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Abstract: The National Institute of Standards and Technology’s (NIST) Intelligent Systems Division (ISD) is a par-
ticipant in the Defense Advanced Research Project Agency (DARPA) LAGR (Learning Applied to Ground 
Robots) Project.  The NIST team’s objective for the LAGR Project is to insert learning algorithms into the 
modules that make up the 4D/RCS (Four Dimensional/Real-Time Control System), the standard reference 
model architecture to which ISD has applied to many intelligent systems.  This paper describes the 4D/RCS 
structure, its application to the LAGR project, and the learning and mobility control methods used by the 
NIST team’s vehicle.

1. INTRODUCTION 

The National Institute of Standards and Tech-
nology’s (NIST) Intelligent Systems Division 
(ISD) has been developing the RCS [Albus-1, 
2002; Albus-2, 2002] reference model architecture 
for over 30 years.  4D/RCS is the most recent ver-
sion of RCS developed for the Army Research Lab 
Experimental Unmanned Ground Vehicle program.  
The 4D in 4D/RCS signifies adding time as an-
other dimension to each level of the three dimen-
sional (sensor processing, world modeling, behav-
ior generation), hierarchical control structure. ISD 
has studied the use of 4D/RCS in defense mobility 
[Balakirsky, 2002], transportation [Albus, 1992], ro-
bot cranes [Bostelman, 1996], manufacturing [Shack-
leford, 2000; Michaloski, 1986] and several other 
applications.   

In the past year, ISD has been applying 
4D/RCS to the DARPA LAGR program [Jackel, 
2005].  The DARPA LAGR program aims to de-
velop algorithms that enable a robotic vehicle to 
travel through complex terrain without having to 
rely on hand-tuned algorithms that only apply in 
limited environments. The goal is to enable the 
control system of the vehicle to learn which areas 
are traversable and how to avoid areas that are im-
passable or that limit the mobility of the vehicle. 

To accomplish this goal, the program provided 
small robotic vehicles to each of the participants 
(Figure 1). The vehicles are used by the teams to 
develop software and a separate DARPA team, 
with an identical vehicle, conducts tests of the 
software each month. Operators load the software 
onto an identical vehicle and command the vehicle 
to travel from a start waypoint to a goal waypoint 
through an obstacle-rich environment. They meas-
ure the performance of the system on multiple 
runs, under the expectation that improvements will 
be made through learning. 

 

 
Figure 1. The DARPA LAGR vehicle 
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The vehicles are equipped with four computer 
processors (right and left cameras, control, and the 
planner); wireless data and emergency stop radios; 
GPS receiver; inertial navigation unit; dual stereo 
cameras; infrared sensors; switch-sensed bumper; 



front wheel encoders; and other sensors listed later 
in the paper. 

Section 2 of this paper describes the 4D/RCS 
Reference Model Architecture followed by a more 
specific description of the 4D/RCS application to 
the DARPA LAGR Program in Sections 3.  Sec-
tions 4 include a summary and conclusion. 

2. 4D/RCS REFERENCE MODEL 
ARCHITECTURE 
The 4D/RCS architecture is characterized by a 

generic control node at all the hierarchical control 
levels. The 4D/RCS hierarchical levels are scalable 
to facilitate systems of any degree of complexity. 
Each node within the hierarchy functions as a goal-
driven, model-based, closed-loop controller.  Each 
node is capable of accepting and decomposing task 
commands with goals into actions that accomplish 
task goals despite unexpected conditions and dy-
namic perturbations in the world. 

At the heart of the control loop through each 
node is the world model, which provides the node 
with an internal model of the external world 
(Figure 2).  The world model provides a site for 
data fusion, acts as a buffer between perception 
and behavior, and supports both sensory process-
ing and behavior generation.  

In support of behavior generation, the world 
model provides knowledge of the environment 
with a range and resolution in space and time that 
is appropriate to task decomposition and control 
decisions that are the responsibility of that node.   

A world modeling process maintains the 
knowledge database and uses information stored in 
it to generate predictions for sensory processing 
and simulations for behavior generation. Predic-
tions are compared with observations and errors 
are used to generate updates for the knowledge 
database.  Simulations of tentative plans are evalu-
ated by value judgment to select the “best” plan for 
execution.  Predictions can be matched with obser-
vations for recursive estimation and Kalman filter-
ing.  The world model also provides hypotheses for 
gestalt grouping and segmentation.  Thus, each 
node in the 4D/RCS hierarchy is an intelligent sys-
tem that accepts goals from above and generates 
commands for subordinates so as to achieve those 
goals. 

The centrality of the world model to each con-
trol loop is a principal distinguishing feature be-
tween 4D/RCS and behaviorist architectures.  Be-
haviorist architectures rely solely on sensory feed-
back from the world. All behavior is a reaction to 
immediate sensory feedback.  In contrast, the 
4D/RCS world model integrates all available 

knowledge into an internal representation that is 
far richer and more complete than is available from 
immediate sensory feedback alone.  This enables 
more sophisticated behavior than can be achieved 
from purely reactive systems.  
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Figure 2. The fundamental structure of a 
4D/RCS control loop. 

The nature of the world model distinguishes 
4D/RCS from conventional artificial intelligence 
(AI) architectures.  Most AI world models are 
purely symbolic.  In 4D/RCS, the world model is a 
combination of instantaneous signal values from 
sensors, state variables, images, and maps that are 
linked to symbolic representations of entities, 
events, objects, classes, situations, and relation-
ships in a composite of immediate experience, 
short-term memory, and long-term memory. Real-
time performance in modeling and planning is 
achieved by restricting the range and resolution of 
maps and data structures to what is required by the 
behavior generation module at each level.  Short 
range and high resolution maps are implemented in 
the lowest level, with longer range and lower reso-
lution maps at the higher level. 

A high level diagram of the internal structure 
of the world model and value judgment system is 
shown in Figure 3. Within the knowledge database, 
iconic information (images and maps) is linked to 
each other and to symbolic information (entities 
and events).  Situations and relationships between 
entities, events, images, and maps are represented 
by pointers.  Pointers that link symbolic data struc-
tures to each other form syntactic, semantic, 
causal, and situational networks.  Pointers that link 
symbolic data structures to regions in images and 
maps provide symbol grounding and enable the 
world model to project its understanding of reality 
onto the physical world.   

3. 4D/RCS Applied to LAGR 
The 4D/RCS architecture for LAGR (Figure 

4) consists of only two levels requiring plans at 
each low and high level out to approximately 10 m 
and 100 m, respectively, in front of the vehicle. 
This is because the size of the LAGR test areas is 



small (typically about 100 m on a side, and the test 
missions are short in duration (typically less than 4 
minutes.)  For controlling an entire battalion of 
autonomous vehicles, there may be as many as five 
or more 4D/RCS hierarchical levels. 

The following sub-sections describe the type 
of algorithms implemented in sensor processing, 
world modeling, and behavior generation, as well 
as a section that describes the learning algorithms 
that have been implemented. 
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Figure 3. The basic internal structure of a 
4D/RCS control loop.  
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Figure 4. Two-level instantition of the 4D/RCS 
hierarchy for LAGR. 

3.1 Sensory Processing 

The sensor processing column in the 4D/RCS 
hierarchy for LAGR (Figure 4) starts with the sen-
sors on board the LAGR vehicle. Sensors used in 
the sensory processing module include the two 
pairs of stereo color cameras, the physical bumper 
and infra-red bumper sensors, the motor current 
sensor (for terrain resistance), and the navigation 
sensors (GPS, wheel encoder, and INS). Sensory 
processing modules include a stereo obstacle de-
tection module, a bumper obstacle detection mod-

ule, an infrared obstacle detection module, an im-
age classification module, and a terrain slippery-
ness detection module. 

3.2 Stereo Vision 

Stereo vision is primarily used for detecting 
obstacles.   We use the SRI Stereo Vision Engine 
[Konolige, 2005] to process the pairs of images from 
the two stereo camera pairs. For each newly ac-
quired stereo image pair, the obstacle detection 
algorithm processes each vertical scan line in the 
reference image independently and classifies each 
pixel as GROUND, OBSTACLE, 
SHORT_OBSTACLE, COVER or INVALID. Figure 5 
illustrates the basic obstacle detection algorithm 
[Chang, 1999].   
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Figure 5. A single vertical scanline detecting the 
ground.  Pixel 0 is altered to correspond to the 
bottom of the vehicle wheel.  Pixels 1, 2, 3, 8 and 9 
are ground pixels due to shallow slopes.  Pixel 4, 
5, 6 and 7 are obstacles due to steeper slopes.  The 
slopes are shown by the direction vectors on the 
bottom of the figure. 

200  
ms 
 
 
 
 
 
 
 
20  
ms  

Pixels that are not in the 3D point cloud are 
marked INVALID. Pixels corresponding to obsta-
cles that are shorter than 5 cm high are marked as 
SHORT_OBSTACLE.  The obstacle height threshold 
value of 5cm was chosen such that the LAGR ve-
hicle can ignore and drive over small pebbles and 
rocks.  Similarly, COVER corresponds to obstacles 
that are taller than 1.5 m, a safe clearance height 
for the LAGR vehicle. 

Within each reference image, the correspond-
ing 3D points are accumulated onto a 2D cost map 
of 20 cm by 20 cm cell resolution.  Each cell has a 
cost value representing the percentage of OBSTA-
CLE pixels in the cell.  In addition to cost value, 
color and elevation statistics are also kept and up-
dated in each cell. This map is sent the world 
model at the current level and to the sensory proc-
essing module at the level above in the 4D/RCS 
hierarchy.    

Figure 6 shows a view of obstacle detection 



from the operator control unit (OCU).  The vehicle 
is shown driving on a dirt road lined with trees 
with an orange fence in the background.  

3.3 Learning Classification in Color Vision 

A color-based image classification [Tan, 2006] 
module runs independently from the obstacle de-
tection module in the lower-level sensory process-
ing module.  It learns to classify objects in the 
scene by their color and appearance.  This enables 
it to provide information about obstacles and 
ground points even when stereo is not available. A 
flat world assumption is used when determining 
the 3D location of a pixel in the image.  This as-
sumption is valid for points close to the vehicle 
providing that the vehicle does not get too close to 
an obstacle. 

 

  
Figure 6. OCU display showing original images 
(top), results of obstacle detection (middle), and 

cost maps (bottom).  Red represents obstacles, 
green is ground, and blue represents obstacles too 

far away to classify. 
 
Pixels near the vehicle, as defined by a 1 m 

wide by 2 m long rectangular area in front of the 
vehicle, are used to construct and update the 
GROUND color histogram.  Similarly, the 
BACKGROUND color histogram is constructed 
and updated from pixel locations that were previ-
ously believed to be background. 

The construction of the background model ini-
tially randomly samples the area above the hori-
zon. Once the algorithm is running, the algorithm 
randomly samples pixels in the current frame that 
the previous result identified as background.  
These samples are used to update the background 
color model using temporal fusion 

In order to remember multiple color distribu-
tions, multiple GROUND color histograms are 
maintained.  However, only one BACKGROUND 

color histogram is used. 
The cost for each pixel is determined by a 

color voting method and the degree of belief that a 
point is a background is calculated from the two 
histograms as 

 
where NBACKGROUND and NGROUND are the number 
of hits in the corresponding histogram bin.  In the 
case of multiple GROUND color histograms, the 
minimum cost is used.  The cost image is sent to 
the world model.  Figure 7 illustrates color classi-
fication on the same image as shown in Figure 6

 

 
Figure 7. OCU display showing original images 
(top) and cost images (bottom).  The 1 m wide by 
2 m long rectangular areas assumed to be ground 

(white boxes) are overlaid on the cost images. 

3.4 World Modeling 

The world model is the system's internal repre-
sentation of the external world. It acts as a bridge 
between sensory processing and behavior genera-
tion in the 4D/RCS hierarchy by providing a cen-
tral repository for storing sensory data in a unified 
representation.  It decouples the real-time sensory 
updates from the rest of the system. The world 
model process has two primary functions: To cre-
ate a knowledge database and keep it current and 
consistent, and to generate predictions of expected 
sensory input. 

For the LAGR project, two world model levels 
have been built (WM1 and WM2). Each world 
model process builds a two dimensional (200 x 
200 cells) map, but at different resolutions. These 
are used to temporally fuse information from sen-
sory processing. Currently the lower level (SP1) is 
fused into both WM1 and WM2 as the learning 
module in SP2 does not yet send its models to 



WM. Figure 8 shows the WM1 and WM2 maps 
constructed from the stereo obstacle detection 
module in SP1. The maps contain traversal costs 
for each cell in the map. The position of the vehi-
cle is shown as an overlay on the map.  The red, 
yellow, blue, light blue, and green are cost values 
ranging from high to low cost, and black represents 
unknown areas.  Each map cell represents an area 
on the ground of a fixed size and is marked with 
the time it was last updated. The total length and 
width of the map is 40 m for WM1 and 120 m for 
WM2. The information stored in each cell includes 
the average ground and obstacle elevation height, 
the variance, minimum and maximum height, and 
a confidence measure reflecting the "goodness" of 
the elevation data.  In addition, a data structure 
describing the terrain traversability cost and the 
cost confidence as updated by the stereo obstacle 
detection module, image classification module, 
bumper module, infrared sensor module, etc. The 
map updating algorithm is based on confidence-
based mapping as described in [Oskard, 1990].  

 

  
Figure 8. OCU display of the World Model cost 
maps built from sensor processing data. WM1  
builds a 0.2 m resolution cost map (left) and WM2 
builds a 0.6 m resolution cost map (right). 

The costs and the confidences are combined to 
determine the relative safety of traversing the grid 
with the following equation: 
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where Costcell is the cost to traverse each grid 
cell. CostlagrLearn, Costclassification, and Coststereo are 
the fused costs in the world model based on the 
learning module, classification module, stereo ob-
stacle detection module.  Ws, Wl, and Wc are 
weighting constants for each cost. However, Cost-
cell is a bumper cost if there is a bumper hit. 

The final cost placed in each map cell repre-
sents the best estimate of terrain traversability in 
the region represented by that cell, based on infor-
mation fused over time. Each cost has a confidence 

associated with it and the map grid selects the label 
with the highest confidence. The final cost maps 
are constructed by taking the fused cost from all 
the sensory processing modules. 

Efficient functions have been developed to 
scroll the maps as the vehicle moves, to update 
map data, and to fuse data from the sensory proc-
essing modules. A map is updated with new sensor 
data and scrolled to keep the vehicle centered. This 
minimizes grid relocation. No copying, only updat-
ing, of data is done. When the vehicle moves out of 
the center grid cell of the map, the scrolling func-
tion is enabled. The map is vehicle-centered, so 
only the borders need to be initialized. Initializa-
tion information may be obtained from remem-
bered maps saved from previous test runs as shown 
in Figure 9. Remembering maps is a very effective 
way of learning about terrain, and has proved im-
portant in optimizing successive runs over the 
same terrain.  

The cost and elevation confidence of each grid 
cell is updated every sensor cycle: 5 Hz for the 
stereo obstacle detection module, 3 Hz for the 
learning module, 5 Hz for the classification mod-
ule, and 10 Hz -20 Hz for the bumper module. The 
confidence values are used as a cost factor in de-
termining the traversability of a cell. 

 

 
Figure 9. Initial (left) and remembered (right) 
cost maps as the system starts without and with 
saved maps, respectively. 

We plan additional research to implement 
modeling of moving objects (cars, targets, etc.) and 
to broaden the system's terrain and object classifi-
cation capabilities. The ability to recognize and 
label water, rocky roads, buildings, fences, etc. 
would enhance the vehicle's performance. 

3.5  Behavior Generation 

Top level input to Behavior Generation (BG) 
(Figure 10) is a file containing the final goal point 
in UTM (Universal Transverse Mercator) coordi-
nates. At the bottom level in the 4D/RCS hierar-
chy, BG produces a speed for each of the two drive 
wheels updated every 20 ms, which is input to the 
low-level controller included with the government-



provided vehicle. The low-level system returns 
status to BG, including motor currents, position 
estimate, physical bumper switch state, raw GPS 
and encoder feedback, etc.  These are used directly 
by BG rather than passing them through sensor 
processing and world modeling since they are 
time-critical and relatively simple to process.   

Two position estimates are used in the system. 
Global position is strongly affected by the GPS 
antenna output and received signal strength and is 
more accurate over long ranges, but can be noisy. 
Local position uses only the wheel encoders and 
inertial measurement unit (IMU). It is less noisy 
than GPS but drifts significantly as the vehicle 
moves, and even more if the wheels slip. 

 The system consists of five separate executa-
bles. Each sleeps until the beginning of its cycle, 
reads its inputs, does some planning, writes its 
outputs and starts the cycle again. Processes com-
municate using the Neutral Message Language 
(NML) in a non-blocking mode, which wraps the 
shared-memory interface [Shackleford, 1990].  Each 
module also posts a status message that can be 
used by both the supervising process and by devel-
opers via a diagnostics tool to monitor the process. 

The LAGR Supervisor is the highest level BG 
module. It is responsible for starting and stopping 
the system.  It reads the final goal and sends it to 
the waypoint generator. The waypoint generator 
chooses a series of waypoints for the lowest-cost 
traversable path to the goal using global position 
and translates the points into local coordinates. It 
generates a list of waypoints using either the out-
put of the A* Planner [Heyes-Jones, 2005] or a pre-
viously recorded known route to the goal. 

The planner takes a 201 X 201 terrain grid 
from WM, classifies the grid, and translates it into 
a grid of costs of the same size. In most cases the 
cost is simply looked up in a small table from the 
corresponding element of the input grid. However, 
since costs also depend on neighboring costs, they 
are automatically adjusted to allow the vehicle to 
continue motion. By lowering costs of unknown 
obstacles near the vehicle, it does not hesitate to 
move as it would with for example, detected false 
or true obstacles nearby.  Since the vehicle has an 
instrumented bumper, the choice is to continue 
vehicle motion. 
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Figure 10.  Behavior Generation High Level 
Data Flow Diagram. 

The waypoint follower receives a series of 
waypoints, spaced approximately 0.6 m apart, that 
could be used to drive blindly without a map. 
However, there are some features of the path that 
make this less than optimal.  When the path con-
tains a turn, it is either at a 0.8 rad (45°) or 1.6 rad 
(90°) angle with respect to the previous heading. 
The waypoint follower could smooth the path, but 
it would at least partially enter cells that were not 
covered by the path chosen at the higher level. The 
A* planner might also plan through a cell that was 
partially blocked by an obstacle. The waypoint 
follower is then responsible for avoiding the obsta-
cle.  The first step in creating a short range plan is 
to choose a goal point from the list provided by the 
A* Planner. One option would be to use the point 
where the path intersects the edge of the 40m map. 
However, due to the differences between local and 
global positioning, this point might be on one side 
of an obstacle in the long range map and on the 
other side in the short range map.  To avoid this, 
the first major turning point is selected. The way-
point follower searches a preset list of possible 
paths starting at the current position and chooses 
the one with the best score. The score represents a 
compromise between getting close to the turning 
point, staying far away from obstacles and higher 
cost areas, and keeping the speed up by avoiding 
turns. 

As stated in Section 2, a true 4D/RCS world 
model should integrate all available knowledge to 
not require immediate sensory feedback alone.  
Due to project time constraints, some behavioral 
responses to situations were necessary to imple-
ment into the waypoint follower.  These custom 
behaviors were selected from a state table.  The 



behaviors incorporated included: 
 AGGRESSIVE MODE—Ignore obstacles 

except those detected with the bumper and 
drive in the direction of the final goal. Terrain 
such as tall grass causes the vehicle to wander. 
Short bursts of aggressive mode help to get 
out of these situations. 

 HILL CLIMB—Wheel motor currents and roll 
and pitch angle sensors are used to sense a 
hill. The vehicle attempts to drive up hills 
without stopping to avoid momentum loss and 
slipping. 

 NARROW CORRIDOR/CLOSE TO OB-
STACLE—In tight spaces the system slows 
down, builds a detailed world model, and con-
siders a larger number of alternative paths to 
get around tight corners than in open areas. 

 HIGH MOTOR AMPS/SLIPPING—When the 
motor currents are high or the system thinks 
the wheels are slipping it tries to reverse direc-
tion and then tries a random series of speeds 
and directions, searching for a path where the 
wheels are able to move without slipping. 

 REVERSE FROM BUMPER HIT—
Immediately after a bumper hit the vehicle 
backs up and rotates to avoid the obstacle. 
 
The lowest level module, the LAGR Comms 

Interface, takes a desired heading and direction 
from the waypoint follower and controls the veloc-
ity and acceleration, determines a vehicle-specific 
set of wheel speeds, and handles all communica-
tions between the controller and vehicle hardware. 

3.6 Learning algorithms 

Learning is a basic part of the LAGR program. 
Several kinds of learning have to be addressed. 
There is learning by example, learning from ex-
perience, and learning of maps and paths. Most 
learning relies on sensed information to provide 
both the learning stimulus and the ground truth for 
evaluation. In the LAGR program, learning from 
sensor data has mainly focused on learning the 
traversability of terrain. This includes learning by 
seeing examples of the terrain and learning from 
the experience of driving over (or attempting to 
drive over) the terrain. One example of learning by 
example was discussed in Section 3.3.  

Another model-based learning process occurs 
in the SP2 module of the 4D/RCS architecture, 
which takes input from SP1 in the form of labeled 
pixels with associated (x, y, z) positions. Classifica-
tion is an SP1 process that uses the models to label 
the traversability of image regions based only on 
color camera data. 

An assumption is made that terrain regions 

that look similar will have similar traversability. 
The learning works as follows [Shneier, 2006]. The 
system constructs a map of the terrain surrounding 
the vehicle, with map cells 0.2 m by 0.2 m. Each 
pixel passed up from SP1 has an associated red 
(R), green (G), and blue (B) color value in addition 
to its (x, y, z) position and label (obstacle or 
ground). Points are projected into the map using 
the (x, y, z) position. Each map cell accumulates 
descriptions of the color, texture, intensity, and 
contrast of the points that project into it.  

Color is represented by 8-bin histograms of ra-
tios R/G, R/B, and G/B. This provides some protec-
tion from the color of ambient illumination. Tex-
ture and contrast are computed using Local Binary 
Patterns (LBP) [Ojala, 1996]. The texture measure 
is represented by a histogram with 8 bins. Intensity 
is represented by an 8-bin histogram, while con-
trast is a single number ranging from 0 to 1. 

When a cell accumulates enough points, it is 
ready to be considered as a model. To build a 
model we require that 95% of the points projected 
into a cell have the same label (obstacle or 
ground). If a cell is the first to accumulate enough 
points, its values are used to create the first model. 
If other models already exist, the cell is matched to 
these models to see if it can be merged or if a new 
model must be created. Matching is done by com-
puting a weighted sum of the elements of the 
model and the cell. Each model has an associated 
traversability, computed from the number of obsta-
cle and ground points that were used to create the 
model. These models correspond to regions 
learned by example. Learning by experience is 
used to modify the models. As the vehicle travels, 
it moves from cell to cell in the map. If it is able to 
traverse a cell that has an associated model, the 
traversability of that model is increased. If it hits 
an obstacle in a cell, the traversability is decreased. 

To classify a scene, only the color image is 
needed. A window is passed over the image and 
color, texture, and intensity histograms, and a con-
trast value are computed as in model building. A 
comparison is made with the set of models, and the 
window is classified with the best matching model, 
if a sufficiently good match value is found. Re-
gions that do not find good matches are left unclas-
sified. 

Figure 11a shows an image taken during learn-
ing. The pixels contributing to the learning are 
shown in red for obstacle points and green for 
ground points. Figure 11b shows a scene labeled 
with traversability values computed from the mod-
els built from previous data. 
 



  
 (a) (b) 
Figure 11 Learning by example images.  (a) is 
an image taken during learning and overlaid with 
(red) obstacles and (green) ground, (b) is the same 
image overlaid with traversability information as 
obstacles (magenta) and ground (yellow). 

 

4. Summary and Conclusions 
The NIST 4D/RCS reference model architec-

ture was implemented on the DARPA LAGR vehi-
cle, which was used to prove that 4D/RCS can 
learn.  Sensor processing, world modeling, and 
behavior generation processes have been described 
in this paper.  Outputs from sensor processing of 
vehicle sensors are fused with models in WM to 
update them with external vehicle information. 
World modeling acts as a bridge between multiple 
sensory inputs and a behavior generation (path 
planning) subsystem. Behavior generation plans 
vehicle paths through the world based on cost 
maps provided from world modeling.  Learning, as 
used on the LAGR vehicle, includes learning by 
example, learning from experience, and learning of 
behaviors that are more likely to lead to success.  

Future research will include completion of the 
sensory processing upper level (SP2) and develop-
ing even more robust control algorithms than those 
described in this paper. 
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