
ICINCO 06 - International Conference in Control, Automation and Robotics, Setubal, Portugal, August 2006.

THE LAGR PROJECT
Integrating learning into the 4D/RCS Control Hierarchy

James Albus, Roger Bostelman, Tsai Hong, Tommy Chang, Will Shackleford, Michael Shneier
National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA

james.albus, roger.bostelman, tsai.hong, tommy.chang, will.shackleford, or michael.shneier@nist.gov

Keywords: LAGR, Learning, 4D/RCS, mobile robot, hierarchical control, reference model architecture

Abstract: The National Institute of Standards and Technology’s (NIST) Intelligent Systems Division (ISD) is a par-
ticipant in the Defense Advanced Research Project Agency (DARPA) LAGR (Learning Applied to Ground
Robots) Project. The NIST team’s objective for the LAGR Project is to insert learning algorithms into the
modules that make up the 4D/RCS (Four Dimensional/Real-Time Control System), the standard reference
model architecture to which ISD has applied to many intelligent systems. This paper describes the 4D/RCS
structure, its application to the LAGR project, and the learning and mobility control methods used by the
NIST team’s vehicle.

1. INTRODUCTION

The National Institute of Standards and Tech-
nology’s (NIST) Intelligent Systems Division
(ISD) has been developing the RCS [Albus-1,
2002; Albus-2, 2002] reference model architecture
for over 30 years. 4D/RCS is the most recent ver-
sion of RCS developed for the Army Research Lab
Experimental Unmanned Ground Vehicle program.
The 4D in 4D/RCS signifies adding time as an-
other dimension to each level of the three dimen-
sional (sensor processing, world modeling, behav-
ior generation), hierarchical control structure. ISD
has studied the use of 4D/RCS in defense mobility
[Balakirsky, 2002], transportation [Albus, 1992], ro-
bot cranes [Bostelman, 1996], manufacturing [Shack-
leford, 2000; Michaloski, 1986] and several other
applications.

In the past year, ISD has been applying
4D/RCS to the DARPA LAGR program [Jackel,
2005]. The DARPA LAGR program aims to de-
velop algorithms that enable a robotic vehicle to
travel through complex terrain without having to
rely on hand-tuned algorithms that only apply in
limited environments. The goal is to enable the
control system of the vehicle to learn which areas
are traversable and how to avoid areas that are im-
passable or that limit the mobility of the vehicle.

To accomplish this goal, the program provided
small robotic vehicles to each of the participants
(Figure 1). The vehicles are used by the teams to
develop software and a separate DARPA team,
with an identical vehicle, conducts tests of the
software each month. Operators load the software
onto an identical vehicle and command the vehicle
to travel from a start waypoint to a goal waypoint
through an obstacle-rich environment. They meas-
ure the performance of the system on multiple
runs, under the expectation that improvements will
be made through learning.

Figure 1. The DARPA LAGR vehicle

GPS Antenna

Dual stereo cameras

Computers, IMU
inside

Infrared sensors

Casters

Drive wheels

Bumper

The vehicles are equipped with four computer
processors (right and left cameras, control, and the
planner); wireless data and emergency stop radios;
GPS receiver; inertial navigation unit; dual stereo
cameras; infrared sensors; switch-sensed bumper;

front wheel encoders; and other sensors listed later
in the paper.

Section 2 of this paper describes the 4D/RCS
Reference Model Architecture followed by a more
specific description of the 4D/RCS application to
the DARPA LAGR Program in Sections 3. Sec-
tions 4 include a summary and conclusion.

2. 4D/RCS REFERENCE MODEL
ARCHITECTURE
The 4D/RCS architecture is characterized by a

generic control node at all the hierarchical control
levels. The 4D/RCS hierarchical levels are scalable
to facilitate systems of any degree of complexity.
Each node within the hierarchy functions as a goal-
driven, model-based, closed-loop controller. Each
node is capable of accepting and decomposing task
commands with goals into actions that accomplish
task goals despite unexpected conditions and dy-
namic perturbations in the world.

At the heart of the control loop through each
node is the world model, which provides the node
with an internal model of the external world
(Figure 2). The world model provides a site for
data fusion, acts as a buffer between perception
and behavior, and supports both sensory process-
ing and behavior generation.

In support of behavior generation, the world
model provides knowledge of the environment
with a range and resolution in space and time that
is appropriate to task decomposition and control
decisions that are the responsibility of that node.

A world modeling process maintains the
knowledge database and uses information stored in
it to generate predictions for sensory processing
and simulations for behavior generation. Predic-
tions are compared with observations and errors
are used to generate updates for the knowledge
database. Simulations of tentative plans are evalu-
ated by value judgment to select the “best” plan for
execution. Predictions can be matched with obser-
vations for recursive estimation and Kalman filter-
ing. The world model also provides hypotheses for
gestalt grouping and segmentation. Thus, each
node in the 4D/RCS hierarchy is an intelligent sys-
tem that accepts goals from above and generates
commands for subordinates so as to achieve those
goals.

The centrality of the world model to each con-
trol loop is a principal distinguishing feature be-
tween 4D/RCS and behaviorist architectures. Be-
haviorist architectures rely solely on sensory feed-
back from the world. All behavior is a reaction to
immediate sensory feedback. In contrast, the
4D/RCS world model integrates all available

knowledge into an internal representation that is
far richer and more complete than is available from
immediate sensory feedback alone. This enables
more sophisticated behavior than can be achieved
from purely reactive systems.

Perception BehaviorWorld Model

 Sensing Action Real World

internal
external

Mission Goal

Figure 2. The fundamental structure of a
4D/RCS control loop.

The nature of the world model distinguishes
4D/RCS from conventional artificial intelligence
(AI) architectures. Most AI world models are
purely symbolic. In 4D/RCS, the world model is a
combination of instantaneous signal values from
sensors, state variables, images, and maps that are
linked to symbolic representations of entities,
events, objects, classes, situations, and relation-
ships in a composite of immediate experience,
short-term memory, and long-term memory. Real-
time performance in modeling and planning is
achieved by restricting the range and resolution of
maps and data structures to what is required by the
behavior generation module at each level. Short
range and high resolution maps are implemented in
the lowest level, with longer range and lower reso-
lution maps at the higher level.

A high level diagram of the internal structure
of the world model and value judgment system is
shown in Figure 3. Within the knowledge database,
iconic information (images and maps) is linked to
each other and to symbolic information (entities
and events). Situations and relationships between
entities, events, images, and maps are represented
by pointers. Pointers that link symbolic data struc-
tures to each other form syntactic, semantic,
causal, and situational networks. Pointers that link
symbolic data structures to regions in images and
maps provide symbol grounding and enable the
world model to project its understanding of reality
onto the physical world.

3. 4D/RCS Applied to LAGR
The 4D/RCS architecture for LAGR (Figure

4) consists of only two levels requiring plans at
each low and high level out to approximately 10 m
and 100 m, respectively, in front of the vehicle.
This is because the size of the LAGR test areas is

small (typically about 100 m on a side, and the test
missions are short in duration (typically less than 4
minutes.) For controlling an entire battalion of
autonomous vehicles, there may be as many as five
or more 4D/RCS hierarchical levels.

The following sub-sections describe the type
of algorithms implemented in sensor processing,
world modeling, and behavior generation, as well
as a section that describes the learning algorithms
that have been implemented.

SENSORY
PROCESSING

WORLD MODELING
VALUE JUDGMENT

KNOWLEDGE

Images

Maps Entities

Sensors ActuatorsWorld

Classification
Estimation
Computation
Grouping
Windowing

Mission (Goal)

internal
external

Events
Planners
Executors

Task
Knowledge

BEHAVIOR
GENERATION

Figure 3. The basic internal structure of a
4D/RCS control loop.

SP2

SP1

BG2
Planner2

Executor2

10 step plan

Group pixels

Classify objects

images
name
class

images
color
range
edges
class

Classify pixels
Compute attributes

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

BG1
Planner1

Executor1

10 step plan

Sensors
Cameras, INS, GPS, bumper, encoders, current

Actuators
Wheel motors, camera controls

Scale & filter

signals

status commands

commands

commands

SP2

SP1

BG2
Planner2

Executor2

10 step plan

Group pixels

Classify objects

images
name
class

images
color
range
edges
class

Classify pixels
Compute attributes

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

BG1
Planner1

Executor1

10 step plan

Sensors
Cameras, INS, GPS, bumper, encoders, current

Actuators
Wheel motors, camera controls

Scale & filter

signals

status commands

commands

commands

Figure 4. Two-level instantition of the 4D/RCS
hierarchy for LAGR.

3.1 Sensory Processing

The sensor processing column in the 4D/RCS
hierarchy for LAGR (Figure 4) starts with the sen-
sors on board the LAGR vehicle. Sensors used in
the sensory processing module include the two
pairs of stereo color cameras, the physical bumper
and infra-red bumper sensors, the motor current
sensor (for terrain resistance), and the navigation
sensors (GPS, wheel encoder, and INS). Sensory
processing modules include a stereo obstacle de-
tection module, a bumper obstacle detection mod-

ule, an infrared obstacle detection module, an im-
age classification module, and a terrain slippery-
ness detection module.

3.2 Stereo Vision

Stereo vision is primarily used for detecting
obstacles. We use the SRI Stereo Vision Engine
[Konolige, 2005] to process the pairs of images from
the two stereo camera pairs. For each newly ac-
quired stereo image pair, the obstacle detection
algorithm processes each vertical scan line in the
reference image independently and classifies each
pixel as GROUND, OBSTACLE,
SHORT_OBSTACLE, COVER or INVALID. Figure 5
illustrates the basic obstacle detection algorithm
[Chang, 1999].

1 2 3
4

5
6

7

8 9

2 3

4 5 6 7

8 9

0

10

dual stereo cameras

Figure 5. A single vertical scanline detecting the
ground. Pixel 0 is altered to correspond to the
bottom of the vehicle wheel. Pixels 1, 2, 3, 8 and 9
are ground pixels due to shallow slopes. Pixel 4,
5, 6 and 7 are obstacles due to steeper slopes. The
slopes are shown by the direction vectors on the
bottom of the figure.

200
ms

20
ms

Pixels that are not in the 3D point cloud are
marked INVALID. Pixels corresponding to obsta-
cles that are shorter than 5 cm high are marked as
SHORT_OBSTACLE. The obstacle height threshold
value of 5cm was chosen such that the LAGR ve-
hicle can ignore and drive over small pebbles and
rocks. Similarly, COVER corresponds to obstacles
that are taller than 1.5 m, a safe clearance height
for the LAGR vehicle.

Within each reference image, the correspond-
ing 3D points are accumulated onto a 2D cost map
of 20 cm by 20 cm cell resolution. Each cell has a
cost value representing the percentage of OBSTA-
CLE pixels in the cell. In addition to cost value,
color and elevation statistics are also kept and up-
dated in each cell. This map is sent the world
model at the current level and to the sensory proc-
essing module at the level above in the 4D/RCS
hierarchy.

Figure 6 shows a view of obstacle detection

from the operator control unit (OCU). The vehicle
is shown driving on a dirt road lined with trees
with an orange fence in the background.

3.3 Learning Classification in Color Vision

A color-based image classification [Tan, 2006]
module runs independently from the obstacle de-
tection module in the lower-level sensory process-
ing module. It learns to classify objects in the
scene by their color and appearance. This enables
it to provide information about obstacles and
ground points even when stereo is not available. A
flat world assumption is used when determining
the 3D location of a pixel in the image. This as-
sumption is valid for points close to the vehicle
providing that the vehicle does not get too close to
an obstacle.

Figure 6. OCU display showing original images
(top), results of obstacle detection (middle), and

cost maps (bottom). Red represents obstacles,
green is ground, and blue represents obstacles too

far away to classify.

Pixels near the vehicle, as defined by a 1 m

wide by 2 m long rectangular area in front of the
vehicle, are used to construct and update the
GROUND color histogram. Similarly, the
BACKGROUND color histogram is constructed
and updated from pixel locations that were previ-
ously believed to be background.

The construction of the background model ini-
tially randomly samples the area above the hori-
zon. Once the algorithm is running, the algorithm
randomly samples pixels in the current frame that
the previous result identified as background.
These samples are used to update the background
color model using temporal fusion

In order to remember multiple color distribu-
tions, multiple GROUND color histograms are
maintained. However, only one BACKGROUND

color histogram is used.
The cost for each pixel is determined by a

color voting method and the degree of belief that a
point is a background is calculated from the two
histograms as

where NBACKGROUND and NGROUND are the number
of hits in the corresponding histogram bin. In the
case of multiple GROUND color histograms, the
minimum cost is used. The cost image is sent to
the world model. Figure 7 illustrates color classi-
fication on the same image as shown in Figure 6

Figure 7. OCU display showing original images
(top) and cost images (bottom). The 1 m wide by
2 m long rectangular areas assumed to be ground

(white boxes) are overlaid on the cost images.

3.4 World Modeling

The world model is the system's internal repre-
sentation of the external world. It acts as a bridge
between sensory processing and behavior genera-
tion in the 4D/RCS hierarchy by providing a cen-
tral repository for storing sensory data in a unified
representation. It decouples the real-time sensory
updates from the rest of the system. The world
model process has two primary functions: To cre-
ate a knowledge database and keep it current and
consistent, and to generate predictions of expected
sensory input.

For the LAGR project, two world model levels
have been built (WM1 and WM2). Each world
model process builds a two dimensional (200 x
200 cells) map, but at different resolutions. These
are used to temporally fuse information from sen-
sory processing. Currently the lower level (SP1) is
fused into both WM1 and WM2 as the learning
module in SP2 does not yet send its models to

WM. Figure 8 shows the WM1 and WM2 maps
constructed from the stereo obstacle detection
module in SP1. The maps contain traversal costs
for each cell in the map. The position of the vehi-
cle is shown as an overlay on the map. The red,
yellow, blue, light blue, and green are cost values
ranging from high to low cost, and black represents
unknown areas. Each map cell represents an area
on the ground of a fixed size and is marked with
the time it was last updated. The total length and
width of the map is 40 m for WM1 and 120 m for
WM2. The information stored in each cell includes
the average ground and obstacle elevation height,
the variance, minimum and maximum height, and
a confidence measure reflecting the "goodness" of
the elevation data. In addition, a data structure
describing the terrain traversability cost and the
cost confidence as updated by the stereo obstacle
detection module, image classification module,
bumper module, infrared sensor module, etc. The
map updating algorithm is based on confidence-
based mapping as described in [Oskard, 1990].

Figure 8. OCU display of the World Model cost
maps built from sensor processing data. WM1
builds a 0.2 m resolution cost map (left) and WM2
builds a 0.6 m resolution cost map (right).

The costs and the confidences are combined to
determine the relative safety of traversing the grid
with the following equation:

tionclassificac

lagrLearnlstereoscell

CostW
CostWCostWCost

×

+×+×=

where Costcell is the cost to traverse each grid
cell. CostlagrLearn, Costclassification, and Coststereo are
the fused costs in the world model based on the
learning module, classification module, stereo ob-
stacle detection module. Ws, Wl, and Wc are
weighting constants for each cost. However, Cost-
cell is a bumper cost if there is a bumper hit.

The final cost placed in each map cell repre-
sents the best estimate of terrain traversability in
the region represented by that cell, based on infor-
mation fused over time. Each cost has a confidence

associated with it and the map grid selects the label
with the highest confidence. The final cost maps
are constructed by taking the fused cost from all
the sensory processing modules.

Efficient functions have been developed to
scroll the maps as the vehicle moves, to update
map data, and to fuse data from the sensory proc-
essing modules. A map is updated with new sensor
data and scrolled to keep the vehicle centered. This
minimizes grid relocation. No copying, only updat-
ing, of data is done. When the vehicle moves out of
the center grid cell of the map, the scrolling func-
tion is enabled. The map is vehicle-centered, so
only the borders need to be initialized. Initializa-
tion information may be obtained from remem-
bered maps saved from previous test runs as shown
in Figure 9. Remembering maps is a very effective
way of learning about terrain, and has proved im-
portant in optimizing successive runs over the
same terrain.

The cost and elevation confidence of each grid
cell is updated every sensor cycle: 5 Hz for the
stereo obstacle detection module, 3 Hz for the
learning module, 5 Hz for the classification mod-
ule, and 10 Hz -20 Hz for the bumper module. The
confidence values are used as a cost factor in de-
termining the traversability of a cell.

Figure 9. Initial (left) and remembered (right)
cost maps as the system starts without and with
saved maps, respectively.

We plan additional research to implement
modeling of moving objects (cars, targets, etc.) and
to broaden the system's terrain and object classifi-
cation capabilities. The ability to recognize and
label water, rocky roads, buildings, fences, etc.
would enhance the vehicle's performance.

3.5 Behavior Generation

Top level input to Behavior Generation (BG)
(Figure 10) is a file containing the final goal point
in UTM (Universal Transverse Mercator) coordi-
nates. At the bottom level in the 4D/RCS hierar-
chy, BG produces a speed for each of the two drive
wheels updated every 20 ms, which is input to the
low-level controller included with the government-

provided vehicle. The low-level system returns
status to BG, including motor currents, position
estimate, physical bumper switch state, raw GPS
and encoder feedback, etc. These are used directly
by BG rather than passing them through sensor
processing and world modeling since they are
time-critical and relatively simple to process.

Two position estimates are used in the system.
Global position is strongly affected by the GPS
antenna output and received signal strength and is
more accurate over long ranges, but can be noisy.
Local position uses only the wheel encoders and
inertial measurement unit (IMU). It is less noisy
than GPS but drifts significantly as the vehicle
moves, and even more if the wheels slip.

 The system consists of five separate executa-
bles. Each sleeps until the beginning of its cycle,
reads its inputs, does some planning, writes its
outputs and starts the cycle again. Processes com-
municate using the Neutral Message Language
(NML) in a non-blocking mode, which wraps the
shared-memory interface [Shackleford, 1990]. Each
module also posts a status message that can be
used by both the supervising process and by devel-
opers via a diagnostics tool to monitor the process.

The LAGR Supervisor is the highest level BG
module. It is responsible for starting and stopping
the system. It reads the final goal and sends it to
the waypoint generator. The waypoint generator
chooses a series of waypoints for the lowest-cost
traversable path to the goal using global position
and translates the points into local coordinates. It
generates a list of waypoints using either the out-
put of the A* Planner [Heyes-Jones, 2005] or a pre-
viously recorded known route to the goal.

The planner takes a 201 X 201 terrain grid
from WM, classifies the grid, and translates it into
a grid of costs of the same size. In most cases the
cost is simply looked up in a small table from the
corresponding element of the input grid. However,
since costs also depend on neighboring costs, they
are automatically adjusted to allow the vehicle to
continue motion. By lowering costs of unknown
obstacles near the vehicle, it does not hesitate to
move as it would with for example, detected false
or true obstacles nearby. Since the vehicle has an
instrumented bumper, the choice is to continue
vehicle motion.

Lagr Supervisor

Waypoint Generator

A* Planner

Waypoint Follower

LAGR CMU Comm Interface

Final Goal (UTM Easting,Northing)

List of waypoints
local coordinates
{(x,y), …, (x,y)}

velocity and
heading

wheel speedsposition,motor current,
bumper, etc.

Long range (120m)
Low resolution (0.6m) Map

Clear/Save Maps

Short range (40m)
High resolution (0.2m)
Map

Behavior Generation World Modeling

Figure 10. Behavior Generation High Level
Data Flow Diagram.

The waypoint follower receives a series of
waypoints, spaced approximately 0.6 m apart, that
could be used to drive blindly without a map.
However, there are some features of the path that
make this less than optimal. When the path con-
tains a turn, it is either at a 0.8 rad (45°) or 1.6 rad
(90°) angle with respect to the previous heading.
The waypoint follower could smooth the path, but
it would at least partially enter cells that were not
covered by the path chosen at the higher level. The
A* planner might also plan through a cell that was
partially blocked by an obstacle. The waypoint
follower is then responsible for avoiding the obsta-
cle. The first step in creating a short range plan is
to choose a goal point from the list provided by the
A* Planner. One option would be to use the point
where the path intersects the edge of the 40m map.
However, due to the differences between local and
global positioning, this point might be on one side
of an obstacle in the long range map and on the
other side in the short range map. To avoid this,
the first major turning point is selected. The way-
point follower searches a preset list of possible
paths starting at the current position and chooses
the one with the best score. The score represents a
compromise between getting close to the turning
point, staying far away from obstacles and higher
cost areas, and keeping the speed up by avoiding
turns.

As stated in Section 2, a true 4D/RCS world
model should integrate all available knowledge to
not require immediate sensory feedback alone.
Due to project time constraints, some behavioral
responses to situations were necessary to imple-
ment into the waypoint follower. These custom
behaviors were selected from a state table. The

behaviors incorporated included:
 AGGRESSIVE MODE—Ignore obstacles

except those detected with the bumper and
drive in the direction of the final goal. Terrain
such as tall grass causes the vehicle to wander.
Short bursts of aggressive mode help to get
out of these situations.

 HILL CLIMB—Wheel motor currents and roll
and pitch angle sensors are used to sense a
hill. The vehicle attempts to drive up hills
without stopping to avoid momentum loss and
slipping.

 NARROW CORRIDOR/CLOSE TO OB-
STACLE—In tight spaces the system slows
down, builds a detailed world model, and con-
siders a larger number of alternative paths to
get around tight corners than in open areas.

 HIGH MOTOR AMPS/SLIPPING—When the
motor currents are high or the system thinks
the wheels are slipping it tries to reverse direc-
tion and then tries a random series of speeds
and directions, searching for a path where the
wheels are able to move without slipping.

 REVERSE FROM BUMPER HIT—
Immediately after a bumper hit the vehicle
backs up and rotates to avoid the obstacle.

The lowest level module, the LAGR Comms

Interface, takes a desired heading and direction
from the waypoint follower and controls the veloc-
ity and acceleration, determines a vehicle-specific
set of wheel speeds, and handles all communica-
tions between the controller and vehicle hardware.

3.6 Learning algorithms

Learning is a basic part of the LAGR program.
Several kinds of learning have to be addressed.
There is learning by example, learning from ex-
perience, and learning of maps and paths. Most
learning relies on sensed information to provide
both the learning stimulus and the ground truth for
evaluation. In the LAGR program, learning from
sensor data has mainly focused on learning the
traversability of terrain. This includes learning by
seeing examples of the terrain and learning from
the experience of driving over (or attempting to
drive over) the terrain. One example of learning by
example was discussed in Section 3.3.

Another model-based learning process occurs
in the SP2 module of the 4D/RCS architecture,
which takes input from SP1 in the form of labeled
pixels with associated (x, y, z) positions. Classifica-
tion is an SP1 process that uses the models to label
the traversability of image regions based only on
color camera data.

An assumption is made that terrain regions

that look similar will have similar traversability.
The learning works as follows [Shneier, 2006]. The
system constructs a map of the terrain surrounding
the vehicle, with map cells 0.2 m by 0.2 m. Each
pixel passed up from SP1 has an associated red
(R), green (G), and blue (B) color value in addition
to its (x, y, z) position and label (obstacle or
ground). Points are projected into the map using
the (x, y, z) position. Each map cell accumulates
descriptions of the color, texture, intensity, and
contrast of the points that project into it.

Color is represented by 8-bin histograms of ra-
tios R/G, R/B, and G/B. This provides some protec-
tion from the color of ambient illumination. Tex-
ture and contrast are computed using Local Binary
Patterns (LBP) [Ojala, 1996]. The texture measure
is represented by a histogram with 8 bins. Intensity
is represented by an 8-bin histogram, while con-
trast is a single number ranging from 0 to 1.

When a cell accumulates enough points, it is
ready to be considered as a model. To build a
model we require that 95% of the points projected
into a cell have the same label (obstacle or
ground). If a cell is the first to accumulate enough
points, its values are used to create the first model.
If other models already exist, the cell is matched to
these models to see if it can be merged or if a new
model must be created. Matching is done by com-
puting a weighted sum of the elements of the
model and the cell. Each model has an associated
traversability, computed from the number of obsta-
cle and ground points that were used to create the
model. These models correspond to regions
learned by example. Learning by experience is
used to modify the models. As the vehicle travels,
it moves from cell to cell in the map. If it is able to
traverse a cell that has an associated model, the
traversability of that model is increased. If it hits
an obstacle in a cell, the traversability is decreased.

To classify a scene, only the color image is
needed. A window is passed over the image and
color, texture, and intensity histograms, and a con-
trast value are computed as in model building. A
comparison is made with the set of models, and the
window is classified with the best matching model,
if a sufficiently good match value is found. Re-
gions that do not find good matches are left unclas-
sified.

Figure 11a shows an image taken during learn-
ing. The pixels contributing to the learning are
shown in red for obstacle points and green for
ground points. Figure 11b shows a scene labeled
with traversability values computed from the mod-
els built from previous data.

 (a) (b)
Figure 11 Learning by example images. (a) is
an image taken during learning and overlaid with
(red) obstacles and (green) ground, (b) is the same
image overlaid with traversability information as
obstacles (magenta) and ground (yellow).

4. Summary and Conclusions
The NIST 4D/RCS reference model architec-

ture was implemented on the DARPA LAGR vehi-
cle, which was used to prove that 4D/RCS can
learn. Sensor processing, world modeling, and
behavior generation processes have been described
in this paper. Outputs from sensor processing of
vehicle sensors are fused with models in WM to
update them with external vehicle information.
World modeling acts as a bridge between multiple
sensory inputs and a behavior generation (path
planning) subsystem. Behavior generation plans
vehicle paths through the world based on cost
maps provided from world modeling. Learning, as
used on the LAGR vehicle, includes learning by
example, learning from experience, and learning of
behaviors that are more likely to lead to success.

Future research will include completion of the
sensory processing upper level (SP2) and develop-
ing even more robust control algorithms than those
described in this paper.

5. References

[Albus, 1992], J.S., Juberts, M., Szabo, S., RCS: A Ref-
erence Model Architecture for Intelligent Vehicle and
Highway Systems, Proceedings of the 25th Silver Jubilee
International Symposium on Automotive Technology
and Automation, Florence, Italy, June 1-5.
[Albus-1, 2002] J.S., Huang, H.M., Messina, E., Mur-
phy, K.N., Juberts, M., Lacaze, A., Balakirsky, S.B.,
Shneier, M.O., Hong, T.H., Scott, H.A., Proctor, F.M.,
Shackleford, W., Michaloski, J.L., Wavering, A.J.,
Kramer, Tom , Dagalakis, N.G., Rippey, W.G., Stouffer,
K.A., 4D/RCS Version 2.0: A Reference Model Architec-
ture for Unmanned Vehicle Systems, NISTIR.
[Albus-2, 2002], J.S., Balakirsky, S.B., Messina, E.,
Architecting A Simulation and Development Environ-
ment for Multi-Robot Teams, Proceedings of the Interna-
tional Workshop on Multi Robot Systems, Washington,
DC, March 18 - 20.
[Balakirsky, 2002], S.B., Chang, T., Hong, T.H.,

Messina, E., Shneier, M.O., A Hierarchical World Model
for an Autonomous Scout Vehicle, Proceedings of the
SPIE 16th Annual International Symposium on Aero-
space/Defense Sensing, Simulation, and Controls, Or-
lando, FL, April 1-5.
[Bostelman, 1996], R.V., Jacoff, A., Dagalakis, N.G.,
Albus, J.S., RCS-Based RoboCrane Integration, Pro-
ceedings of the International Conference on Intelligent
Systems: A Semiotic Perspective, Gaithersburg, MD,
October 20-23.
[Chang, 1999], T., Hong, T., Legowik, S., Abrams, M.,
Concealment and Obstacle Detection for Autonomous
Driving, Proceedings of the Robotics & Applications
Conference, Santa Barbara, CA, October.
[Heyes-Jones, 2005], J., A* algorithm tutorial,
http://us.geocities.com/jheyesjones/astar.html.
[Shneier, 2006], M., Chang, T., Hong, T., and Shackle-
ford, W., Learning Traversability Models for Autono-
mous Mobile Vehicles, Autonomous Robots (submitted).
[Jackel, 2005], Larry, LAGR Mission,
http://www.darpa.mil/ipto/programs/lagr/index.htm,
DARPA Information Processing Technology Office.
[Konolige, 2005] K., SRI Stereo Engine,
http://www.ai.sri.com/~konolige/svs/.
[Michaloski, 1986], J.L., Warsaw, B.A., Robot Control
System Based on Forth, Robotics Engineering, Vol. 8,
No. 5, pgs 22-26, May.
[Ojala, 1996], T., Pietikäinen, M., and Harwood, D., A
Comparative Study of Texture Measures with Classifica-
tion Based on Feature Distributions, Pattern Recogni-
tion, 29: 51-59.
[Oskard, 1990], D., Hong, T., Shaffer, C., Real-time
Algorithms and Data Structures for Underwater Map-
ping, National Institute of Standards and Technology.
[Shackleford, 1990], W., The NML Programmer's Guide
(C++ Version)
http://www.isd.mel.nist.gov/projects/rcslib/NMLcpp.htm
l.
[Shackleford, 2000], W., Stouffer, K.A., Implementation
of VRML/Java Web-based Animation and Communica-
tions for the Next Generation Inspection System (NGIS)
Real-time Controller, Proceedings of the ASME Interna-
tional 20th Computers and Information in Engineering
(CIE) Conference, Baltimore, MD, September 10 - 13.
[Tan, 2006] C., Hong, T., Shneier, M., and Chang, T.,
"Color Model-Based Real-Time Learning for Road Fol-
lowing," in Proc. of the IEEE Intelligent Transportation
Systems Conference (Submitted) Toronto, Canada.

http://www.mel.nist.gov/msidstaff/exstaff.htm
http://us.geocities.com/jheyesjones/astar.html
http://www.darpa.mil/ipto/programs/lagr/index.htm
http://www.isd.mel.nist.gov/projects/rcslib/NMLcpp.html
http://www.isd.mel.nist.gov/projects/rcslib/NMLcpp.html

	1. INTRODUCTION
	5. References

