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Abstract—Intelligent systems operate in uncertain and 
complex environments.  In order to achieve their goals, 
these systems require rich and updated knowledge about 
the environment and about their own capabilities to enable 
proper decision making processes. A critical subset of the 
required knowledge is entity, which models the physical 
environment.  This paper provides a generic and 
systematic model for the entities. 

 

 

1. INTRODUCTION 
Within the context of this research effort, we define 
intelligent systems as real-time control systems that are able 
to operate in uncertain and complex environments and 
accomplish their goals. An intelligent, unmanned, military 
vehicle system may receive a mission such as to survey an 
unknown and potentially hostile area.  The system may 
require, among other types of knowledge, maps overlaid 
with objects and geological features, updated in real-time.  
This knowledge base is critical to the system’s decision 
making and execution capability and needs to be supported 
by capable sensory subsystems.  The NIST 4D/RCS 
Reference Architecture [1], on which this research is based, 
provides a detailed description of this intelligent process. 

The knowledge base of an intelligent system consists of data 
structures and the static and dynamic information that 
collectively form a model of the world.  The knowledge 
includes the system’s best estimate of the current state of the 
world plus parameters that define how the world state can 
be expected to evolve in the future under a variety of 
circumstances. Specifically, an intelligent system should 
possess the following types of knowledge:  

♦ Spatial perception, in the forms of entities, images, and 
maps. 

♦ Temporal perception, in the forms of time, states, and 
events. 

♦ Logical knowledge: rules of physics, mathematics, and 
logic; knowledge of how to perform particular tasks and 
how to derive the task values with respect to mission 
requirements; and specifications of sensors and 
actuators. 

Among this wide spectrum of issues, we focus on a critical 
subset of the knowledge in this paper, entity modeling. 

Related work includes a representational framework for 
geographic modeling described by Smyth [2].  The 
framework’s ontological components include entities, 
space, time, physics, and logic.  Such constructs are 
consistent with our knowledge base, at a conceptual level.  
Our objective is to extend beyond these concepts for an 
implementation model.  Megalou and Hadzilacos [3] 
pointed out the following two different abstractions in 
modeling information: conceptual and presentational.  
The former concerns issues like entities and relationships 
and the latter concerns issues like logical structure and 
temporal synchronization.  While these concepts sound 
consistent with our general approach, we argue that the 
entity concept should be extended to multiple levels of 
abstraction to be useful for complex environment 
modeling. 

ISO and Open GIS Consortium maintain a number of 
standard specifications in this area.  The OpenGIS® 
Geography Markup Language (GML) Implementation 
Specification [4] involves geometrical modeling. 
Commonality among various geometry types is extracted 
and represented within GML with an objective of efficient 
models for general geometrical features. The model that 
we proposed in this paper could potentially provide an 
extra dimension to GML on how these geometrical types 
can be further related among themselves from a sensory 
data acquisition and assimilation perspective. 

There are research results that complement our focus on 
knowledge organization.  Ng and Han [5] extended the 
cluster analysis method to search for patterns in large data 
sets. Tomic, et al. [6] described a new approach to 
measure temporal consistency for derived objects in real-
time database systems. 

The issue of the intelligent system knowledge base has 
also been studied and implemented [7, 8, 9].  However, 
our focus is on establishing the overall framework for the 
knowledge base, as such a framework could facilitate 
rigorous development efforts for large-scale intelligent 
systems.  We leave many detailed, specific data elements 
for some of the identified entities as future study issues. 

 

2. REQUIREMENTS 
Intelligent systems require rich and updated knowledge 
about the environment and about their own capabilities to 
advance along their courses of actions.   Depending on the 
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assigned tasks, the knowledge that is required varies.  For a 
complex task such as conducting a battle, knowledge items 
such as maps, system capability, terrain features and their 
distribution, etc., may all be required.  The system may also 
need to differentiate friend and foe. For the near-distance 
object avoidance task, spatial occupancy information alone 
may be sufficient and object classification may not be 
needed, nor may the system have the time to process the 
“What is the object?” question.  The difference between 
these two situations highlights the existence of decision 
making at multiple levels of abstraction. 

A common requirement for the knowledge base for 
intelligent systems is that the systems must know the 
environment that the system operates in and must be able to 
detect and respond, in time, to objects that are either already 
or predicted to affect the systems missions.  

 

Figure 1 - the 4D/RCS entity knowledge hierarchy1 

 

                                                 
1 The figures in this paper are developed with Rational Rose 
RealTime® software. 

Due to the diverse nature of the knowledge requirements, 
it is, therefore, desirable to build the intelligent system 
knowledge bases with a structure that is scalable, 
efficient, and understandable. We propose that the 
knowledge base for an intelligent system should meet the 
following criteria:  

♦ Support aggregating simple knowledge items to 
complex ones.  

♦ Support multiple levels of abstraction of the 
knowledge, as this would facilitate multiple 
levels of the decision making processes within 
the system. 

♦ Support classifying similar knowledge items. 

♦ Support sharing common components and 
expand them to form specific knowledge 
items. 

 

3. HIERARCHICAL ENTITY MODELING 
We define an entity to be system internal perception of 
the spatial phenomena of the external world.  These 
two, internal and external aspects, are distinctly 
different. Within the constraints of particular sensory 
data sets, a house may be perceived as a point and a hill 
may be perceived as a set of edges when they are 
located far enough.  A small rock to human eyes may be 
perceived as endless wall to a micro-scale system.  

The intelligent systems’ entity knowledge structure is 
constructed from the viewpoint of acquisition and 
assimilation of sensory information. The complexity of 
the knowledge requirements warrants a hierarchical 
structure.  Entity classes reside at each level and 
represent a particular level of abstraction.  At the lowest 
level of the hierarchy are points, or pixels entity classes.  
This is because they correspond directly to output from 
various sensors that intelligent systems would employ. 

The hierarchical model expands from points to lists, 
surfaces, objects, and to object groups, as seen in Figure 
1, to support multiple levels of abstraction as required 
in intelligent systems. This is consistent with spatial 
geometry, expanding from the fundamental units to 
compound features.  Figure 1 represents an overall 
hierarchy. Details will be described in the later 
diagrams. 

We use UML, an industrial standard for software 
engineering modeling to describe the entity model.  We 
define the following notations for use in all of the 
diagrams in the paper:  

♦ A box represents a data structure and the 
necessary, associated manipulation methods, 
typically a C++ class or an enumerated data type. 

♦ An <<entityAttrib>> stereotype models the 
common attributes for the entities. 



 

 

♦ An <<entity>> stereotype models the entities. 

♦ A line with a solid-white arrowhead represents a 
generalization relationship.  The arrowhead points 
to the super class.   

♦ A line with a diamond and an arrow on the ends 
represents an aggression relationship.  The line is 
used to relate two classes.  The class at the 
diamond end represents the aggregate.  The 
numbers attached to the lines indicate the 
multiplicity of the involved classes.  Note that, the 
aggregate relationship means, in C++ code, that the 
aggregate class contains only pointers to the 
component class and that it does not allocate that 
actual memory for the data structure of the 
component class.  Note that, this is contrary to 
another “composition” relationship in UML which 
means that the super class does contain the actual 
data structure of the component class. 

 

 

Figure 2 - point entity structure 

3.1  Common Attributes 

The top, left class in Figure 1 is called 
commonEntityAttribs, which contains the attributes that are 
to be a part of all the entities in the knowledge base.  The 
attributes include: 

♦ ID:  for identifying an entity.  Users can determine 
ranges and scopes for applying the ID.  This 
attribute may, conceivably, be expanded to also 
allow the identification of particular instances of an 
entity class. 

♦ Position and velocity of entity with respect to its 
predefined coordinate frame.  The position and 
velocity of a multiple dimensional entity is with 
respect to its centroid. 

♦ Geometrical relationship:  Since entities model 
spatial properties, the relative spatial 
relationships among different entities are 
essential.  We define a primitive class, 
geometricRel, for this purpose. 

Another set of the common entity attributes is value, 
shown as the class at the middle, left of Figure 1.  
Each entity may be of particular values per particular 
system missions.  Particular woods off the traveling 
course of an unmanned vehicle may be of little value 
until the vehicle is under fire and needs to traverse 
along the treeline. The attributes for value include: 

♦ Cost and benefit: required resources, in terms of 
types and amounts, and the resulting rewards for 
handling the entity. 

♦ Risks:  how much danger there may be for the 

system to pursue this entity and how much risk is 
allowed per mission requirements.  It may worth 
the risk for a military autonomous vehicle to be 
destroyed in order to retrieve a critical piece of 
information.  It may not worth the risk for some 
marginally relevant information. 

♦ Confidence or reliability level associated with 
the entity as a result of the system perception 
process. 

Note that, although these attributes are specified as simple 
variables, in some situations, they might need to be 
modeled as functions or algorithms keyed on critical 
mission variables.   

Detailed descriptions of the entity hierarchy follow. 



 

 

3.2 Point Entity Classes 

Point (or pixel) entity classes have attributes that can be 
measured by a single sensor at a single point in time and 
space, or that can be computed at a single point (or over a 
single pixel) in time and space.  Point attributes may 
describe the properties of a single pixel in an image.  The 
attributes may include intensity, color (red, green, blue), 
range, spatial and temporal gradients of intensity or 
range, flow direction and magnitude.   

The colorIntensityRed, ColorIntensityGreen, and 
ColorIntensityBlue attributes are applied when a 
system employs a color camera to sense the color 
intensity at the pixel. ColorIntensityGrey is used 
when a system employs a black-and-white camera to 
measure the light brightness.   

Additional attributes include range, used when, for 
example, LADAR is used in a system. Point 
attributes may also describe the output of individual 
sensors, such as a position, velocity, torque, or 
temperature sensor, at a point in time.  In an acoustic 
sensor, intensity typically refers to amplitude. There 
is also an image flow attribute that may be computed 
from the color intensity attributes.  The right hand 
side of Figure 2 shows such an effect. 

3.3 List entity Classes 

A list entity is composed of sets of point entities that 
satisfy certain grouping hypotheses over space and/or 
time. List entity classes can be sub classified into 
edge, vertex, and surface patch classes, as shown in 
Figure 3. 

♦ An edge may consist of a set of contiguous 
pixels for which the first or second derivatives 
of intensity and/or range exceed threshold and 
are similar in direction. Edge entity attributes 
may include the orientation, length, and 
curvature of the edge, the sharpness or 
magnitude of the discontinuity at the edge, as 
well as the centroid of the group of points that 
make up the edge. 

♦ A vertex may consist of two or more edges that 
intersect. Vertex attributes may describe the 
relationship between the set of edges that make 
up the vertex, including the type (e.g. X, V, T, 
or Y), the orientation, and the angles between 
lines forming the vertex. 

♦ A surface patch may consist of a set of contiguous 
pixels with similar first or second derivatives of 
intensity and/or range and similar image flow vectors.  
Surface patch attributes may include the collective 
properties of the set of connected points that make up 
the patch.  For example, surface patch attributes may 
define the position, and velocity of the surface patch, 
the texture, and the orientation of the surface patch 
relative to the viewing point. 

Note that redundant aggregation relationships, at both the 
generic class side (list to surface) and the derived class 
side (surface patch to surface) are allowed since they do 
not consume actual data structure memory of the 
component class until the relationships are actually 
needed at the implementation stage. 

 

Figure 3 - list and surface entity model 

3.4  Surface Entity Classes 

Surface entity classes can be subclassified into surface 
and boundary entities, as seen at the top portion of Figure 
3. 

♦ Surface entities consist of sets of contiguous list 
entities that satisfy certain grouping hypotheses.  For 



 

 

example, a surface may consist of a set of contiguous 
surface patches that have similar range, orientation, 
texture, and color. Surface attributes may describe the 
properties of the surface, such as its area, shape, 
roughness, texture, color, and position and velocity of 
the centroid. 

♦ A boundary may consist of a set of edge entities that 
are contiguous along their orientation. For example, 
boundary attributes may define the shape of the 
boundary, its orientation, its length, its position, and 
velocity, which side each surface lies on, etc. 

Figure 4 - object entity model 

 

3.5  Object Entity Classes 

Object entities consist of sets of contiguous surface and 
boundary entities that satisfy certain grouping hypotheses, 
as seen in Figure 4.  For example, an object may consist of a 
set of surfaces that have roughly the same range and 
velocity, and are contiguous along their shared boundaries.  
Object attributes are computed over the entire set of points 
that are included within the object.  Object attributes may 
describe the properties of an object, such as its volume, 
shape, projected size in the image, color, texture, position 

and velocity of centroid, orientation and rotation about the 
centroid. 

 

Object entity classes can be further classified to form 
more detailed knowledge to support particular mission 
requirements.  Figure 4 shows that the subclasses of 
traffic signs, vehicles, vegetation, humans, roads, negative 
objects, rocks, and buildings.  They can be sub classified 
even further as needed. 

3.6  Group Entity Classes 

Group entity classes consist of sets of objects that have 
similar attributes, such as proximity, color, texture, or 
common motion, as seen in Figure 5.  Group attributes are 
computed over the entire set of objects that are included 
within the group.  Group attributes may describe the 
properties of a group, such as the number of its members, 
size, density, position, velocity, average direction of 
motion, and variance from the mean. 

Figure 5 shows the sub classification of a generic object 
group into hill, village, woods, and a scout vehicle 
company. 



 

 

 

Figure 5 - object group entity model 
 

4.  SUMMARY AND FUTURE WORK 
We described a hierarchical entity knowledge model, which 
contains multiple levels of abstraction and, therefore, 
supports multiple levels of intelligent system decision 
making requirements. 

We anticipate expanding the model with further details, 
including specific details of attributes, subtypes and 
classifications of objects, and their detection methods.  We 
also plan to describe how this entity knowledge model can 
be integrated into an intelligent system architecture and 
illustrate how the model can be applied. 

We also intend to take operational aspects into 
consideration, such as: 

♦ Real-time updates, tracking, and possibly 
versioning the perceived entities. 

♦ Storing the knowledge efficiently in short through 
long term memories based on the access timing 
requirements. 

 

PRODUCT/COMPANY DISCLAIMER: 
Certain commercial products or company names are 
identified in this paper to describe our study adequately. In 
no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and 
Technology, nor does it imply that the products or names 
identified are necessarily the best available for the purpose. 
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