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Abstract— As mobile robots have increasingly improved 

onboard intelligence, they are being used in more flexible 
manufacturing, warehouse and/or military environments where 
humans may intervene and interact with these robots frequently 
causing increased hazards.  The US ASME B56.5 - 2004 Safety 
Standard for industrial trucks was recently changed and now 
more closely meets the existing British EN 1525 - 1998 Safety 
Standard for driverless industrial trucks by allowing the use of 
non-contact safety sensors.  Standard-size, material-covered 
objects, resembling human limb (arm and leg) lengths and 
diameters positioned in vertical and horizontal orientations, 
respectively and located within the vehicle path, must be detected 
and allow the vehicle to react before the vehicle frame contacts 
these objects.  The National Institute of Standards and 
Technology (NIST) supports the automated guided vehicle 
industry to not only promote advancement of the ASME 
standard to use non-contact safety sensors but, to also provide 
performance evaluation of new 3D real-time range sensor 
technology toward implementing and further advancing these 
standards.  This paper will provide details of: the US and British 
safety standards, a new 3D range camera, sensor experiments 
with ground truth comparison, and  obstacle detection and 
segmentation algorithms and results, and provide further safety 
standard advancement recommendations to protect humans as 
they work near mobile robots. 
 

Index Terms—ASME B56.5 safety standard, British EN1525 
safety standard, 3D range camera, human-robot interaction, 
obstacle segmentation, intelligent vehicles. 

I. INTRODUCTION 
N Isaac Asimov’s 1942 [23] short story called, 
“Runaround,” he stated three laws that robots must obey.  
The first of the three laws states that “a robot may not harm 

a human being …”  Although this was a science fiction story, 
it has relevance to the real world of robotics and automation 
today.    

Robots can now be found in even the consumer market with 
uses in entertainment, home health care, vacuum cleaning, and 
lawn mowing.  Robotic assistants already act as guards, help 
fight fires, deliver materials on construction sites and in 
mines, and distribute goods or help consumers in retail stores. 
Robots might even provide high-interaction services such as 
taking blood and coloring hair [15]. 
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Robots are ever more likely to be fully mobile, bringing 
them into physical proximity with other robots, people, and 
objects. Mobile robots will have to negotiate their interactions 
in a dynamic and sometimes physically challenging 
environment. 

Toward military applications, Project Alpha, a U.S. Joint 
Forces Command rapid idea analysis group, is in the midst of 
a study focusing on the concept of developing and employing 
robots that would be capable of replacing humans to perform 
many, if not most combat functions on the battlefield [21]. 

In the service industry, for example health care, robots are 
still delivering pharmaceuticals to patients rooms using the 
Helpmate [4] robot developed in the early 1990’s by 
Transitions Research Corporation (now Pyxis Corporation) 
with funding from the National Institute of Standards and 
Technology (NIST).  This was the first service robot to be 
widely deployed in American hospitals.  NIST researchers 
were able to advance the original sonar guidance technology 
on the HelpMate with a LADAR (laser detection and 
ranging)-based navigation system.  The NIST project review 
suggested that a HelpMate robot made its deliveries faster and 
more reliably than its human counterparts and produced cost 
savings (above the rental costs of the robot) of between 
$5,000 and $10,000 per year per robot in the 1990’s. 
Approximately one hundred HelpMates were in use in 
American hospitals by the end of the decade in clinical 
laboratories, pharmacies, medical records departments, and 
central supply rooms.   

For manufacturing, Automated Guided Vehicles (AGVs) 
are the vehicles of choice and are equipped with automatic 
guidance systems and are capable of following prescribed 
paths.  In automated factories and facilities AGV's move 
pallets and containers. In offices they may be used to deliver 
and pick up the mail. They are even used to transport patrons 
around in airports.  

The main benefit of AGVs is that they reduce labor costs. 
But in material handling facilities there is another benefit. 
Material handling has always been dangerous. Injuries occur 
due to a driver’s lack of attention, drivers driving too fast, or 
other personnel not paying attention. Obstacle detection is 
therefore a key to allowing AGV’s to interact with personnel 
safely while optimizing vehicle speeds [17]. Emergency 
controls are then required which would stop the vehicle if an 
object is detected in the direction of travel. 

Although workers are trained to mark AGV travel paths 
clearly, to watch out for AGV’s keeping clear when vehicles 
approach, equipping AGV’s with virtual bumpers such as 
LADAR systems can be beneficial.  LADAR systems must be 
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able to detect 3D objects such as humans and the controller 
must understand what they are to be safe. 

Our proposed approach to obstacle detection uses a low 
cost, real time, Centre Suisse d'Electronique et de 
Microtechnique (CSEM) range camera called the 
SwissRanger 21 (SR2). The 3D range camera is based on the 
Time-Of-Flight (TOF) principle [13] and is capable of 
simultaneously producing intensity images and range 
information of targets in indoor environments. This range 
camera is extremely appealing for obstacle detection in 
industrial applications as, when it becomes commercially 
available, it will be relatively inexpensive as compared to 
similar sensors.  It can deliver range and intensity images at a 
rate of 30 Hz with an active range of 7.5 m and has no moving 
parts, such as a spinning mirror as in many off-the-shelf laser 
sensors. 

Since obstacle detection plays a critical role in 
autonomous driving, there has been much research on many 
different types of sensors, such as sonar [22], color/gray level 
cameras [5], FLIR (Forward Looking InfraRed) cameras [20], 
and stereo cameras [19], [3], [24], [11]. Most of the vision 
approaches are not applicable to indoor scenes due to lack of 
texture in the environment. Other researchers have proposed 
LADAR (Laser Detection And Ranging) sensors for detecting 
obstacles [9], [7], [10]. However, one dimensional LADAR, 
which has been used in the AGV industry, is not suitable for 
the 3D world of factory environments and other complex 
volumes without moving the sensor during operation.  

NIST recently developed an obstacle detection and 
segmentation algorithm using the CSEM 3D range camera. 
Our approach has been tested successfully on approximate 
British safety standard recommended object sizes covered in 
cotton material placed in the vehicle path.  For this paper, the 
AGV remained stationary as the measurements were collected.  

The U.S. American Society of Mechanical Engineers 
(ASME) B56.5-2004 standard [2] was recently changed to 
allow non-contact safety sensors as opposed to contact sensors 
such as bumpers to be used on AGVs.  Prior to the change, the 
B56.5 standard defined an AGV bumper as a “mechanically 
actuated device, which when depressed, causes the vehicle to 
stop.” With the current B56.5 standard change and with state-
of-the-art non-contact safety sensors, vehicles can be shorter 
in length, excluding mechanical bumpers, allowing shorter 
turning radii and the potential to move faster as objects can be 
detected well before the vehicle reaches them. 

Ideally, the U.S. standard can be changed to make it even 
more similar to the British EN1525 safety standard 
requirements [6]. Furthering the US safety standard will also 
provide support toward a unified, global safety standard for 
AGV’s and other driverless vehicles. 

The paper is structured as follows: Section II describes 
the concept of obstacle detection and segmentation including 
the 3D range camera, algorithm, and a modulation issue using 
range camera images. Section III explains the results when 
employing the detection and segmentation algorithm on 
standard size objects.  Section IV provides an explanation of 
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the indoor autonomous vehicle testbed and the experimental 
setup and algorithm results. Section V briefly discusses 
simultaneous localization and mapping and how AGV’s will 
benefit from it.  Section VI explains the probability obstacle 
map.  Section VII provides a summary and conclusion 
followed by acknowledgments and a reference list.  

II. OBSTACLE DETECTION AND SEGMENTATION  

A. 3D Range Camera 
In this section, we describe an algorithm to detect and 

segment obstacles in the path of the AGV using a solid-state 
Time-Of-Flight (TOF) range camera. The 3D range camera 
shown in Figure 1 is a compact, robust and cost effective solid 
state device capable of producing 3D images in real-time.  
 

 
Figure 1 - The TOF 3D range image camera. The camera 

simultaneously generates intensity images and range 
information of targets in its field-of view at a rate of 30 Hz 

with an active range of 7.5 m [25]. 
 

    
(a) 
 

 
 (b) 

Figure 2 - Experimental setup (a) vertical test apparatus 
where the center object most closely matches the British 

standard size test piece measuring 65 mm dia. x 400 mm long.  
The remaining vertical objects are all thinner. (b) horizontal 

test apparatus (mannequin leg) measuring a segment 
approximately tapered from 80 to 160 mm dia. x 600 mm long 
including the leg ankle to the thigh. Both (a) and (b) objects 

are covered in cloth as also specified in the standard. 
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The camera measures 14.5 x 4 x 3 cm (5.7 x 1.6 x 1.2 in), 

has a field-of-view of 42° (horizontal) x 46° (vertical), and is 
capable of producing range images of 160 x 124 pixels over a 
7.5 m range.  For a brief overview of the characteristics and 
operating principles of the camera, see [18].  Approximately 
sized British standard test obstacles, shown in Figure 2, were 
placed in the travel path.  

The British EN1525 safety standard specifies that 
horizontal test pieces used to test sensors shall be 200 mm 
diameter x 600 mm long lying perpendicular to the vehicle 
path and vertical test pieces shall be 70 mm diameter and 400 
mm tall completely within the vehicle path. 

B. Algorithm Details 
Generally, the obstacle detection and segmentation 

algorithm combines intensity and range images from the range 
camera to detect and estimate the distance to the obstacles. We 
first calibrate the camera with respect to the AGV so that we 
can convert the range values to 3D point clouds in the AGV 
coordinate frame. 

 
(a) 

 
(b) 

 
Next, we segment the objects which have high intensity and 

whose elevation values are above the floor of the operating 
environment on the AGV path. The segmented 3D points of 
the obstacles are then projected and accumulated into the floor 
surface-plane. 

The algorithm utilizes the intensity and 3D structure of 
range data from the camera and does not rely on the texture of 
the environment. The segmented (mapped) obstacles are 
verified using absolute measurements obtained using a 
relatively accurate (0.25 degrees angular and 10 mm range 
resolutions) 2D scanning laser rangefinder (shown in Figure 
4). 

Specifically, the steps of the algorithm are illustrated for a 
sample image from the camera: 
1) A patch of data with high intensity values (i.e., the intensity 
value is greater than 20 of 60) in front of the robot is used to 
fit a plane for estimating the floor surface as shown in Figure 
3(a).  
2) The left and right edges of 3D robot paths are projected to 
the range and intensity images such that only obstacles on the 
path can be considered as shown in Figure 3(b).   
3) All the intensity pixels between the left and right edges are 
used to hypothesize the potential obstacle. If the intensity 
value of the pixel is greater than half of the average of the 
intensity in the image then the pixel is considered as a 
potential obstacle as shown in Figure 3(c). 

  
(c) 

    
(d)   

 
Figure 3 - Obstacle segmentation algorithm illustration. 
 

 
4) Each potential obstacle pixel in the range image is used 

to find the distance to the floor plane when the distance to the 
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floor is greater than some threshold as shown in Figure 3(d). 
The threshold is dependent on the traversability of the robot. 

Potential obstacles in the world model can be accumulated 
as the AGV drives and placed in an obstacle map 
representation that is part of the world model. Nearly all the 
obstacles are found, although at the cost of false positives 
from the reflected objects. To increase the accuracy of 
obstacle detection, the obstacles in the map and information 
obtained from an added color camera may be temporally 
integrated. Such integration has proven to be a very useful cue 
for obstacle detection [14].  

III. EXPERIMENTAL SETUP AND RESULTS 
The experiments were conducted under two scenarios as 

stated within the (now American and) British Standards:  
• A test apparatus with a diameter of 200 mm and a 

length of 600 mm placed at right angles on the path 
of the AGV. The actuating force on this test 
apparatus shall not exceed 750 N.  

• A test apparatus with a diameter of 70 mm and a 
height of 400 mm set vertically within the path of the 
AGV. The actuating force on this test apparatus shall 
not exceed 250 N.  

 
Figures 2(a) and (b) show the experimental setup for the 

two aforementioned scenarios. The camera lens was centered 
approximately horizontally and vertically on the apparatus for 
all measurements. The scanning laser rangefinder was offset 
from the camera by 0 mm vertically, 250 mm horizontally, 
and to the left of the camera as viewed from the camera to the 
test apparatus. The range camera was used to detect a known 
test apparatus mounted on a stand and moved to different 
locations with respect to the camera.  
 

 
 

Figure 4 - Experimental setup of the AGV, the scanning laser 
rangefinder, and the range camera. 

 
The obstacle detection and segmentation algorithm was 

tested on two British standard test objects as described in [2], 

and was evaluated against ground truth and placed at 0.5 m to 
7.5 m distances to the sensor.  

A single-line scanning laser rangefinder, shown in Figure 4, 
mounted below the range camera, was used to simultaneously 
verify the distance to the test apparatus for each data set and 
served as ground truth. The rangefinder produces 401 data 
points over a 100° semi-circular region in front of the robot. 

Table 1 shows the performance of the range camera for 
detecting the distance to the test apparatus placed at several 
distances from the range camera out to about 3 m. As can be 
seen, the accuracy (mean) of the range decreases as the 
distance of the apparatus placed in front of the range camera is 
increased.  Ranges between approximately 3 m and 7.5 m 
maximum as specified by the camera manufacturer were left 
off intentionally as the results require further investigation 
into the best camera settings to provide clear data. 
 

Table1 Quantitative Comparison of Performance 
Nominal 
Obstacle 

Distance (cm) 

3D Range 
Camera Mean 

(cm) 

2D Rangefinder 
Mean (cm) 

64 64.1 64.7 
111 111.0 111.3 
160 161.4 160.7 
210 204.0 210.0 
259 249.5 259.1 
310 284.7 310.2 

  
In Figure 5, the test apparatus was placed at a distance of 

2.5 m from the range camera. Each object in the test apparatus 
was clearly detected even though the range camera was also 
sensitive to the reflectors on the wall of the hallway.  

The resultant intensity, range, and segmented images are 
shown in Figures 5(a), (b) and (c), respectively. The ground 
truth provided by the scanning laser rangefinder is shown in 
Figure 5(d) and has been rotated to show a top-down view. 

Similar to Figure 3, [14] shows additional data taken with 
the test apparatus being a mannequin leg placed on the floor 
with an approximate diameter of 200 mm and a length of 600 
mm. This test apparatus is more challenging for the algorithm 
because the entire object is close to the floor. The legs are 
detected, but at the cost of detecting farther objects. This 
deficiency can be eliminated by using two different 
modulation frequencies (such as 10 MHz and 20 MHz) where 
the detected objects would be coarsely represented at a more 
appropriate distance. The control algorithm can then 
intelligently delete them. 
 

3D Range Camera 
 
 
 
Scanning Laser 
Rangefinder 
 
 
Robot vehicle  
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(a) 

 

     
(b) 

 

   
(c) 

 

         
(d) 

 
Figure 5 - Results of the obstacle detection and segmentation 

algorithm for the experimental setup shown in Figure 2(a). 
The resultant intensity, range, and segmented images are 
shown in (a), (b) and (c), respectively. The ground truth 

provided by the scanning laser rangefinder is shown in (d) 
and has been rotated to show a top-down view. 

 

IV. INDOOR AUTONOMOUS VEHICLE 
Along with the previous standards efforts, NIST has 

recently done research for the AGV industry through the 
Industrial Autonomous Vehicles (IAV) Project to provide 
advances in onboard vehicle intelligence, standard control 
architectures, and sensors.  These project objectives are set to 
allow AGV users and vendors to do more with AGV’s 
without their following a preplanned, very low tolerance path 
monitored by an external host computer and without the need 
to dramatically change facility infrastructure to install AGV’s.  
Infrastructure changes may include clearing wide areas for 
vehicle paths or to even install laser reflectors to allow laser 
triangulation for referenced vehicle positioning to the facility. 

Figure 6 shows a photograph of the NIST testbed vehicle 
leveraged from the Defense Advanced Research Project 
Agency’s Learning Applied to Ground Robots (LAGR) 
Project.  Two CSEM SR2’s and a Sick LMS (laser 
measurement system) have been temporarily mounted to the 
LAGR vehicle for indoor obstacle detection measurements 
and vehicle navigation testing.  

The LAGR vehicle is equipped with stock dual stereo 
cameras, two infrared sensors, and a physical bumper along 
with two drive-wheel encoders, an inertial measurement unit 
(IMU) and a global positioning system (GPS) sensor.  
DARPA provided this vehicle to NIST and the other seven 
LAGR project teams as government furnished equipment to 
be used by each organization to perform outdoor vehicle 
navigation tests where a new generation of learned perception 
and control algorithms for autonomous ground vehicles are 
being developed [16].   

 

 
 

Figure 6 – DARPA LAGR vehicle equipped with portable 
NIST sensor suite. 

 
The vehicle is made from a powered wheelchair base with 

front wheel drive/steering and rear casters and has four 
onboard computers for control, planning, and left and right 
stereo vision.  NIST has replaced the vehicle behavior 

2 laptop PC’s 

2 12V Batteries 

2 cameras 

2 SR2’s 

Sensor frame 

Sick LMS 
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generation, world modeling and sensor processing control 
software with 4D/RCS (4 Dimensional, Real-time Control 
System) control architecture software developed at NIST [1].  
Also, NIST has developed an Operator Control Unit (OCU) 
that includes visual feedback from right and left cameras, right 
and left range sensors, and high and low level obstacle maps.  
Other sensor data windows can also be added as needed. 
 The LAGR vehicle’s stock dual stereo vision did not 
provide adequate disparity for obstacle detection in the indoor 
NIST laboratory. Instead, 2D (Sick LMS) and 3D (SR2’s) 
ranging sensors are being used.  Figure 7 shows a photograph 
of a scene as viewed from behind the robot. It shows two 
mannequins placed in front of and in the path of the robot 
where the goal the robot is trying to reach is behind them.  If 
programmed to autonomously reach the goal, the vehicle must 
therefore, sense the objects and plan to go around them. 
 

 
 
Figure 7 – Photograph of the scene as viewed from behind the 

NIST testbed vehicle. 
 

The LADAR sensors are used to detect range to obstacles 
where a world modeling software module places the obstacles 
within a low level map for close range vehicle planning 
purposes.  The low level map is a 20 cm per pixel map 
spanning 20 m to the left and right and forward and back of 
the vehicle with the robot centered within the map.  A high 
level map is also used to plan paths at longer ranges up to 200 
m on all vehicle sides. 

Figure 8 shows snapshots of the two mannequins within the 
low level map as viewed by the SR2’s.  The SICK LMS data 
is not shown as it is currently only displayed in the OCU as no 
LMS sensor processing module has been implemented on this 
NIST testbed. 

The figure clearly shows obstacles placed in the map and 
can therefore, plan a path to navigate around the obstacles.  
Obstacles are detected and placed in the map at several meters 
in front of the vehicle all in one time cycle (10 Hz) of vehicle 
control.  However, without referencing vehicle position with 
global positioning or even locally through other (e.g., radio 
frequency identification detection, bar coding, visual 

odometry) means, the vehicle IMU will drift so that the map 
will be incorrect.  Since the IMU is also combined with wheel 
encoder information to provide vehicle pose, it causes the 
vehicle position to shift relative to the obstacle maps.  To 
compensate for this drift, a simultaneous localization and 
mapping (SLAM) scheme is being considered at NIST.  
 

 
(a) 

 

 
(b) 

 
Figure 8 – Snapshots of: (a) right and left camera images 

(top) and associated right and left SR2 range data (bottom) of 
two mannequins in front of the vehicle; (b) Low Level 

Obstacle Map showing the two mannequins from a top-down 
perspective. The middle color of each mannequin is an 

indicator of obstacle height. 
 

Mannequins  
 
Computer  
 
 
 
 
 
 
Vehicle 
 

2.0 m 
2.8 m 

mannequins 

vehicle 
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V. SIMULTANEOUS LOCALIZATION AND MAPPING 
Towards navigating in an environment without any or 
minimal modifications to it, we are developing algorithms 
using onboard laser range sensing for AGV navigation. By 
combining information from the AGV’s internal sensors 
(wheel encoders and IMU sensors) with external sensing. By 
combining information from the AGV’s internal sensors 
(wheel encoders and IMU sensors) with external sensing 
(LADAR), we can construct a map of the environment and in 
turn use this map for position estimation thereby eliminating 
the need to either install or to maintain additional 
infrastructure. 

We are developing an estimation-theoretic SLAM scheme 
where we concurrently build a feature-based map of the 
environment and use this map to obtain estimates of the 
location of the vehicle. By tracking the relative position 
between the vehicle and identifiable features in the 
environment, both the position of the vehicle and the features 
can be estimated simultaneously. Given process (vehicle) and 
observation (sensor) models, the SLAM process consists of 
generating the best position and map (feature) estimates [8]. 
This can be accomplished using the recursive Extended 
Kalman Filter (EKF) wherein the information from the 
internal and the external sensors is fused to obtain quantifiable 
estimates of the vehicle position as well as that of features in 
the operating environment.  The proposed algorithm will be 
tested on the LAGR vehicle in the next few months. 

VI. THE PROBABILITY OBSTACLE MAP  
The probability obstacle map (Figure 8 (b)) is the system’s 

internal representation of the external world. It acts as a bridge 
between sensory processing and behavior generation for 
representing sensory information in a unified representation.  
The maps are updated continually from sensor data. If the 
information is no longer believed to be representative of the 
world, it will be deleted from the map. In addition, the 
confidence factors to the map can be adjusted as new data are 
sensed. Currently, the map implementation fuses information 
from multiple sensors, including navigation sensors and two 
SR2 cameras. The navigation system provides information 
about the vehicle’s current position, orientation, speed, 
velocity, etc. Data from each SR2 camera includes a range 
image which is used to detect obstacles in the environment as 
described in Section II Obstacle Detection and Segmentation.  

The maps are updated temporally and spatially by the 
sensed obstacles. The primary use of this information is to 
plan safe and efficient paths.  We currently only demonstrate 
the feasibility of using the SR2s for obstacle detection. 
Possible future research directions are to enhance the map 
capabilities and incorporate an active path planner module to 
compute safe and task-appropriate routes.  Furthermore, a 
Sick LMS sensor processing module will be added to the 
system for evaluating the performance of the SR2 in factory 
environments. 

VII. SUMMARY AND CONCLUSIONS 
An obstacle detection and segmentation algorithm for 

Automated Guided Vehicle (AGV) navigation in factory-like 
environments using a novel 3D range camera was described in 
this paper. The range camera is highly attractive for obstacle 
detection in industrial applications due to its relatively low 
cost and it’s ability to deliver range and intensity images in 
real time. The performance of the algorithm was evaluated by 
comparing it with ground truth provided by a single-line 
scanning laser rangefinder.  

Towards navigating in an environment without any or 
minimal modifications to it, we are developing algorithms 
using onboard laser range sensing for AGV navigation.  

We are developing an estimation-theoretic SLAM scheme 
where we concurrently build a feature-based map of the 
environment and use this map to obtain estimates of the 
location of the vehicle. The proposed algorithm will be tested 
on the LAGR vehicle in the next few months. 

 The probability obstacle map currently fuses information 
from multiple sensors, including navigation sensors and two 
SR2 cameras. The maps are updated temporally and spatially 
by the sensed obstacles. The primary use of this information is 
to plan safe and efficient vehicle paths.  

We envisage the extension of the work detailed in this 
paper toward:  

• Addition of enhanced map capabilities and an active path 
planner module incorporation to compute safe and 
task-appropriate routes.   

• Addition of a SICK LMS sensor processing module for 
evaluating the performance of the SR2 in factory 
environments.  

• Moving obstacle detection from a moving AGV for 
factory applications,  

• Combining the sensor with a color camera for detecting 
and tracking obstacles over long distances, and 

• Indoor to outdoor (e.g., factory to materials yard) and 
return environments obstacle detection. 

 
Some prospective applications include: mapping factory 

environments (“lights-out”) manufacturing inside and outside 
during night (dark) hours and security and other service 
mobile robot advancements.   
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