
Entity Knowledge Model Supporting Intelligent
Systems

Hui-Min Huang, James Albus, Elena Messina, Harry Scott, Maris Juberts

National Institute of Standards and Technology

Gaithersburg, MD 20899

Phone: 301 975 {3427, 3418, 3510, 3437, 3424}

Abstract—Intelligent systems operate in uncertain and
complex environments. In order to achieve their goals,
these systems require rich and updated knowledge about
the environment and about their own capabilities to enable
proper decision making processes. A critical subset of the
required knowledge is entity, which models the physical
environment. This paper provides a generic and
systematic model for the entities.

1. INTRODUCTION
Within the context of this research effort, we define
intelligent systems as real-time control systems that are able
to operate in uncertain and complex environments and
accomplish their goals. An intelligent, unmanned, military
vehicle system may receive a mission such as to survey an
unknown and potentially hostile area. The system may
require, among other types of knowledge, maps overlaid
with objects and geological features, updated in real-time.
This knowledge base is critical to the system’s decision
making and execution capability and needs to be supported
by capable sensory subsystems. The NIST 4D/RCS
Reference Architecture [1], on which this research is based,
provides a detailed description of this intelligent process.

The knowledge base of an intelligent system consists of data
structures and the static and dynamic information that
collectively form a model of the world. The knowledge
includes the system’s best estimate of the current state of the
world plus parameters that define how the world state can
be expected to evolve in the future under a variety of
circumstances. Specifically, an intelligent system should
possess the following types of knowledge:

♦ Spatial perception, in the forms of entities, images, and
maps.

♦ Temporal perception, in the forms of time, states, and
events.

♦ Logical knowledge: rules of physics, mathematics, and
logic; knowledge of how to perform particular tasks and
how to derive the task values with respect to mission
requirements; and specifications of sensors and
actuators.

Among this wide spectrum of issues, we focus on a critical
subset of the knowledge in this paper, entity modeling.

Related work includes a representational framework for
geographic modeling described by Smyth [2]. The
framework’s ontological components include entities,
space, time, physics, and logic. Such constructs are
consistent with our knowledge base, at a conceptual level.
Our objective is to extend beyond these concepts for an
implementation model. Megalou and Hadzilacos [3]
pointed out the following two different abstractions in
modeling information: conceptual and presentational.
The former concerns issues like entities and relationships
and the latter concerns issues like logical structure and
temporal synchronization. While these concepts sound
consistent with our general approach, we argue that the
entity concept should be extended to multiple levels of
abstraction to be useful for complex environment
modeling.

ISO and Open GIS Consortium maintain a number of
standard specifications in this area. The OpenGIS®
Geography Markup Language (GML) Implementation
Specification [4] involves geometrical modeling.
Commonality among various geometry types is extracted
and represented within GML with an objective of efficient
models for general geometrical features. The model that
we proposed in this paper could potentially provide an
extra dimension to GML on how these geometrical types
can be further related among themselves from a sensory
data acquisition and assimilation perspective.

There are research results that complement our focus on
knowledge organization. Ng and Han [5] extended the
cluster analysis method to search for patterns in large data
sets. Tomic, et al. [6] described a new approach to
measure temporal consistency for derived objects in real-
time database systems.

The issue of the intelligent system knowledge base has
also been studied and implemented [7, 8, 9]. However,
our focus is on establishing the overall framework for the
knowledge base, as such a framework could facilitate
rigorous development efforts for large-scale intelligent
systems. We leave many detailed, specific data elements
for some of the identified entities as future study issues.

2. REQUIREMENTS
Intelligent systems require rich and updated knowledge
about the environment and about their own capabilities to
advance along their courses of actions. Depending on the

drussell
Proceedings of the International Conference on Integration of Knowledge Intensive Multi-Agent Systems
KIMAS '05: Modeling, EVOLUTION and Engineering, April 18 - 21, 2005, Waltham, MA.

assigned tasks, the knowledge that is required varies. For a
complex task such as conducting a battle, knowledge items
such as maps, system capability, terrain features and their
distribution, etc., may all be required. The system may also
need to differentiate friend and foe. For the near-distance
object avoidance task, spatial occupancy information alone
may be sufficient and object classification may not be
needed, nor may the system have the time to process the
“What is the object?” question. The difference between
these two situations highlights the existence of decision
making at multiple levels of abstraction.

A common requirement for the knowledge base for
intelligent systems is that the systems must know the
environment that the system operates in and must be able to
detect and respond, in time, to objects that are either already
or predicted to affect the systems missions.

Figure 1 - the 4D/RCS entity knowledge hierarchy1

1 The figures in this paper are developed with Rational Rose
RealTime® software.

Due to the diverse nature of the knowledge requirements,
it is, therefore, desirable to build the intelligent system
knowledge bases with a structure that is scalable,
efficient, and understandable. We propose that the
knowledge base for an intelligent system should meet the
following criteria:

♦ Support aggregating simple knowledge items to
complex ones.

♦ Support multiple levels of abstraction of the
knowledge, as this would facilitate multiple
levels of the decision making processes within
the system.

♦ Support classifying similar knowledge items.

♦ Support sharing common components and
expand them to form specific knowledge
items.

3. HIERARCHICAL ENTITY MODELING
We define an entity to be system internal perception of
the spatial phenomena of the external world. These
two, internal and external aspects, are distinctly
different. Within the constraints of particular sensory
data sets, a house may be perceived as a point and a hill
may be perceived as a set of edges when they are
located far enough. A small rock to human eyes may be
perceived as endless wall to a micro-scale system.

The intelligent systems’ entity knowledge structure is
constructed from the viewpoint of acquisition and
assimilation of sensory information. The complexity of
the knowledge requirements warrants a hierarchical
structure. Entity classes reside at each level and
represent a particular level of abstraction. At the lowest
level of the hierarchy are points, or pixels entity classes.
This is because they correspond directly to output from
various sensors that intelligent systems would employ.

The hierarchical model expands from points to lists,
surfaces, objects, and to object groups, as seen in Figure
1, to support multiple levels of abstraction as required
in intelligent systems. This is consistent with spatial
geometry, expanding from the fundamental units to
compound features. Figure 1 represents an overall
hierarchy. Details will be described in the later
diagrams.

We use UML, an industrial standard for software
engineering modeling to describe the entity model. We
define the following notations for use in all of the
diagrams in the paper:

♦ A box represents a data structure and the
necessary, associated manipulation methods,
typically a C++ class or an enumerated data type.

♦ An <<entityAttrib>> stereotype models the
common attributes for the entities.

♦ An <<entity>> stereotype models the entities.

♦ A line with a solid-white arrowhead represents a
generalization relationship. The arrowhead points
to the super class.

♦ A line with a diamond and an arrow on the ends
represents an aggression relationship. The line is
used to relate two classes. The class at the
diamond end represents the aggregate. The
numbers attached to the lines indicate the
multiplicity of the involved classes. Note that, the
aggregate relationship means, in C++ code, that the
aggregate class contains only pointers to the
component class and that it does not allocate that
actual memory for the data structure of the
component class. Note that, this is contrary to
another “composition” relationship in UML which
means that the super class does contain the actual
data structure of the component class.

Figure 2 - point entity structure

3.1 Common Attributes

The top, left class in Figure 1 is called
commonEntityAttribs, which contains the attributes that are
to be a part of all the entities in the knowledge base. The
attributes include:

♦ ID: for identifying an entity. Users can determine
ranges and scopes for applying the ID. This
attribute may, conceivably, be expanded to also
allow the identification of particular instances of an
entity class.

♦ Position and velocity of entity with respect to its
predefined coordinate frame. The position and
velocity of a multiple dimensional entity is with
respect to its centroid.

♦ Geometrical relationship: Since entities model
spatial properties, the relative spatial
relationships among different entities are
essential. We define a primitive class,
geometricRel, for this purpose.

Another set of the common entity attributes is value,
shown as the class at the middle, left of Figure 1.
Each entity may be of particular values per particular
system missions. Particular woods off the traveling
course of an unmanned vehicle may be of little value
until the vehicle is under fire and needs to traverse
along the treeline. The attributes for value include:

♦ Cost and benefit: required resources, in terms of
types and amounts, and the resulting rewards for
handling the entity.

♦ Risks: how much danger there may be for the

system to pursue this entity and how much risk is
allowed per mission requirements. It may worth
the risk for a military autonomous vehicle to be
destroyed in order to retrieve a critical piece of
information. It may not worth the risk for some
marginally relevant information.

♦ Confidence or reliability level associated with
the entity as a result of the system perception
process.

Note that, although these attributes are specified as simple
variables, in some situations, they might need to be
modeled as functions or algorithms keyed on critical
mission variables.

Detailed descriptions of the entity hierarchy follow.

3.2 Point Entity Classes

Point (or pixel) entity classes have attributes that can be
measured by a single sensor at a single point in time and
space, or that can be computed at a single point (or over a
single pixel) in time and space. Point attributes may
describe the properties of a single pixel in an image. The
attributes may include intensity, color (red, green, blue),
range, spatial and temporal gradients of intensity or
range, flow direction and magnitude.

The colorIntensityRed, ColorIntensityGreen, and
ColorIntensityBlue attributes are applied when a
system employs a color camera to sense the color
intensity at the pixel. ColorIntensityGrey is used
when a system employs a black-and-white camera to
measure the light brightness.

Additional attributes include range, used when, for
example, LADAR is used in a system. Point
attributes may also describe the output of individual
sensors, such as a position, velocity, torque, or
temperature sensor, at a point in time. In an acoustic
sensor, intensity typically refers to amplitude. There
is also an image flow attribute that may be computed
from the color intensity attributes. The right hand
side of Figure 2 shows such an effect.

3.3 List entity Classes

A list entity is composed of sets of point entities that
satisfy certain grouping hypotheses over space and/or
time. List entity classes can be sub classified into
edge, vertex, and surface patch classes, as shown in
Figure 3.

♦ An edge may consist of a set of contiguous
pixels for which the first or second derivatives
of intensity and/or range exceed threshold and
are similar in direction. Edge entity attributes
may include the orientation, length, and
curvature of the edge, the sharpness or
magnitude of the discontinuity at the edge, as
well as the centroid of the group of points that
make up the edge.

♦ A vertex may consist of two or more edges that
intersect. Vertex attributes may describe the
relationship between the set of edges that make
up the vertex, including the type (e.g. X, V, T,
or Y), the orientation, and the angles between
lines forming the vertex.

♦ A surface patch may consist of a set of contiguous
pixels with similar first or second derivatives of
intensity and/or range and similar image flow vectors.
Surface patch attributes may include the collective
properties of the set of connected points that make up
the patch. For example, surface patch attributes may
define the position, and velocity of the surface patch,
the texture, and the orientation of the surface patch
relative to the viewing point.

Note that redundant aggregation relationships, at both the
generic class side (list to surface) and the derived class
side (surface patch to surface) are allowed since they do
not consume actual data structure memory of the
component class until the relationships are actually
needed at the implementation stage.

Figure 3 - list and surface entity model

3.4 Surface Entity Classes

Surface entity classes can be subclassified into surface
and boundary entities, as seen at the top portion of Figure
3.

♦ Surface entities consist of sets of contiguous list
entities that satisfy certain grouping hypotheses. For

example, a surface may consist of a set of contiguous
surface patches that have similar range, orientation,
texture, and color. Surface attributes may describe the
properties of the surface, such as its area, shape,
roughness, texture, color, and position and velocity of
the centroid.

♦ A boundary may consist of a set of edge entities that
are contiguous along their orientation. For example,
boundary attributes may define the shape of the
boundary, its orientation, its length, its position, and
velocity, which side each surface lies on, etc.

Figure 4 - object entity model

3.5 Object Entity Classes

Object entities consist of sets of contiguous surface and
boundary entities that satisfy certain grouping hypotheses,
as seen in Figure 4. For example, an object may consist of a
set of surfaces that have roughly the same range and
velocity, and are contiguous along their shared boundaries.
Object attributes are computed over the entire set of points
that are included within the object. Object attributes may
describe the properties of an object, such as its volume,
shape, projected size in the image, color, texture, position

and velocity of centroid, orientation and rotation about the
centroid.

Object entity classes can be further classified to form
more detailed knowledge to support particular mission
requirements. Figure 4 shows that the subclasses of
traffic signs, vehicles, vegetation, humans, roads, negative
objects, rocks, and buildings. They can be sub classified
even further as needed.

3.6 Group Entity Classes

Group entity classes consist of sets of objects that have
similar attributes, such as proximity, color, texture, or
common motion, as seen in Figure 5. Group attributes are
computed over the entire set of objects that are included
within the group. Group attributes may describe the
properties of a group, such as the number of its members,
size, density, position, velocity, average direction of
motion, and variance from the mean.

Figure 5 shows the sub classification of a generic object
group into hill, village, woods, and a scout vehicle
company.

Figure 5 - object group entity model

4. SUMMARY AND FUTURE WORK
We described a hierarchical entity knowledge model, which
contains multiple levels of abstraction and, therefore,
supports multiple levels of intelligent system decision
making requirements.

We anticipate expanding the model with further details,
including specific details of attributes, subtypes and
classifications of objects, and their detection methods. We
also plan to describe how this entity knowledge model can
be integrated into an intelligent system architecture and
illustrate how the model can be applied.

We also intend to take operational aspects into
consideration, such as:

♦ Real-time updates, tracking, and possibly
versioning the perceived entities.

♦ Storing the knowledge efficiently in short through
long term memories based on the access timing
requirements.

PRODUCT/COMPANY DISCLAIMER:
Certain commercial products or company names are
identified in this paper to describe our study adequately. In
no case does such identification imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the products or names
identified are necessarily the best available for the purpose.

REFERENCES

[1] James Albus, et al., 4D/RCS: A Reference
Model Architecture For Unmanned Vehicle Systems,
Version 2.0, NISTIR 6910, Gaithersburg, MD, 2002
[2] Smyth, C. Stephen, “A Rrepresentational
Framework for Geographic Modeling,” Book Chapter in
SPATIAL and TEMPORAL REASONING in
GEOGRAPHIC INFORMATION SYSTEMS, Egenhofer
M. and Colledge R., Eds., Oxford University Press, New
York, NY, 1998.
[3] Megalou, E. and Hadzilacos, T., “Semantic
Abstractions in the Multiple Media Domain,” IEEE
Transactions on Knowledge and Data Engineering, Vol
15, No. 1, January/Feuruary 2003.
[4] Open GIS Consortium, OpenGIS® Geography
Markup Language (GML) Implementation Specification,
Version: 3.00, OGC 02-023r4, http://www.opengis.org/,
2003.
[5] Ng, R.T. and Han, J., “CLARANS: A Method
for Clustering Objects for Spatial Data Mining,” IEEE
Transactions on Knowledge and Data Engineering, Vol
14, No. 5, 2002
[6] Tomic, S. et al., “A new measure of temporal
consistency for derived objects in real-time database
systems,” Information Science 124 (2000), pp. 139-152,
Elsevier, New York, NY, 2000.
[7] Balakirsky, S.B., et al., “A Hierarchical World
Model for an Autonomous Scout Vehicle,” Proceedings
of the SPIE 16th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Controls,
Orlando, FL, April 1-5, 2002.
[8] Chang, T., et al., “Concealment and Obstacle
Detection for Autonomous Driving,” International
Association of Science & Technology for Development -
Robotics & Applications99 Conference, Santa Barbara,
CA, October 28-30, 1999,
[9] Hong, T.H., et al., Obstacle Detection and
Mapping System, NISTIR 6213, National Institute of
Standards and Technology, Gaithersburg, MD, August
1998

