and a leaf node. It is also noted that the proposed depth-dependent λ-weighting gives a more accurate

measure than the fixed one does.

5 A state-of-the-art similarity measure for tree structures [16].

Fig.5 Correlation between human judgment and various structural similarity measures -- TED (Tree

Edit Distance), VSM with cosine of the angle, and Kernel-based measures

The second experiment was a mapping test that evaluates whether mappings established by an

algorithm are correct compared with true mappings. We configured four experiment sets, each of

which consisted of two data sets having 10 CC's and 20 CC's. Between the two data sets, an algorithm

and human operators selected no more than 10 plausible mappings6 . Then, we compared the

selections using three widely-used performance metrics: Precision, Recall, and F-Measure. Let A$

be a set of alignments mapped by an algorithm, and T be the set of true mappings by human experts.

Then the metrics are defined as follows: Precision = xx, Recall = yy, and F-Measure = xy. The

experimental results are depicted in Fig.6. Same as the first experiment, the kernel-based measures

give better performance than TED- and VSM-based ones do.

Fig.6 Precision, Recall and F-measure.

We conducted additional experiments with XML instance documents from ACMSIGMOD Records.

We prepared two groups of XML instances. Each group had 50 documents randomly selected, but

conforming to the same DTD (Document Type Definition). The two DTDs shared several common

element definitions. Conforming to the same DTD apparently means its instances are structurally

similar. We tried to discriminate the documents using the PAM (Partitioning Around Medoids)

algorithm [17] with ten replications. The clustering results are depicted in Table 1, in which the low

structural diversity among documents, particularly in the second group, makes them well-separated,

except TED. Another implication from the result is the interface representation is a good means to

express XML's tree structure. It should be noted the experiment does not care about contents in those

documents, but their structure only. For all that, the proposed kernel-based measures require a

significant modification to reduce computation time for large datasets.

6 The humans selected the true mappings; the algorithm selected the test mappings.

Table 1. Clustering results for ACMSIGMOD Record: A comparison matrix

Conclusion

This paper presented a novel approach to compute the structural similarity between XML documents

by incorporating a modified string kernel. After introduction of kernel methods, we proposed an

interface representation for XML documents and a λ-weighted word sequence kernel for structural

similarity computation. The experimental results showed that the proposed kernel-based measure

outperforms state-of-the-art approaches (i.e., TED and VSM). In particular, the research output helps

web services to be discovered, selected, and composed when those activities are performed based on

the message type. Moreover, we also expect that the result of this research will improve significantly

the performance of many XML-based applications including XML-document clustering and

classification, schema matching, XML message mapping, and ontology reconciliation.

Disclaimer

Certain commercial software products are identified in this paper. These products were used only for
demonstration purposes. This use does not imply approval or endorsement by NIST, nor does it imply
that these products are necessarily the best available for the purpose.

References

1. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of XML structural

similarity. IEEE Transactions on Knowledge and Data Engineering 17(2) (2005)

2. Yang, J., Cheung, W., Chen, X.: Learning the kernel matrix for XML document clustering. In:

Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-
Service (EEE’05), Washington, DC., IEEE Computer Society (2005) 353–358

3. Lee, J., Lee, K., Kim, W.: Preparations for semantics-based XML mining. In: Proceedings of IEEE

International Conference on Data Mining (ICDM2001). (2001) 345–352

4. Nierman, A., Jagadish, H.: Evaluating structural similarity in XML documents. In: Proceedings of

the 5th International Workshop on the Web and Database (WebDB2002). (2002)

5. Shvaiko, P., Euzenat, J.: A survey of scham-based matching. Journal of Data Semantics IV 3730

(2005) 14–171

6. Jeong, B., Kulvatunyou, B., Ivezic, N., Cho, H., Jones, A.: Enhance reuse of standard ebusiness
XML schema documents. In: Proceedings of International Workshop on Contexts and Ontology:
Theory, Practice and Application (C&O’05) in the 20th National Conference on Artificial
Intelligence (AAAI’05). (2005)

7. Ivezic, N., Kulvatunyou, B., Frechette, S., Jones, A., Cho, H., Jeong, B.: An interoperability testing

study: Automotive inventory visibility and interoperability. In: Proceedings of e-Challenges.
(2004)

8. Muller, K., Mika, S., Ratsch, G., Tsuda, K., Sch¨olkopf, B.: An introduction to kernel-based

learning algorithms. IEEE Transactions on Neural Networks 12(2) (2001) 181–201

9. Kobayashi, M., Aono, M. In: Vector Space Models for Search and Cluster Mining. Springer-Verlag

New York, Inc. (2003) 103–122

10. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using

string kernels. Journal of Machine Learning Research 2 (2002) 419–444
11. Vert, J., Tsuda, K., Sch¨olkopf, B. In: A Primer on Kernel Methods. MIT Press, Cambridge, MA

(2004) 35–70

12. Saunders, C., Tschach, H., Shawe-Taylor, J.: Syllables and other string kernel extensions. In:

Proceedings of the 19th International Conference on Machine Learning (ICML’02). (2002)

13. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.: Word-sequence kernels. Journal of Machine

Learning Research 3 (2003) 1059–1082

14. Jeong, B.: Machine Learning-based Semantic Similarity Measures to Assist Discovery and Reuse

of Data Exchange XML Schemas. PhD thesis, Department of Industrial and
ManagementEngineering, Pohang University of Science and Technology (2006)

15. Willett, P.: The porter stemming algorithm: Then and now. Electronic Library and Information

Systems 40(3) (2006) 219–223

16. Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity metric for XML documents. In: Proceedings of

Workshop on Knowledge and Experience Management (FGWM2003). (2003)

17. Reynolds, A., Richards, G., Rayward-Smith, V.: The application of k-medoids and PAM to the

clustering of rules. In: Intelligent Data Engineering and Automated Learning (IDEAL 2004).
Volume LNCS 3177. (2004) 173–178

