
Auton Robot (2008) 24: 69–86
DOI 10.1007/s10514-007-9063-6

Learning traversability models for autonomous mobile vehicles

Michael Shneier · Tommy Chang · Tsai Hong ·
Will Shackleford · Roger Bostelman · James S. Albus

Received: 13 December 2005 / Accepted: 15 October 2007 / Published online: 21 November 2007
© Springer Science+Business Media, LLC 2007

Abstract Autonomous mobile robots need to adapt their
behavior to the terrain over which they drive, and to predict
the traversability of the terrain so that they can effectively
plan their paths. Such robots usually make use of a set of
sensors to investigate the terrain around them and build up
an internal representation that enables them to navigate. This
paper addresses the question of how to use sensor data to
learn properties of the environment and use this knowledge
to predict which regions of the environment are traversable.
The approach makes use of sensed information from range
sensors (stereo or ladar), color cameras, and the vehicle’s
navigation sensors. Models of terrain regions are learned
from subsets of pixels that are selected by projection into
a local occupancy grid. The models include color and tex-
ture as well as traversability information obtained from an
analysis of the range data associated with the pixels. The
models are learned without supervision, deriving their prop-
erties from the geometry and the appearance of the scene.

M. Shneier (�) · T. Chang · T. Hong · W. Shackleford ·
R. Bostelman · J.S. Albus
National Institute of Standards and Technology, Gaithersburg,
MD 20899, USA
e-mail: Michael.Shneier@nist.gov

T. Chang
e-mail: Tommy.Chang@nist.gov

T. Hong
e-mail: Tsai.Hong@nist.gov

W. Shackleford
e-mail: Will.Shackleford@nist.gov

R. Bostelman
e-mail: roger.bostelman@nist.gov

J.S. Albus
e-mail: james.albus@nist.gov

The models are used to classify color images and assign
traversability costs to regions. The classification does not
use the range or position information, but only color images.
Traversability determined during the model-building phase
is stored in the models. This enables classification of regions
beyond the range of stereo or ladar using the information in
the color images. The paper describes how the models are
constructed and maintained, how they are used to classify
image regions, and how the system adapts to changing envi-
ronments. Examples are shown from the implementation of
this algorithm in the DARPA Learning Applied to Ground
Robots (LAGR) program, and an evaluation of the algorithm
against human-provided ground truth is presented.

Keywords Learning · Traversability · Classification ·
Color models · Texture · Range · Mobile robotics

1 Introduction

If autonomous mobile robots are to become more generally
useful, they must be able to adapt to new environments and
learn from experience. To do so, they need a way to store
pertinent information about the environment, recall the in-
formation at appropriate times, and reliably match stored in-
formation with newly-sensed data. They also must be able
to modify the stored information to account for systematic
changes in the environment.

The Defense Advanced Research Projects Agency’s
(DARPA) Learning Applied to Ground Robots (LAGR) pro-
gram (Jackel et al. 2006) aims to develop algorithms that
will let a robotic vehicle travel through complex terrain
without having to rely on hand-tuned algorithms that only
apply in limited environments. The goal is to enable the

70 Auton Robot (2008) 24: 69–86

Fig. 1 The small robot used in the DARPA LAGR program

control system of the vehicle to learn which areas are tra-
versable and how to avoid areas that are impassable or that
limit the mobility of the vehicle. To accomplish this goal,
the program provided small robotic vehicles to each of the
participants (Fig. 1). The vehicles are used by the teams
to develop software. A separate LAGR Government Team,
with an identical vehicle, conducts tests of the software each
month. This paper describes the approach taken by the NIST
team to address one part of the problem—learning how ap-
pearance relates to traversability.

An overview of the NIST approach is given in Albus et al.
(2006). It makes use of data from range sensors, color cam-
eras, and position sensors to describe regions in the environ-
ment around the vehicle and to associate a cost of travers-
ing each region with its description. Models of the terrain
are learned using a scheme that makes use of both geomet-
ric and appearance information. The vehicle runs using a
control hierarchy called 4D/RCS (Albus and Meystel 2001;
Albus et al. 2002). 4D/RCS provides a hierarchical organi-
zation of control nodes, each of which divides the system
into sensory perception (SP), world modeling (WM) and
behavior generation (BG) subsystems. Each 4D/RCS node
is designed to carry out specific duties and responsibilities.
Each node is assigned a specified span of control, both in
terms of supervision of subordinates, and in terms of range
and resolution in space and time. Interactions between SP,
WM, and BG give rise to perception, cognition, and rea-
soning. At lower levels in the hierarchy, representations of
space and time are short-range and high-resolution. At nodes
higher in the hierarchy, representations of space and time are
long-range and low-resolution. This enables high-precision
fast-action response from the low level control nodes, while
higher level nodes are generating long-range plans and ab-
stract concepts over broad regions of time and space. Typi-
cally, planning horizons expand by an order of magnitude in
time and space at each higher level in the hierarchy. Within
the WM of each node, a knowledge database provides a
model of the external world at a range and resolution that

is appropriate for the behavioral decisions that are the re-
sponsibility of that node.

This paper is concerned with the sensory processing and
world modeling aspects of the hierarchy. It discusses the
processing of multiple sensor inputs to generate models of
terrain, and construction of traversability maps which are
sent to the world model. There they provide input to path
planners that generate trajectories to take the vehicle to its
goal.

The vehicle provided by DARPA is a small but very ca-
pable robot with substantial on-board processing capacity
and a rich set of sensors. The sensors include two pairs of
color cameras mounted on a turret on the front of the vehi-
cle, a pair of infra-red range sensors (non-contact bumpers)
on the front of the vehicle, and a physical bumper centered
on the front wheels of the vehicle. For position sensing,
the vehicle has a Global Positioning System (GPS) sensor,
wheel encoders, and an inertial navigation system (INS). In
addition, there are sensors for motor current, battery level,
and temperature. There are four single-board computers on
the vehicle, one for low-level vehicle control, one for each
of the stereo camera pairs, and one for overall control of
the vehicle. All processors use the Linux operating system.
The vehicle has an internal Ethernet network connecting the
processors, and a wireless Ethernet link to external proces-
sors.

The availability of range information enables a robot to
navigate largely using the geometry of a scene. Another vi-
able approach is to use topology of the surrounding space
(DeSouza and Kak 2002). In this approach, the relation-
ships between features are used to describe the world rather
than their precise geometry or quantitative measurements.
We chose to use geometry to describe the world because it
fits well with the 4D/RCS control architecture and it makes
map-based path planning straightforward. Sensor process-
ing is aimed at determining where the vehicle is and what
parts of the world around it are traversable. The robot can
then plan a path over the traversable region to get to its goal.
Where range information is missing or unreliable, naviga-
tion is not so straightforward because it is less clear what
constitutes clear ground. A typical range sensor will not be
able to provide reliable range very far in front of the ve-
hicle, and it is part of the aim of this work to extend the
traversability analysis beyond the range sensing limit. This
is done by associating traversability with appearance, under
the assumption that regions that look similar will have simi-
lar traversability. Because there is no direct relationship be-
tween traversability and appearance, the system must learn
the correspondences from experience.

The appearance of regions in an image has been de-
scribed in many ways, but most frequently in terms of color
and/or texture. Ulrich and Nourbakhsh (2000b) used color
imagery to learn the appearance of a set of locations to

Auton Robot (2008) 24: 69–86 71

enable a robot to recognize where it is. A set of images
was recorded at each location and served as a description
of that location. Images were represented by a set of one-
dimensional histograms in both HLS (hue, luminance, sat-
uration) and normalized Red, Green, and Blue (RGB) color
spaces. When the robot needed to recognize its location, it
compared its current image with the set of images associated
with locations. To compare histograms when matching im-
ages, the Jeffrey divergence was used (Puzicha et al. 1997).
The location was recognized as that associated with the best-
matching stored image.

In Ulrich and Nourbakhsh (2000a) the authors also ad-
dressed the issue of appearance-based obstacle detection us-
ing a single color camera and no range information. Their
approach makes the assumptions that the ground is flat and
that the region directly in front of the robot is ground. This
region is characterized by color histograms and used as a
model for ground. In the domain of road detection, a related
approach is described in Tan et al. (2006). In principle, the
method could be extended to deal with more classes, and
our algorithm can be seen as one such extension that does
not need to make the assumptions because of the availabil-
ity of range information for regions close to the vehicle.

Learning has been applied to computer vision for a
variety of applications, including traversability prediction.
Wellington and Stentz (2003) predicted the load-bearing sur-
face under vegetation by extracting features from range data
and associating them with the actual surface height mea-
sured when the vehicle drove over the corresponding ter-
rain. The system learned a mapping from terrain features to
surface height using a technique called locally weighted re-
gression. Learning was done in a map domain. We also use
a map in the current work, although it is a two dimensional
(2D) rather than a three dimensional (3D) map, and we also
make use of the information gained when driving over ter-
rain to update traversability estimates, although not as the
primary source of traversability information. The models we
construct are not based on range information, however, since
this would prevent the extrapolation of the traversability pre-
diction to regions where range is not available.

Howard et al. (2001) presented a learning approach to de-
termining terrain traversability based on fuzzy logic. A hu-
man expert was used to train a fuzzy terrain classifier based
on terrain roughness and slope measures computed from
stereo imagery. The fuzzy logic approach was also adopted
by Shirkhodaie et al. (2004), who applied a set of texture
measures to windows of an image followed by a fuzzy clas-
sifier and region growing to locate traversable parts of the
image.

Talukder et al. (2002) describe a system that attempts to
classify terrain based on color and texture. Terrain is seg-
mented using labels generated from a 3D obstacle detection
algorithm. Each segment is described in terms of Gabor tex-
ture measures and color distributions. Based on color and

texture, the segments are assigned to pre-existing classes.
Each class is associated with an a priori traversability mea-
sure represented by a spring with known spring constant.
We also make use of 3D obstacle detection in our work,
but don’t explicitly segment the data into regions. We model
both background and obstacle classes using color and tex-
ture, but all models are created as the vehicle senses the
world (although we have made use of known models for
some man-made features used in the LAGR program, such
as orange plastic fencing material). Given that we have no
prior knowledge of the type of terrain that may be encoun-
tered, it is usually not possible to pre-specify the classes.
Similarly, the vehicle learns the traversability of the terrain
by interacting with it, either by driving over it or generating
a bumper hit.

The contributions of this paper include a learning algo-
rithm that uses range data to provide traversability infor-
mation and color and texture from images to provide ap-
pearance information. It learns associations between appear-
ance and traversability from small samples and represents
them using a histogram-based representation of models that
provides a well-defined way of comparing the models and
matching them with sensed data. The models are described
in terms of color and texture features that do not rely on
range data. This enables them to be used to classify re-
gions for which no range data are available. The models are
learned from data selected to be close together in 3D space,
making it more likely that they are from the same physical
region. These modules extend the 4D/RCS architecture by
including learning of entities both in the maps kept by the
World Model and as symbolically represented objects.

The rest of the paper is organized as follows. First we
introduce the problem to be addressed in Sect. 2. Next in
Sect. 3, we explain the algorithm and discuss how models
are learned and how the classification is carried out. We
then describe how the results are represented and present
some examples to further explain how the system performs
in Sect. 4. We then present an evaluation of the learning al-
gorithm compared to ground truth in Sect. 5, and conclude
in Sect. 6 with a discussion.

2 Learning traversability

Many robotic vehicles can navigate successfully in open ter-
rain or on highly constrained roads. Frequently, this capabil-
ity is due to a careful provision of relevant information about
the domain in which the vehicle will operate. The problem
we address in this paper, in the context of the DARPA LAGR
program, is to determine how to introduce a learning capa-
bility to the robot that will enable it to decide for itself the
traversability of the terrain around it, based on input from its
sensors and its experience of traveling over similar terrain in
the past.

72 Auton Robot (2008) 24: 69–86

Evaluation in the LAGR program takes the form of nav-
igating the vehicle from a defined start point to a fixed goal
point. This requires avoiding obstacles such as trees, fences,
or various objects introduced into the environment by the
LAGR administrators conducting the tests. The vehicle uses
its sensors to build a model of the world around it and plans
a path from the start to the goal. In many cases, obstacles
are placed along the path in such a way as to ensure that
a straight-line path to the goal is not traversable. Also, the
course may be set up in such a way that by the time the
stereo sensors or bumpers detect an obstacle, the vehicle has
entered a region that requires a long detour to reach the goal.
Teams are given three chances to reach the goal. The idea is
that early runs will enable the robot to learn which regions
to avoid and which to seek out, so that by the third run it
has determined the most efficient path. The vehicle has no a
priori knowledge of the kind of terrain it will traverse, so it
must learn as it goes along by observing the geometry and
appearance of the terrain.

Learning may include remembering the path the vehi-
cle took in previous runs or the regions seen by the sen-
sors during those runs. In our approach, both of these types
of learning are included but, as described in this paper, we
also try to learn a relationship between the appearance of the
terrain and its observed traversability. An advantage of this
kind of learning is that regions that are too far away for re-
liable stereo (and hence reliable obstacle detection) can be
identified as either desirable or undesirable for the vehicle
to traverse. This enables the vehicle to plan further ahead
and avoid entering traps that prevent it from reaching the
goal. Remembering the learned models also allows the ve-
hicle to navigate when stereo is not available, as was the case
in some of the LAGR evaluations.

3 The algorithm

The autonomous vehicle relies on its sensors to describe the
terrain over which it is traveling. Sensor processing must
interpret the raw data and extract from it information useful
for planning. This includes topographic information, such as
slopes and ditches, and feature-based information, such as
obstacles and ground cover. While some of the topographic
information can be extracted from the range data fairly eas-
ily, other features are harder to identify and their properties
are not usually obvious from analysis of the sensory data.
For example, the traversability of tall grass cannot be deter-
mined from range and color information alone, so additional
information must be provided through some other means.
Often, this is part of the a priori information built in to the
system, meaning that the vehicle only has to recognize re-
gions as tall grass to be able to associate a traversability
value with them. In this paper, we develop a method that

enables the vehicle to learn the traversability of different re-
gions from experience.

We develop an algorithm that first analyzes the range
data to locate regions corresponding to ground and to ob-
stacles. Next, this information is used, along with the range
and color data, to construct models of the appearance of re-
gions. These models include an estimate of the cost of tra-
versing the regions. Finally, the models are used to segment
and classify regions in the color images. Associating regions
with models enables traversability costs to be assigned to ar-
eas where there is no range data and thus no directly measur-
able obstacles. As the vehicle traverses the terrain, more di-
rect information is gathered to refine the traversability costs.
This includes noting which regions are actually traversed
and adjusting the traversability of the associated models. It
also involves adjusting the traversability of regions where
the vehicle’s mechanical bumper is triggered.

3.1 Building the models

First, we construct a local occupancy map (Fig. 2). The map
consists of a grid of cells, each of which represents a fixed
square region in the world projected onto a nominal ground
plane. That is, the grid is fixed to the earth, with each cell
centered on a particular latitude and longitude or UTM co-
ordinate. Currently we use an array of 201 × 201 cells, each
of size 0.2 m square, giving a map of size 40 m on a side. The
map is always oriented with one axis pointing north and the
other east. The map scrolls under the vehicle as the vehicle
moves, and cells that scroll off the end of the map are for-
gotten. Cells that move onto the map are cleared and made
ready for new information. Note that if the vehicle moves
far enough, the entire map will change. If it then returns to
a place it has previously traversed, the information known
about that location will be lost. In principle, it would be
straightforward to remember all information learned as the
vehicle moves about. Alternatively, we could use maps of
different resolutions and a strategy for storing abstracted in-
formation for later use into a global map as the occupancy
grid moves out of a region. Both of these alternatives are
used in the World Model component of 4D/RCS, but not in
the occupancy map built for our algorithm. If it is available,
the cells that the occupancy grid moves into can be filled
in using the pre-stored abstract information. Such a strategy
was found to be highly effective in learning control in a feed-
back system (Kwong and Passino 1996). However, for our
application the storage of all information or even abstracted
versions of it is not generally useful because of errors in the
navigation system, which grow as the vehicle moves. This
means that when it comes time to restore the contents of a
cell it may be hard to decide which stored cell should be
used.

Auton Robot (2008) 24: 69–86 73

Fig. 2 An occupancy grid with
the vehicle in the center

Given the occupancy grid, the algorithm processes the
range data and locates obstacles and ground regions. Ob-
stacles are defined as objects that extend more than some
distance d above or below the ground (d is determined by
the maximum obstacle height that the vehicle can negoti-
ate). Obstacles are detected in the range images (Chang et al.
1999). The algorithm scans column by column in the image,
starting with a point known to be on the ground. An ini-
tial ground value is assigned at the location where the front
wheels of the vehicle touch the ground, known from Iner-
tial Navigational System (INS) and GPS sensors. A pixel
is labeled an obstacle if the surface patch to which it cor-
responds rises high enough and abruptly enough from the
ground plane.

The model-building algorithm takes as input the color
image, the associated and registered range data (x, y, z

points), and the labels (GROUND and OBSTACLE) com-
puted by the obstacle-detection step. It builds models by seg-
menting the color image into regions with uniform proper-
ties. Only points that have associated range values are used.
The process works as follows:

When a data set becomes available for processing, the
map is scrolled so that the vehicle occupies the center cell
of the map. Each point of the data set consists of a vector
containing three color values, red (R), green (G), and blue
(B). The vector also contains the 3D position of the point
(x, y, z), and a label from the obstacle detection step. Cur-
rently we consider only OBSTACLE and GROUND labels,
although the obstacle detection algorithm identifies other re-
gions, such as overhanging objects. Each point is processed
as follows.

1. If the point is not labeled as GROUND or OBSTACLE,
it is skipped (other labels can be treated without signif-
icant changes to the algorithm). Points that do not have
associated range values are also skipped.

2. Points that pass step 1 are projected into the map. This
is possible because the x, y, and z values of the point
are known as is the pose of the vehicle. If a point projects
outside the map it is skipped. Each cell receives all points
that fall within the square region in the world determined
by the location of the cell, regardless of the height of
the point above the ground. The cell to which the point
projects accumulates information that summarizes the
characteristics of all points seen by this cell. This in-
cludes color, texture, and contrast properties of the pro-
jected points, as well as the number of OBSTACLE and
GROUND points that have projected into the cell and an
estimate of the cell’s traversability.

Color is represented by ratios R/G, G/B, and intensity
(computed as 0.299R + 0.587G + 0.114B) rather than
directly using R, G, and B. This provides a small amount
of protection from the color of ambient illumination. The
color ratios and intensity distribution are represented by
8-bin histograms, representing values from 0 to 255. The
values are stored in a normalized form, meaning that the
values can be viewed as probabilities of the occurrence
of each ratio. Texture and contrast are computed using
Local Binary Patterns (LBP) (Ojala et al. 1996). These
patterns represent the relationships between pixels in a
3 × 3 neighborhood in the image, and their values range
from 0 to 255. Similarly to the color ratios, the texture
measure is represented by a histogram with 8 bins, also
normalized. Contrast is computed as a part of computing
the LBP measure and is represented by a single number
ranging from 0 to 1.

Local Binary Patterns are computed on 3×3 windows
(Fig. 3). First, the center pixel value is used to thresh-
old the other pixels in the window (Fig. 3b). Pixels in
the neighborhood are set to 1 if they are larger than
the center pixel and to 0 otherwise. Then a weighted

74 Auton Robot (2008) 24: 69–86

Fig. 3 a A 3 × 3 neighborhood. b Result of thresholding by middle value. c Weights applied to each thresholded pixel. d Resulting value in the
center cell is the sum of the weighted thresholded values (0 × 20 + 1 × 21 + 0 × 22 + 1 × 23 + · · · = 90 or 01011010 binary)

sum is computed of the eight surrounding thresholded
points (Fig. 3d). The weights are assigned as powers of
2 (Fig. 3c), so that each location has a unique weight.
The weighted sum of the ones and zeroes surround-
ing the central pixel thus gives rise to a unique num-
ber between 0 and 255 representing the texture mea-
sure for that location. Given that there are eight sur-
round pixels, and each has value 0 or 1 after threshold-
ing, the final value assigned by the operator to the cen-
tral pixel can be represented by an eight-bit byte, making
the implementation very efficient. The LBP values are
combined with a contrast measure at each point, com-
puted over the same window. Contrast is computed as
the mean of the values in the window that were above
the threshold subtracted from the mean of those below
the threshold. For the example of Fig. 3, the contrast is
(25 + 33 + 18 + 17)/4 − (12 + 13 + 10 + 5)/4 = 13.25.

3. When a cell accumulates enough points it is ready to
be considered as a model. We determine the sample
size by requiring 95% confidence that the sample rep-
resents the true distribution and 95% confidence in the
proportions in each bin. This determines (from Table 1 in
Chakravarty 1999) the sample size of 510 points. Many
cells will accumulate more than this number in the very
first frame, so learning is fast. In order to build a model,
we require that a minimum percentage (currently 95%)
of the points projected into a cell have the same label.
Given the small region in space the cells represent, this is
mostly the case. If a cell is the first to accumulate enough
points, its values are simply copied to instantiate the first
model. Models have exactly the same structure as cells,
so this is trivial. Note that the models include the number
of OBSTACLE and GROUND points that project into all
the cells that match them. This enables the traversability
of the model to be computed as in step 4 below.

If there are already defined models, the cell must be
matched to the existing models to see if it can be merged
or if a new model must be created. Matching is done by
computing a score, Dist, as a weighted sum of the ele-
ments of the model m, and the cell c. That is,

Dist(c,m) =
∑

wifi(c,m),

where fi is either a measure of the similarity of two
histograms or, in the case of contrast, is the absolute
value of the difference of the two contrast values,
fcontrast = |contrastm − contrastc|. The histograms are
always stored normalized by the number of points. In the
LAGR tests, all wi were set to 1. Various measures fh

of the similarity of two histograms can be used, such as
a Chi Squared test or Kullback-Liebler divergence. After
trying these (plus others) we found them too expensive
for our real-time application. A sum of squared differ-
ences worked as well and is cheaper to compute. Thus,
for each model histogram hm and the corresponding cell
histogram hc ,

fh =
8∑

i=1

(hmi − hci)
2.

Cells that are similar enough are merged into existing
models; otherwise, new models are constructed. A cell
can only merge with a model that has the same type of
traversability (i.e., if the cell is considered traversable
using the computations in step 4 below, then it can
only match with models that are considered traversable).
When using a test like Chi Squared, there are standard
tables to determine confidence in similarity of distribu-
tions. We didn’t have those for our measure, so set the
threshold experimentally. The same threshold was used
for all experiments and all test runs in the LAGR pro-
gram. If the number of models exceeds a limit, merging
of the most similar models is forced, although it might
be better to replace the oldest or least-used model with
the new one. Merging is a straightforward summation of
histograms, each normalized by its number of points. The
merged contrast measure is computed as the weighted av-
erage of the two contrasts being merged. Figure 4 shows
the histograms representing three different models. For
efficiency and to prevent overlearning, we set a limit on
the number of points that are merged into a model. For
99% confidence, we see from Chakravarty (1999) that
about 5000 points are needed. We currently incorporate
10,000 points before we freeze the model.

Auton Robot (2008) 24: 69–86 75

Fig. 4 Examples of histograms used to construct models. Top row corresponds to the white regions in the left image. Middle row corresponds to
the black regions. Bottom row corresponds to the gray regions. The black region is not traversable, while the other two regions are traversable

76 Auton Robot (2008) 24: 69–86

4. At this stage, there is a set of models whose appearance
is distinct. Our interest is not so much in the appear-
ance of the models, but in the traversability of the re-
gions associated with them. Traversability is computed
using three types of information. First, when a point
is projected into a cell, it brings with it a label, ei-
ther GROUND or OBSTACLE. Each cell accumulates
a count of the number of GROUND and OBSTACLE
points that have been projected into it. Second, the ve-
hicle itself occupies a region of space that maps into
some neighborhood of cells. These cells and their as-
sociated models are given an increased traversability
because the vehicle is traversing them. If the bumper
on the vehicle is triggered, the cell that corresponds to
the bumper location and its model, if any, are given
a decreased traversability. Cells and models that don’t
have known traversability from bumper hits or from be-
ing traversed are given traversability values computed
as numOBSTACLE/(numOBSTACLE + numGROUND).
We plan to further modify the traversability weights by
observing when the wheels on the vehicle slip or the en-
gine has to work harder to traverse a cell.

5. When all the points in the input data have been processed,
the occupancy map is sent to the World Model (WM)
as follows. First, only cells that have values that have
changed are sent. If a cell does not have an associated
model, its local traversability measure is sent. If it does
have a model, the traversability computed from the model
is sent. This means that information learned in one region
is propagated to other, similar regions through the model
matching process. Note that the WM has no knowledge
of the local models, and receives only traversability in-
formation rather than region identity. The WM stores the
traversability information in its own maps which are used
to plan a path to the goal.

6. As each new set of data comes in, the process is repeated
starting at step 1. Periodically, a sweep is made of all
the models. Each model is compared to all the others. If
two models are similar enough, they are merged and the
number of models is reduced accordingly.

A question arises of what to do when points continue to
map into a cell after it has matched with a model. One op-
tion is to increment the information in the matching model
with the new data. As multiple cells that match the model
each update the model’s distributions, the individual cells
may become poorer matches for the model. This could be
the case, for example, because the appearance of a region on
the ground can be different when viewed from far away than
from close up. An alternative option was adopted instead.
This is to link the cell with the model and then zero out the
local distributions stored in the cell. Any points that now
project into the cell are used to update the cell’s local dis-
tributions. When the threshold number of points is reached,

the cell is matched with all the models again and is either
merged with the best match (which may be different from
its original model) or cause the creation of a new model.
This ensures that the model associated with a cell is always
as good a representation as possible.

Another issue concerns the possibility that the tra-
versability of regions matching a model may change as the
vehicle moves into new territory. That is, a region with the
same appearance as a traversable model in one part of the
scene may actually not be traversable in another part of the
scene. The approach taken here is to construct “shadow”
distributions. That is, when a cell matches with an existing
model but has an opposite traversability, a new model is con-
structed. This model does not participate in model matching
until the number of points associated with it exceeds that of
the existing model. At this point, the new model replaces the
old as the prime model, and the new traversability becomes
associated with all matching regions of the image.

3.2 Classifying scenes

So far, we have dealt with model building and computing
traversability for cells in the occupancy grid. The informa-
tion extracted in this way is useful for creating the internal
world model and enabling path planning, but it is limited
in that it is only applicable to points in the sensed data for
which both color and range information are available. Typi-
cally, this is a subset of the points in the color images. The
next step is to use the models to classify entire scenes. Here
only color information is available, with the traversability
being inferred from that stored in the models. The assump-
tion is that regions that look similar will have similar tra-
versability.

The approach is to pass a window over the image and
compute the color and texture measures at each window lo-
cation. The matching between the windows and the mod-
els operates exactly as it does when a cell is matched to
a model in the learning stage. Windows do not have to be
large, however. They can be as small as a single pixel and
the matching will still determine the closest model, although
with low confidence. In the implementation the window size
is a parameter, typically set to 16 × 16. If the best match has
an acceptable score, the window is labeled with the match-
ing model. If not, the window is not classified. Windows
that match with models inherit the traversability associated
with the model. In this way large portions of the image are
classified. The choice of window size is a compromise be-
tween making it large enough to ensure high confidence that
the sample represents the true distribution and small enough
that it does not cover too much terrain. Several window sizes
were tried with very little difference in results. The 16 × 16
pixel window size was used in all the test runs.

A problem arises in sending the results to the World
Model, which requires a 3D location to be associated with

Auton Robot (2008) 24: 69–86 77

Fig. 5 The plane to which objects beyond stereo range are projected.
The gray region is the part of the image that lies on the plane. There
are different plane for each of the stereo pairs of cameras

each point. For the part of the image used for model creation,
only points that have associated range values are processed,
so the problem doesn’t arise. For the rest of the image our
approach is to make two assumptions. One is that the ground
is flat, i.e., that the pose of the vehicle defines a plane
through the wheels (see Fig. 5, where the gray region is the
part of the image that lies on the assumed ground plane).
This allows windows that match with models that are created
from ground points to be mapped to 3D locations. The sec-
ond assumption is that all obstacles are normal to the ground
plane and touch the ground. This allows obstacle windows to
be projected into the ground plane and thus to acquire 3D lo-
cations. We address the issue of where to map a tall obstacle
by processing the image from the bottom up (that is, from
close to the vehicle to farther away). When an obstacle re-
gion first appears, it should thus represent the bottom of the
object, and will get mapped to the ground at this point. All
contiguous obstacle regions in the same column of the image
are mapped to the same ground point, so a tall obstacle will
map to the closest ground rather than being spread over the
plane. The value of observing these regions from far away
is that a low-resolution, long range path planner can decide
to avoid obstacles or traverse ground regions well before a
finely detailed local plan needs to decide exactly how the
vehicle will move (see Fig. 7).

4 Experimental results

The algorithm has been implemented on the DARPA LAGR
platform and used to provide part of the information for nav-
igation. We present examples below of how the algorithm
works in practice. All data for the examples were collected
during tests run by the LAGR Government team. These tests
were conducted each month during the first phase of the

LAGR program, for a total of 14 tests. A number of dif-
ferent locations were used, with a range of terrain, vegeta-
tion, and hazards designed to test various aspects of learning
in the systems. The tests required developers to send their
control software on flash memory cards to the test facility.
The software was then loaded onto a vehicle identical to that
used to develop the software. This vehicle was commanded
to travel from a start waypoint to a goal waypoint through an
obstacle-rich environment. The environment was not seen in
advance by the development teams. The Government team
measured the performance of the system on multiple runs.
To demonstrate learning, performance should improve from
run to run as the systems become familiar with the course.
Some of the tests also required learning from examples.

In the examples below, the performance of the NIST sys-
tem is a result of a number of processes that learn about the
environment in different ways. These include learning by
example and by experience using the algorithm described
in this paper. They also include learning pixel-based color
models of the terrain and assigning traversability on the as-
sumption that the terrain directly in front of the vehicle is
traversable (Tan et al. 2006). Non-image based learning is
also used, including learning traversability maps constructed
from previous runs, and remembering and optimizing paths
taken in past runs (Albus et al. 2006). It is difficult to de-
termine the contributions of each of the learning methods to
the final actions, but the examples visually illustrate the tra-
versabilities learned by the algorithm and show them over-
laid on images taken during different tests. Across the ex-
amples, the values of all algorithm parameters are fixed. The
next section provides an evaluation of the learning algorithm
in isolation.

4.1 Learning in dry vegetation

The LAGR tests were conducted in a variety of environ-
ments, including the Southwest Research Institute’s Small
Robot Testbed in San Antonio, Texas. Test 9 was held there
in January, 2006 in a vegetated area with both woodland and
grassland features. The vegetation was dry with only small
color variations between different types of vegetation and
the ground surface. For this test, color was intended by the
Government team not to be a very good feature for build-
ing the models. The course began on a lane mown through
a field with trees, bushes, brush, and tall grass and trav-
eled along the lane until it reached an open field, where
it turned left and continued through the field to the goal.
Shortly after leaving the start point, the lane divided into two
parallel channels, which merged after approximately 10 m.
Further along the course the lane intersected another lane.
From the intersection, the straight-line path to the goal trav-
eled through brush and tall grass that was not traversable
by the robot, although that was not evident from the in-
tersection point. Further along the course the lane reached

78 Auton Robot (2008) 24: 69–86

Fig. 6 (Color online) Examples of model learning and classification. a–c Models constructed as the vehicle traverses the course. Each color
corresponds to a separate model. d–f Traversability computed from the models. Green is traversable, red is not. Classification computed from the
models in the range beyond stereo is shown as yellow for traversable and magenta for not traversable. g–i Result of classifying the terrain using
the models. Yellow corresponds to traversable, magenta to obstacles

the open field. A patch of tall grass that was not traversable
by the robot grew on the left-hand side of the lane at this
point.

The Government team wanted the robot to follow the lane
from start to goal. They expected that the robot would be
tempted to turn left off the lane at one of the intersections to
pursue the straight-line path to the goal. They hoped that in
earlier runs, the robot would explore the left-hand turns, and
that in later runs, the system would stay on the lane because
it had learned that the left-hand turns were unproductive.
The NIST system did what the Government team wanted, in
that it explored the side path on its first run, learned that it
was not productive, and avoided it on the second run. On the
third run the system started to explore the non-productive
path again, but quickly gave up and returned to the favored
path. The time for the first run was 4:05 minutes. For the
second and third runs times were 2:21 and 2:32.

Figure 6 shows results of building models and classify-
ing terrain during a test run. The first row (a–c) shows three

images taken during the first run. Models are shown over-
laid on the images in colors, with each color representing a
different model but not necessarily a different traversability.
Blue and red models represent traversable regions, while the
other colors represent non-traversable regions. The colors
are overlaid on the images at locations where points from
the stereo data projected into the local map. Each map cell
can match a single model, but not all points in the cell are
included in the model (only those that have a compatible la-
bel). The rectangular shape of the cells explains why some
of the regions, such as the red regions in Fig. 6a, appear
rectangular. Parts of the image that are not colored with a
model can arise if the stereo did not label those points as ei-
ther obstacle or ground, if there was no model that matched
the points, or if the points are beyond the range of stereo. As
the vehicle moves, the sensor data sweeps over the terrain
and points that are not colored in one image will most likely
be labeled in a subsequent image.

Auton Robot (2008) 24: 69–86 79

The second row of Fig. 6(d–f) shows interpretations of
the scene in terms of traversability, regardless of the mod-
els that matched each image region. Points shown in green
are considered traversable, while those in red are not tra-
versable. The green and red points are marked where points
were used to update a model or create a new one. The
yellow and magenta points correspond to classifications us-
ing a 16 × 16 window in the region beyond stereo to con-
struct a distribution that matched a model, with yellow rep-
resenting traversable regions and magenta representing ob-
stacles. The algorithm does not work as well close to the
horizon because the size of ground covered by a pixel be-
comes large and may encompass more than one region.
Hence, models may not match, leading to sparse classifica-
tion. Nonetheless, the algorithm works well enough to pro-
vide the directions to open regions and blocked regions, and,
as illustrated by the planned path in Fig. 7, this can make the
crucial difference between getting drawn into a bad region
because of the short range of the vision system and being
able to avoid it.

The last row of Fig. 6(g–i) shows the results of using the
models to match the terrain from directly in front of the vehi-
cle to the horizon. These results were obtained after the first
run created the models. A 16 × 16 window is passed over
the image and each block is matched with a model. If the
matching model is for a traversable region, that block of the
image is colored yellow. If it is for a non-traversable region,
the window is colored magenta. If there is no match, the re-
gion is left uncolored. Note that the traversability continues
to be modified by driving over or bumping into objects even
when stereo is not available. Thus, the models that gave rise
to the small obstacle regions in Fig. 6(g–i) will have their
traversability increased if the vehicle drives over the corre-
sponding terrain.

4.2 Learning for long range planning

One of the requirements for LAGR was the ability to see be-
yond the distance at which reliable stereo range data could
be acquired. The approach we took was to use the region in
which good stereo could be obtained to learn models of the
terrain. These models were then matched with regions in the
images that corresponded to terrain between the end of reli-
able stereo and the horizon. As soon as the first model was
created, it was applied to classify this region. The example
is taken from the seventh test, conducted in October 2005
at Fort Belvoir, Virginia. The course began in an open field.
The straight-line path from start to goal led through bushes
on the left-hand side of the field. The only traversable path
through the bushes was circuitous and difficult, and drasti-
cally increased the time taken to complete the course. The
path to the right was mainly through open terrain and a dirt
road. The Government team placed an artificial obstacle be-

tween the beginning of the bushes and the road. The obstacle
was low enough to allow the robot to easily see the road, yet
tall and dense enough to serve as an obstacle. It divided the
course into a region to the left through which it was difficult
to reach the goal, and one to the right through which it was
easy to reach the goal.

The Government team was hoping that the vehicles
would either immediately see and understand the superior
traversability of the route to the right of the obstacle, or
would take the left side through the bushes on the first run,
learn that it was bad, and then take the right hand route on
subsequent runs, improving its speed from run to run. The
NIST system matched these expectations. In the first run,
having no knowledge of the course and no models of the
ground and obstacles, it took the left route, negotiated the
bushes, and eventually reached the goal after 4 minutes 37
seconds. During this run, the system learned models of the
ground, the artificial barrier, and the vegetation. It also con-
structed and remembered a map of the terrain and the path it
actually traveled. This allowed it to improve its performance
substantially in the second run, as described below.

Figure 7 shows the sequence of events in the first and sec-
ond runs of the course. Each subfigure shows a view from
the Operator Control Unit (OCU) of the vehicle. The view
includes a raw image from each stereo camera (top) and the
result of classifying the image using the current set of tra-
versability models (bottom). Note that the left camera image
is shown on the right of the OCU and the right image is on
the left. This is because the left stereo system points right,
and the right one points left.

In Fig. 7a the vehicle is at the start position and has just
started creating models. The first model is of the ground in
front of the vehicle, shown in green (traversable). As soon as
a model has been constructed, the system attempts to clas-
sify the region between the end of stereo and the horizon.
The left eye was able to classify part of this region, shown
in yellow, but the corresponding region in the right eye did
not match the initial model well enough to be classified.

Figure 7b shows the situation a little later when the bar-
rier is in the field of view of the left camera pair. A new
model is constructed for part of the barrier, shown in red
(not traversable). Part of the barrier was classified as ground
(green) because the obstacle detection algorithm labeled it
as ground instead of as an obstacle. Enough of the bar-
rier was correctly classified to enable the system to be-
have in the right way. At this stage, the right eye has still
only seen the ground class. The left eye has started to la-
bel the region beyond stereo with both traversable and non-
traversable classes. The right eye will not be able to do so
until it sees some of the obstacles in the region where stereo
is trusted.

Figure 7c shows a view of the barrier taken after the entire
first run. This figure was created by first running the system

80 Auton Robot (2008) 24: 69–86

Fig. 7 (Color online) Learning about obstacles to improve path planning. a View at the beginning of the first run. Only models of the ground
have been created (green). b View when the barrier is seen. A model for an obstacle is created (red). c Result of classifying the scene out to the
horizon using the learned models (ground is yellow, obstacles are magenta). d White line shows planned path at start of first run. e White line shows
planned path at start of second run

Auton Robot (2008) 24: 69–86 81

Fig. 8 The GUI for generating ground truth showing a frame from Test 7

on the data set of the entire first run, then turning off stereo
processing and running through the first run again. No new
models were constructed since there was no stereo to pro-
vide the labels. The region from in front of the vehicle to
the horizon was classified. Traversable regions are shown in
yellow and non-traversable regions in magenta. The obsta-
cle regions have been projected into the ground plane and
only the bottoms of obstacles (the parts closest to the vehi-
cle) have been colored magenta.

Figure 7d shows a different view from the OCU. Here
there are three rows of images. The top pair shows the OCU
view taken from the position where the vehicle started its
first run. The middle images show the result of stereo obsta-
cle detection out to 6.5 m in front of the vehicle (green for
ground, red for obstacles, and blue for regions that were seen
by stereo but were considered too far away to be reliable).
The bottom shows the local stereo maps built during obsta-
cle detection. The white line overlaid on the middle pair of
images shows the planned path, which points directly to the
goal in the absence of any obstacles or prior information.

Figure 7e shows roughly the same location as that in
Fig. 7d, but at the start of the second run. In the first run,
the vehicle explored the terrain and learned models of the
ground and the obstacles. It applies these models to the re-
gion of the image beyond the stereo reliability range. In the
OCU, the results show up as the yellow (ground) and ma-
genta (obstacle) bars in the middle images. As can be seen,
this information starts where the green region corresponding
to the stereo processing ends. The white line in Fig. 7e shows
the planned path for the second run. The learned information
enabled the planner to avoid entering the non-productive re-
gion to the left of the barrier and make it directly to the goal
in 1 minute and 32 seconds.

5 Performance evaluation

The above results give an overview of how the whole LAGR
system works, but do not give a clear indication of how the
learning algorithm contributes to performance. To do this, a
method was developed of evaluating the algorithm relative
to human performance (Shneier et al. 2006). The method is
applicable to any algorithm that labels regions of an image
with class labels. Evaluating the algorithm requires deter-
mining how well the learned models classify the degree of
traversability of the terrain around the vehicle. The evalua-
tion uses ground truth generated by one or more human ob-
servers. Data sets used for the evaluation consisted of log
files generated during the tests. Log files contain the se-
quence of images collected by the two pairs of stereo cam-
eras on the LAGR vehicle and information from the other
sensors, including the navigation (GPS and INS) sensors and
bumper sensors (physical and IR bumpers). The NIST sys-
tem performs exactly the same when playing back a log file
as it did when it first ran the course. Therefore, logged data
is a good source for performance testing.

The ground truth is collected by a human stepping se-
quentially through the log file, and classifying one or more
points from each image. A graphical tool is used to display
the image and randomly select a point (Fig. 8). The point
is highlighted for the user, who selects one of the labels
Ground (G), Obstacle (O), or Unknown (U). The tool then
writes a record to a file containing the frame number, co-
ordinates of the selected point, and the label provided by
the user. When ground truth collection is complete, the file
is available for evaluating the performance of the learning
algorithm or any other algorithm that assigns traversability
labels to regions.

82 Auton Robot (2008) 24: 69–86

Table 1 Results for Test 6

Test 6, 2513 ground truth points

No. correct No. incorrect % correct % incorrect

2197 317 87.4% 12.6%

Error distribution across label types

Not classified Obstacle instead Ground instead

(Unknown) of Ground of Obstacle

30% 52% 17%

To generate data for performance analysis, the learning
algorithm reads the ground truth file and the log file. It
processes the log file as it usually does when running on
the vehicle. Each time it comes to an image frame for which
ground truth is available, it classifies the points selected in
the frame and writes out a file containing the ground truth
it read in plus an entry giving the learned classification of
the pixel in the ground truth file. When the entire log file has
been processed, the output file contains an entry for each
ground truth point that gives both the human’s classification
and the system’s classification. Under the assumption that
the human’s classification is correct, an analysis can be con-
ducted of the errors committed by the learning algorithm.

The evaluation was applied to a number of examples
taken from data gathered by the LAGR evaluation team at
locations in Virginia and Texas. In the evaluations, the learn-
ing system starts out with no models. This is how the system
typically starts, at least for the first test run at each loca-
tion. As it reads the log file and the ground truth data, the
learning program both creates the models and classifies the
ground truth points. This means that early in the sequence
of images, only a small number of models are available for
classification. As more of the terrain is seen, more models
are constructed, and the range of regions that can be classi-
fied increases. The algorithm learns very fast, however, of-
ten creating the first few models from the first frame or two
of data. Since the terrain doesn’t usually change abruptly,
classification performs well from the start, particularly for
points close to the vehicle.

Four sets of ground truth data were created by three
different people using the GUI in Fig. 8. The data were
taken from log files of three different tests: Test 6, Test 7,
and Test 9. The ground truth created for Test 6 consisted
of 3 points per frame, using the log file of the first test
run. Because the human sometimes labeled a point as Un-
known, and because some of the points randomly selected
for ground truth were in the sky, the actual number of usable
points was closer to 2 per frame (there were 1,270 frames).
Table 1 shows a summary of the results of the evaluation.
As can be seen, the algorithm performed well, labeling 87%
of the points the same as the human. Of the incorrect labels,

Table 2 Results for Test 7, User 1

Test 7, 702 ground truth points

No. correct No. incorrect % correct % incorrect

592 110 84.5% 15.5%

Error distribution across label types

Not classified Obstacle instead Ground instead

(Unknown) of Ground of Obstacle

47% 34% 19%

Table 3 Results for Test 7, User 2

Test 7, 2195 ground truth points

No. correct No. incorrect % correct % incorrect

1884 312 85.8% 14.2%

Error distribution across label types

Not classified Obstacle instead Ground instead

(Unknown) of Ground of Obstacle

71% 4% 25%

30% arose from situations where the algorithm did not find
a match with any model and labeled the points Unknown,
52% came from incorrectly labeling points as Obstacle in-
stead of Ground, and 17% from labeling points as Ground
instead of Obstacle.

The ground truth for Test 7 was created from the log file
of the first test run. Two different people generated ground
truth files. One selected 1 point per frame, resulting in a us-
able count of 702 points, while the other selected 3 points
per frame, resulting in a usable count of 2195 points, where
usable points are determined as described above for Test 6.
Having different selections of points for the same data set
enabled us to see if there was significant variation between
people’s selection of labels and also let us see if a smaller
number of points was as effective as a larger one. As can be
seen in Tables 2 and 3, the results for both the small sam-
ple size and the large one are very similar, indicating that it
is not necessary to label large numbers of points. What was
surprising was that the distribution of the errors was differ-
ent. For the smaller set, the percentage of errors due to the
learning algorithm not being able to identify the class of the
point was 46%, whereas the corresponding percentage for
the larger set was 71%. In the tests we have done, the distri-
butions of errors with different random sets of points have
not shown any obvious pattern.

The ground truth for Test 9 was created from the log file
of the first run, using a single point from each frame and a
total of only 176 frames. There were a total of 290 points

Auton Robot (2008) 24: 69–86 83

to be classified. As can be seen in Table 4, the system per-
formed a little worse in this low-color environment, but still
respectably.

The results of all the performance evaluations are accu-
mulated in Table 5. As can be seen, 86% of the time the al-
gorithm assigns the same labels to regions as those assigned
by human observers.

Since the learning algorithm depends on the labels as-
signed by the stereo obstacle detection algorithm, a simi-
lar performance evaluation was done on that algorithm. For
each set of data, the log file was read together with the
ground truth. For each ground truth point in a frame, the
classification assigned by the program was compared to that
assigned by the human. Since stereo has limited range, only
about 30% of ground truth points could be classified by the
obstacle detection algorithm. The percent correct and incor-
rect are computed for the subset of points that had labels
from both the human and the program. The obstacle detec-
tion performed as shown in Table 6, agreeing with a human
91% of the time. Accounting for this upper limit on the

Table 4 Results for Test 9

Test 9, 290 ground truth points

No. correct No. incorrect % correct % incorrect

232 58 80.3% 20.1%

Error distribution across label types

Not classified Obstacle instead Ground instead

(Unknown) of Ground of Obstacle

19% 21% 60%

Table 5 Cumulative results

Tests 6, 7, and 9, 5701 ground truth points

Number of points classified 5701

Number correct 4905

Number incorrect 797

Percentage correct 86%

Percentage incorrect 14%

effectiveness of the learning algorithm, it can be seen that
learning performs 95% optimally.

Another way of using the ground truth data is to investi-
gate the effects of the model parameters. We use five para-
meters to describe the models, and here we discuss the ef-
fects of selecting subsets of these parameters. We explored
using only color (no intensity or texture), using color plus
intensity with no texture, and not using color. There are two
color components, R/G and G/B. We did not explore remov-
ing only one of them. Nor did we look at the effects of con-
trast. Some of the results were surprising.

Table 7 shows the classification success of the algorithm
when it learns models with one or more features removed.
It appears that removing texture has hardly any effect. The
percentage of correct classifications for Test 7 goes down
marginally (just over 2%), but the correct classification for
Test 9 goes up (about 2%)! This is very surprising. Since
the data for Test 9 showed little color variation, we assumed
that the texture was providing most of the discrimination.
It probably means that the texture measure we used is not
suitable for this application (perhaps because it uses such a
small neighborhood). On the other hand, taking color out of
the model features has a big impact, dropping the classifica-
tion accuracy in Test 7 from about 86% to 53%. For Test 9
the accuracy also drops, but only from 80% to 76%. This is
reasonable, since the data showed so little color variation.

Finally, if only color is used, the performance on Test 9
degrades considerably, from 80% to 56%. The performance
on Test 7 actually goes up marginally, although probably
not significantly. We can conclude that intensity plays a sig-
nificant role in classification, especially in Test 9. Color is
clearly important, but the use of the Local Binary Pattern
operator is questionable. We plan to explore alternative tex-

Table 6 Cumulative results of stereo-based obstacle detection

Cumulative, Tests 6, 7, and 9

Number of points classified 1663

Number correct 1512

Number incorrect 151

Percentage correct 91%

Percentage incorrect 9%

Table 7 Effects on classification of changing model parameters

No texture No color Only color

% correct % incorrect % correct % incorrect % correct % incorrect

Test 7 model parameter variation

83.52% 16.48% 53.26% 46.79% 86.25% 13.75%

Test 9 model parameter variation

82.35% 17.99% 76.12% 24.22% 56.40% 43.94%

84 Auton Robot (2008) 24: 69–86

ture measures based on multiresolution Gabor filters as in
Talukder et al. (2002) to see if they perform better.

Overall, the results show that the algorithm for learning
traversability works well, with a high degree of agreement
(86%) between its classifications and those of a human ob-
server. This provides confidence that the algorithm will en-
hance the performance of the LAGR control system as a
whole.

6 Discussion and conclusions

We have presented a system that learns to predict the tra-
versability of regions based on the assumption that regions
that look similar will have similar traversability. The models
that are constructed to represent regions are robust, in the
sense that they apply across a wide set of ranges. Objects
may look substantially different from close up than they do
from far away, and the color and texture measures are com-
puted using only data from the closest parts of the image.
Nonetheless, the models continue to match well when ap-
plied to the middle range of the image. This is probably
due to the coarse binning in the models which mimics the
smoothing effect of increasing range. Because we apply the
texture measure to regions beyond the range of stereo, it
would perhaps be better to use a multiscale texture measure
(e.g., based on Gabor filters (Talukder et al. 2002)). Alter-
natively we could adopt the approach described by Hadsell
et al. (2006), in which a transform is applied to the image to
scale the rows by distance.

The color model used to represent the appearance of the
different terrain models is a descendent of the histogram in-
tersection approach developed by Swain and Ballard (1991).
Instead of three-dimensional histograms, we use two one-
dimensional histograms, and instead of their histogram in-
tersection algorithm for comparing histograms, we use a
sum of squared difference measure (which is very similar
to the sum of absolute differences used in histogram in-
tersection). The size of the histograms we use is substan-
tially smaller also, but, as expected from Swain and Bal-
lard’s analysis, this has little impact on the accuracy of the
matching. Pietikainen et al. (1996) showed that three one-
dimensional histograms perform almost as well as one three-
dimensional histogram, although they did not use color ratio
histograms in their experiments.

The number of models constructed depends on the com-
plexity of the environment and on the similarity measure
used to compare models. Even with a fairly strict similar-
ity measure we have not found that the number of models
becomes large. A typical scenario, such as driving through
the woods, will generate less than twenty models. It is also
not very important to know exactly what each model repre-
sents. The main concern is that the models correctly predict

traversability, not that they encode a semantically meaning-
ful object. Nonetheless, regions are typically represented by
a single model or perhaps two if there is a significant light-
ing change.

Using the range information to build the models ensures
that points that are spatially close in the three-dimensional
world provide the data for the models. This makes them
more likely to belong to the same physical region, espe-
cially since they are required to have the same label from
the obstacle detection algorithm. The processed range in-
formation, which provides labels for obstacle and ground
based on the geometry of the region, provides strong evi-
dence of the traversability of the region. This serves as a
good starting point for traversability, which is modified by
the behavior of the vehicle in driving over some regions and
registering bumper hits in others. In some cases, however,
range information is not available. In this case, we can still
build models under the initial assumption that the region in
front of the vehicle is traversable and that regions that do not
match are not traversable (Ulrich and Nourbakhsh 2000a;
Tan et al. 2006). Together with observing what actually hap-
pens as the vehicle moves, this should enable the algorithm
to work in a similar manner to how it does when range is
available.

Incorporating learning into the operating system of a
robotic vehicle requires many compromises. The vehicle
places limits on processing time because it must have the
information it needs fast enough for control to remain stable
and for the vehicle to avoid obstacles. A balance must be
maintained between learning and other processing in each
module so that each can operate effectively. The overall cy-
cle time of the processing of each component must be fast
enough that other modules that use its information are not
forced to wait for it. These issues are addressed in our sys-
tem partly by the use of the 4D/RCS architecture and partly
by careful implementation of the algorithms.

We have presented in this paper an algorithm that learns
to associate traversability of a region with a description of
its color and texture. It represents the associations using a
histogram-based representation of models that enables easy
comparisons between models and sensed data. The features
used to describe the models do not rely on range data. This
lets them be used to classify regions for which no range data
are available. The models are learned from data selected to
be close together in space, making it more likely that they
are from the same physical region. We have shown through
a number of examples taken from the DARPA LAGR test
data that the algorithm performs satisfactorily by classify-
ing the traversability of regions either across an entire im-
age or only in the region beyond the range of stereo. The
algorithm performs as part of a larger control system that
includes other types of learning, and is able to perform its
actions fast enough to ensure that the entire control system
remains stable.

Auton Robot (2008) 24: 69–86 85

Acknowledgements The work described in this paper was con-
ducted under grants from the DARPA LAGR program and the Army
Research Laboratory. We are grateful for their support. We are also in-
debted to Kevin Passino, whose careful reading of the manuscript and
knowledge of the machine learning literature greatly improved the pa-
per.

References

Albus, J. S., & Meystel, A. (2001). Engineering of mind: an introduc-
tion to the science of intelligent systems. Somerset: Wiley.

Albus, J. S., Huang, H.-M., Messina, E., Murphy, K., Juberts, M.,
Lacaze, A., Balakirsky, S., Shneier, M. O., Hong, T., Scott, H.,
Horst, J., Proctor, F., Shackleford, W., Szabo, S., & Finkelstein,
R. (2002). 4D/RCS Version 2.0: A reference model architecture
for unmanned vehicle systems (NISTIR 6912). Gaithersburg, MD:
National Institute of Standards and Technology.

Albus, J., Bostelman, R., Chang, T., Hong, T., Shackleford, W., &
Shneier, M. (2006). Learning in a hierarchical control system:
4D/RCS in the DARPA LAGR program. Journal of Field Robot-
ics, 23(11/12), 975–1003.

Chakravarty, S. (1999). Sample size determination for multinomial
population. In National association for welfare research and sta-
tistics 39th annual workshop, Cleveland, Ohio. http://www.nawrs.
org/ClevelandPDF/papers/Page_2x.html.

Chang, T., Hong, T., Legowik, S., & Abrams, M. (1999). Concealment
and obstacle detection for autonomous driving. In Proceedings
of the robotics & applications conference (pp. 147–152). Santa
Barbara, CA.

DeSouza, G. N., & Kak, A. C. (2002). Vision for mobile robot naviga-
tion: a survey. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 24(2), 237–267.

Hadsell, R., Sermanet, P., Ben, J., Han, J., Chopra, S., Ranzato, M.,
Sulsky, Y., Flepp, B., Muller, U., & LeCun, Y. (2006). On-line
learning of long-range obstacle detection for off-road robots. In
The learning workshop, Snowbird, UT.

Howard, A., Tunstel, E., Edwards, D., & Carlson, A. (2001). Enhanc-
ing fuzzy robot navigation systems by mimicking human visual
perception of natural terrain traversability. In Joint 9th IFSA world
congress and 20th NAFIPS international conference (pp. 7–12).

Jackel, L. D., Krotkov, E., Perschbacher, M., Pippine, J., & Sullivan, C.
(2006). The DARPA LAGR program: goals, challenges, method-
ology and phase I results. Journal of Field Robotics, 23(11/12),
945–973.

Kwong, W. A., & Passino, K. M. (1996). Dynamically focused fuzzy
learning control, Part B. IEEE Transactions on Systems, Man and
Cybernetics, 26(1), 53–74.

Ojala, T., Pietikainen, M., & Harwood, D. (1996). A comparative study
of texture measures with classification based on feature distribu-
tions. Pattern Recognition, 29, 51–59.

Pietikainen, M., Nieminen, S., Marszalec, E., & Ojala, T. (1996). Ac-
curate color discrimination with classification based on feature
distributions. In 13th international conference on pattern recog-
nition (ICPR’96) (Vol. 3, pp. 833–838).

Puzicha, J., Hofmann, T., & Buhmann, J.M. (1997). Non-parametric
similarity measures for unsupervised texture segmentation and
image retrieval. In IEEE computer society conference on com-
puter vision and pattern recognition (CVPR’97) (pp. 267–272).
San Juan, Puerto Rico.

Shirkhodaie, A., Amrani, R., Chawla, N., & Vicks, T. (2004). Tra-
versable terrain modeling and performance measurement of
mobile robots. In Performance metrics for intelligent systems,
PerMIS’04, Gaithersburg, MD.

Shneier, M., Shackleford, W., Hong, T., & Chang, T. (2006). Perfor-
mance evaluation of a terrain traversability learning algorithm in
the DARPA LAGR program. In Performance metrics for intelli-
gent systems, PerMIS 2006.

Swain, M. J., & Ballard, D. H. (1991). Color indexing. International
Journal of Computer Vision, 7(1), 11–32.

Talukder, A., Manduchi, R., Castano, R., Matthies, L., Castano, A., &
Hogg, R. (2002). Autonomous terrain characterisation and mod-
elling for dynamic control of unmanned vehicles. In IEEE/RSJ
international conference on intelligent robots and systems (IROS)
(pp. 708–713).

Tan, C., Hong, T., Shneier, M., & Chang, T. (2006). Color model-based
real-time learning for road following. In IEEE intelligent trans-
portation systems conference (ITSC’06) (pp. 939–944). Toronto,
Canada.

Ulrich, I., & Nourbakhsh, I. (2000a). Appearance-based obstacle de-
tection with monocular color vision. In Proceedings of the AAAI
national conference on artificial intelligence. Austin, TX.

Ulrich, I., & Nourbakhsh, I. (2000b). Appearance-based place recogni-
tion for topological localization. In IEEE international conference
on robotics and automation (pp. 1023–1029). San Francisco, CA.

Wellington, C., & Stentz, A. (2003). Learning predictions of the load-
bearing surface for autonomous rough-terrain navigation in veg-
etation. In International conference on field and service robotics
(pp. 49–54).

Michael Shneier is group leader for percep-
tion systems at NIST. He received his Ph.D. in
Artificial Intelligence at the University of Ed-
inburgh, Scotland. He manages and conducts
research in sensing and world modeling in the
areas of manufacturing and autonomous vehi-
cle navigation. Efforts are also directed towards
sensor evaluation, calibration, and fusion, and
reference data collection. Current research in-
cludes road and road sign detection, terrain clas-

sification, learning, 6DOF dynamic metrology for manufacturing, and
sensing for robot safety.

Tommy Chang received his Bachelors degrees
in both Electrical Engineering and Computer
Sciences from the University of Maryland, Col-
lege Park. He is currently pursuing a Masters
degree in Computer Sciences from Johns Hop-
kins University. He is also a researcher in the In-
telligent Systems Division at the National Insti-
tute of Standards and Technology. His research
interests are computer vision, image processing
and robotics.

Tsai Hong received her Ph.D. from the Uni-
versity of Maryland in 1982. Dr. Hong con-
ducts research in perception for vehicle nav-
igation and for manufacturing, and develops
performance evaluation methods for perception
systems. Dr. Hong develops and supervises re-
search projects in realtime vision, world mod-
eling, multi-sensor fusion, and temporal fusion
in dynamic environments. She has served as a
doctoral thesis advisor and committee member

for various students and has published over 100 articles on the above
research areas.

86 Auton Robot (2008) 24: 69–86

Will Shackleford graduated in 1993 with a B.S.
in Electrical Engineering from the University
of Maryland. He works in the Intelligent Sys-
tems Division of the Manufacturing Engineer-
ing Lab at the National Institute of Standards
and Technology. Projects include the Real-
Time Control Systems (RCS) Library, Neutral
Messaging Language (NML), Enhanced Ma-
chine Controller (EMC), Aerial Multi-axis Plat-
form (AMP) used for Air Force airplane de-

painting, and various autonomous ground vehicle applications.

Roger Bostelman is Program Manager for the
Intelligent Control of Mobility Systems pro-
gram at NIST. He has been with NIST for 29
years. Roger has designed, built, and tested me-
chanical systems and their interface electron-
ics on robot arms and vehicles. He holds a
B.S. in Electrical Engineering from the George
Washington University and an M.S. in Techni-
cal Management from the University of Mary-
land University College. He has over 45 publi-

cations in journals and conference proceedings and he holds 5 patents
on RoboCrane systems with one pending.

James S. Albus is a Senior NIST Fellow work-
ing on theoretical and experimental studies of
intelligent behavior in artificial and biological
systems. He received his Ph.D. in Electrical En-
gineering from the University of Maryland. He
serves on the editorial board of six journals and
one scientific book series in the field of intel-
ligent systems He has published more than 200
papers in the field of intelligent systems, and has
authored, co-authored, or edited six books.

	Learning traversability models for autonomous mobile vehicles
	Abstract
	Introduction
	Learning traversability
	The algorithm
	Building the models
	Classifying scenes

	Experimental results
	Learning in dry vegetation
	Learning for long range planning

	Performance evaluation
	Discussion and conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

