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ABSTRACT 
 
The level of automation in combat vehicles being developed for the Army’s objective force is greatly 
increased over the Army’s legacy force.  This automation is taking many forms in emerging vehicles; varying 
from operator decision aides to fully autonomous unmanned systems.  The development of these intelligent 
vehicles requires a thorough understanding of all of the intelligent behavior that needs to be exhibited by the 
system so that designers can allocate functionality to humans and or machines.  Tradition system specification 
techniques focused heavily on the functional description of the major systems and implicitly assumed that a 
well-trained crew would operate these systems in a manner to accomplish the tactical mission assigned to the 
vehicle. In order to allocate some or all of these intelligent behaviors to machines in future vehicles it is 
necessary to be able to identify and describe these intelligent behaviors in detail. 
 
In this paper, we describe an effort to develop an IS ontology using Protégé. The goal of this effort is to 
develop a common, implementation-independent, extendable knowledge source for researchers and 
developers in the intelligent vehicle community that will: 
• Provide a standard set of domain concepts along with their attributes and inter-relations 
• Allow for knowledge capture and reuse 
• Facilitate systems specification, design, and integration , and 
• Accelerate research in the field. 
 
This paper describes the methodology we have used to identify knowledge in this domain and an approach to 
capture and visualize the knowledge in the ontology. 
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1. INTRODUCTION 
 
The level of automation in combat vehicles being developed for the Army’s objective force is greatly increased over the 
Army’s legacy force.  This automation is taking many forms in emerging vehicles; varying from operator decision aides 
to fully autonomous unmanned systems.  The development of these intelligent vehicles (IVs) requires a thorough 
understanding of all of the intelligent behavior that needs to be exhibited by the system so that designers can allocate 
functionality to humans and/or machines.  Tradition system specification techniques focused heavily on the functional 
description of the major systems of a vehicle and implicitly assumed that a well-trained crew would operate these 
systems in a manner to accomplish the tactical mission assigned to the vehicle.   In order to allocate some or all of these 
intelligent behaviors to machines in future vehicles, it is necessary to be able to identify and describe these intelligent 
behaviors in detail. 
 
The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) has funded DCS 
Corporation and the National Institute of Standards and Technology (NIST) to explore approaches to model the 
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intelligent vehicle domain with explicit representation of intelligent behavior.  This exploration included the analysis of 
modeling languages (i.e., UML, DAML, OWL) as well as reference architectures.  A major component of this effort has 
been the development of an Intelligent System (IS) Ontology. 
 
NIST and DCS Corporation have taken the view that an intelligent vehicle can be viewed as a multi-agent system, where 
agents can represent components within the vehicle  (e.g., a propulsion system, a lethality system, etc). In addition, an 
IV, as a whole, can serve as a single agent within a troop, platoon, or section, where multiple IVs are present. In order for 
a group of agents to work together to accomplish a common goal, they must be able to clearly and unambiguously 
communicate with each other without the fear of loss of information or misinterpretation. We have used the IS Ontology 
to specify a common lexicon and semantics to address this challenge. 
 
In this paper, we describe the joint effort currently being performed by DCS Corporation and NIST to develop an 
intelligent system ontology using Protégé. The goal of this effort is to develop a common, implementation-independent, 
extendable knowledge source for researchers and developers in the intelligent vehicle community that will: 
 
• Provide a standard set of domain concepts along with their attributes and inter-relations; 
• Allow for knowledge capture and reuse; 
• Facilitate systems specification, design, and integration, and; 
• Accelerate research in the field. 
 
This paper describes the methodology we have used to identify knowledge in this domain and an approach we have used 
to capture and visualize the knowledge in an ontology. Section 2 describes RCS and its underlying methodology that we 
use to determine the information requirements to model in the ontology. Section 3 describes the IS Ontology. Section 4 
discusses some thoughts on how the ontology could be applied towards the control of intelligent vehicles. Section 5  
describes our current status and concludes the paper. 
 

2. THE REAL-TIME CONTROL SYSTEM 

2.1. The Methodology 
 
One of the first steps in any ontology development effort is to identify the information requirements that are necessary to 
be modeled in the ontology. For this effort, we used the RCS (Real-time Control System) methodology for determine 
these requirements. 
 
RCS was developed by NIST for the control of intelligent systems, and has recently been used to control intelligent 
vehicles within military environment [1].  The RCS methodology concentrates on the task decomposition as the primary 
means of understanding the knowledge required for intelligent control.  This approach is shown in Figure 1 and begins 
with the knowledge “mining” activities to retrieve knowledge from subject matter experts (SMEs).  The gathering and 
formatting of this knowledge can be summarized in six steps, each of which follows from the knowledge uncovered by 
the previous steps:  

 
1) The first step involves an intensive analysis of domain knowledge from manuals and SMEs, especially using 

scenarios of particular subtask operations.  The output of the effort is a structuring of this knowledge into a task 
decision tree form of simpler and simpler commands (actions/verbs) at simpler and simpler levels of task 
description. 

2) This step defines the hierarchical organization of agent control modules that will execute these layers of 
commands in such a manner as to reasonably accomplish the tasks.  This is the same as coming up with a 
business or military organizational structure of agent control modules (people, soldiers) to accomplish the 
desired tasks.  This step forces a more formal structuring of all of the subtask activities as well as defining the 
execution structure. 

 



 
3) This step clarifies the processing of each agent’s input command through the use of rules to identify all of the 

task branching conditions with their corresponding output commands. Each of these command decompositions 
at each agent control module will be represented in the form of a state-table of ordered production rules (which 
is an implementation of an extended finite state machine (FSM)).  The sequence of simpler output commands 
required to accomplish the input command and the named situations (branching conditions) that transition the 
state-table to the next output command are the primary knowledge represented in this step. 

4) In this step, the above named situations that are the task branching conditions are defined in great detail in terms 
of their dependencies on world and task states.  This step attempts to define the detailed precursor states of the 
world that cause a particular situation to be true.  

5) In this step, we identify and name all of the objects and entities together with their particular features and 
attributes that are relevant to defining the above world states and situations. 

6) The last step is to use the context of the particular task activities to establish the distances and, therefore, the 
resolutions at which the above objects and entities must be measured and recognized by the sensory processing 
component.  This step establishes a set of requirements and/or specifications for the sensor system at the level 
of each separate subtask activity.  

 
More details about this methodology can be found in [2]. 
 
The output of this methodology is a set of information requirements, specifically, information about tasks (step 1), agents 
(step 2), plans to accomplish tasks (step 3), conditions and situations (step 4), environmental entities (step 5), and 

 
Figure 1 - RCS Methodology 
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attributes of those entities (step 6). These information requirements serve as the input for the ontology described in the 
Section 3. 
 

2.2. The Scenario 
 
Initial efforts has focused on the knowledge derived from the task analysis of scenarios of a light cavalry troop’s 
execution of a Conduct Tactical Road March to Assembly Area mission.  In particular, we have analyzed the part of this 
mission that focuses on the route reconnaissance component by the Scout Platoon.  This is done through scenarios that 
are examined at more and more detailed levels starting at the Troop Commander Level, which will perform a number of 
planning activities to better identify the priority information items of the route, to define the march column organization, 
and to specify the formation and movement technique.  The Troop Commander will then dispatch a scout platoon to 
conduct a route reconnaissance.  The scout platoon leader will do finer level planning, organizing the platoon’s sections 
of vehicles and assigning commands to each section leader to do reconnaissance of different areas along the route while 
maintaining security.  Each section leader will evaluate the environment to provide detailed tactical goal paths for each 
of his vehicles, coordinating their motion by the use of detailed motion commands to control points along with security 
overwatch commands.  Each vehicle, in turn, performs detailed sensory processing to carry out careful analysis of the 
terrain in context of the mission, security, stealth, and traversability.  Each vehicle then decides its optimal real-time 
path.  If some aspect, such as a water obstacle, constrains the vehicle from following the general goal path laid out by the 
section leader, the vehicle does reconnaissance, moves to a secure point, and reports to the section leader.  If the 
constraint affects the operation of the entire section (e.g. the water obstacle stretches across the entire area that the 
section is assigned), then the section leader coordinates his vehicles to do reconnaissance and to take up secure positions.  
The section leader then reports to the platoon leader.   
 
These scenarios provide a rich set of knowledge of organizational structure, activities, commands, rules, status, sensory 
processing, objects and world states to be recognized, adaptation to events, and procedures required for successful 
execution. 

2.3. Extracting Information Requirements 
 
Although the RCS approach uses state tables to represent the information, the representation within the ontology does 
not necessarily need to be captured within state tables as long as no information is lost. Table 1 shows a small piece of a 

Conduct Tactical Road March To Assembly Area 
Condition Action 
… … 
S4 Scout Platoon Ready to Conduct Route Recon S5 Scout Platoon Conduct Route Reconnaissance 
S5 Quartering Party Ready to Organize Assembly Area S6 Quartering Party Follow Recon Platoon to Assembly 

Area 
S6 Quartering Party Clear of Start Point S7 Main Body and Trail Party Prepare for Road March 
S7 Main Body and Trail Party Recon to Start Point Done S8 Troop Prepare Detailed Movement Plans 
S8 Scout Platoon Route Recon Done S9 Scout Platoon Establish Assembly Area Security 
S9 Quartering Party at Release Point S10 Quartering Party Conduct Area Recon of Assembly 

Area 
S10 Quartering Party Area Recon of Assembly Area 
Done 

S11 Quartering Party Organize Assembly Area 

S11 Quartering Party Status Assembly Area Suitable S12 First Main Body Unit Move Into Road March 
Formation 

S12 Main Body Unit At Start Point S12 Main Body Unit Execute Tactical Road March 
Next Main Body Unit Move Into Road March Formation 

S12 Last Main Body Unit at Start Point S13 Main Body Unit Execute Tactical Road March 
Trailing Party Move Into Road March Formation 

… … 
 

Table 1 - Excerpt from a RCS State Table 
 



state table representation that was developed from the RCS methodology for the scenario described above.  The left 
column shows the condition that must be true for an action to occur. The notation S# notates a state value. For example, 
in the first line, the system must be in state 4 and the condition “Scout Platoon Ready to Conduct Route Recon” must be 
true for the action “Scout Platoon Conduct Route Reconnaissance” to occur. When the action is executing, the system 
will change over to state 5 (S5). 
 

3. THE IS ONTOLOGY 
 

3.1. The Ontology Language 
 
The OWL-S upper ontology [8] was used as the underlying representation for the IS Ontology in order, among other 
reasons, to document RCS in a more open XML (eXtensible Markup Language) format. OWL-S is a service ontology, 
which supplies a core set of markup language constructs for describing the properties and capabilities of services in an 
unambiguous, computer-intepretable format.  OWL-S, which is being developed by the Semantic Web Services arm of 
the DARPA Agent Markup Language (DAML) program, is based on the OWL [5]. OWL is an extension to XML and 
RDF (Resource Description Framework) schema that defines terms commonly used in creating a model of an object or 
process. OWL is a World Wide Wide Consortium (W3C) recommendation, which is analogous to an international 
standard in other standards bodies. 
 
OWL-S is structured to provide three types of knowledge about a service (Figure 2), each characterized by the question it 
answers:  
 
• What does the service require of the user(s), or other agents, and provide for them? The answer to this question is 

given in the ``profile.'' Thus, the class SERVICE presents a SERVICEPROFILE  
• How does it work? The answer to this question is given in the ``model.'' Thus, the class SERVICE is describedBy a 

SERVICEMODEL  
• How is it used? The answer to this question is given in the ``grounding.'' Thus, the class SERVICE supports a 

SERVICEGROUNDING. 
 
Later in this paper, we will show how we use these OWL-S concepts to model a tactical behavior for an intelligent 
vehicle. 

3.2. Tools 
 
Before an ontology can be built, a decision must be made as to which tool (or set of tools) should be used to enter, 
capture, and visualize the ontology. For this work, we decided to use Protégé [7]. Protégé is an ontology editor, a 
knowledge-base editor, as well as an open-source, Java tool that provides an extensible architecture for the creation of 

 
Figure 2 - OWL-S Ontology Structure 



customized knowledge-based applications. Protégé was chosen due to its strong user community, its ability to support 
the OWL language (discussed below), its ease of use (as determined by previous experience), and its ability to be 
extended with plug-ins such as visualization tools (also discussed below). 
 

3.3. Using OWL-S To Model the Scenario 
 
Both the RCS methodology and the OWL-S upper ontology are based on the concept of agents, service that the agents 
can perform, and procedures that the agents follow to perform the services. As such, there is a very clean mapping 
between the information that comes out of the RCS methodology and the OWL-S upper ontology. In this section, we will 
describe that mapping. 
 
The first step involved setting up the agent hierarchy. In the domain we are dealing with (a light Calvary troop), we 
designed an agent hierarchy as shown in Figure 3. The agent architecture is very similar (if not identical) to the way that 
the Army organizes it soldiers, where troops are composed of platoon, which are composed of sections, which are 
composed of vehicles. Each vehicle is composed of the a lethality system, a surveillance system, a mobility system, a 
survivability system and a support system. A mobility system is composed of an automotive system, and auxiliary 
system, a propulsion system, a localization system, and a navigation system. Each propulsion system is composed of 
speed controller, steer controller, engine controller, transfer controller, and parking brake controller. An engine controller 
is composed of engine components. Each box in Figure 3 is considered an agent (with the possible exception of the 
engine component box), and agents can be composed of other agents.  In OWL-S 1.0, we modeled all of these agents as 
subclasses of the IGVAgent class, which is a subclass of the ServiceResource class defined in the OWL-S upper 
ontology. We also specified, in the constraints, who each agent can send external service requests to and who they can 
received them from. External service requests were modeled as a subtype of the Effect class, and specify that the effect of 
a process was a call to another agent requesting that they perform an activity. 
 
The next step involved setup up the services and processes. Any activity that can be called by another agent is considered 
a service in OWL-S. Any activity that the agent performs internally that cannot be externally called is called a process. 
As such, we model “Conduct A Tactical Road March to an Assembly Area” as a service that is provided by a Troop 
agent (and can be called by a Squadron agent).  The Troop agent can call services provided by other agents, such as 

 
Figure 3 - Agent Hierarchy 
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shown by the first action in Table 1 (Scout Platoon Conduct Route Reconnaissance). In this example, we defined a 
service called “Conduct Route Reconnaissance” and associated that service with the Scout Platoon agent. 
 
The state table in Table 1 shows an excerpt of the process that an agent (in this case, the Troop agent) should follow 
when executing the “Conduct a Tactical Road March to Assembly Area” service. This process is captured in OWL-S as a 
process model (which is a subtype of ServiceModel as described in Section 3.1). The process model includes the steps 
that must be accomplished to carry out the service, and the ordering constraints on those steps. Each step can be 
preformed internally by the agent or could involve making an external service request to another agent. The ordering of 
the steps in Table 1 is shown using the next possible state indications (S#). For example, the second to last action in 
Table 1 reads “S12 Main Body Unit Execute Tactical Road March, Next Main Body Unit Move Into Road March 
Formation.” The S12 indicates what the next possible state could be after this action is executed. On the left side of the 
table, there are two states that start with S12 (Main Body Unit At Start Point and Last Main Body Unit at Start Point). 
One of these conditions has to be true after the “S12 Main Body Unit Execute Tactical Road March” action completes 
executing. If the last main body unit is at the start point, then the latter state will be true. If not, then the former state will 
be true.  This continues until the latter state is true and the state table moves to the next state (S13). One can model this 
as a repeat-until sequence (the loop continues until the last main body until is at the start point). OWL-S provides a 
number of control constructs that allow you to model just about any type of process flow imaginable. They include 
sequence (a linear ordering of processes), split (concurrent execution of processes), split and join (concurrent execution 
of processes with synchronization), unordered (no specification of ordering constraint), choice (allows for the choice 
between different processes), if-then-else (allows for conditional execution of processes), iterate (for the recursive 
iteration of a process) and repeat-until ( to specify an iteration that repeats until a condition is met). We have found that 
the control constructs provided in OWL-S have been sufficient to model all of the behaviors we are explored.  
 
Not shown in Table 1 but explained in Section 2, environmental entities and their attributes are another primary output of 
the RCS methodology. These include other vehicles, bridges, vegetation, roads, water bodies; anything that is important 
to perceive in the environment relative to task that is being performed. We have started to build an environment ontology 
in OWL-S from the bottom up (i.e., including only entities that prove to be important based on the output of the RCS 
methodology). However we are currently starting to explore existing environment ontologies that currently exist to see 
what we can leverage. 

3.4. Conditions 
 
Also not shown in Table 1 but explained in Section 2, conditions are a primary information output of the RCS 
methodology (Step 4 in Section 2.1). The series of conditions shown in Figure 1 explain how a given state in the state 
table is determined to be true. OWL-S 1.0 provides a stub for conditions, but does not elaborate on how they are 
constructed.  
 
Considerable effort has been expended to explore different mechanisms for representing conditions, ranging from 
tailoring existing specification to developing new concepts. The scenario and methodology described earlier in this paper 
introduce a few aspects of conditions that are not typically considered in existing representations, namely: 
• The truth-value of a condition may be based on an unspecified combination of sub-conditions. Although this 

specification will be elaborated in the future, at this point, we simply want to say that we know the factors that 
contribute to the overall truth-value of a condition but we do not yet know how to put them together. For example, in 
Figure 4, the Marsh Detected condition is evaluated to true is some combination of Water Covered Land, Extensive 
Marsh Vegetation, Major Ground Deformation, Marsh Birds, and Traction Slip exists. It is possible that the 
existence of only one of these sub-conditions would cause the Marsh Detected condition to be evaluated to true. It is 
also possible that the existence of many of these sub-conditions does not necessary imply that Marsh Detected is 
true. But what we do know is that the sub-conditions listed below are the important things for us to evaluate to 
determine whether a marsh exists. As the project progresses, this detailed relationship will be determined. Until 
then, we simply want to state that the sub-conditions hold some unspecified relation to the truth-value of Marsh 
Detected.  

• The truth-value of a condition may be based on the truth-value of other conditions which may be based on the truth 
value of other conditions, etc. For example, in Figure 4, Marsh Detected is true if some combination of Water 
Covered Land, Extensive Marsh Vegetation, Major Ground Deformation, Marsh Birds, and Traction Slip is true. 



Furthermore, Extensive Marsh Vegetation is true if some combination of Long Leaf Grasses, Sedges, Reeds, 
Bulrushes, and Water Lilies exist. This chaining can go on for multiple levels.  

 
OWL-S 1.1 (release in October, 2004) allows mechanisms to used external languages (e.g., Semantic Web Rules 
Languages (SWRL) [6], and others) to specify conditions. Initial experiments with SWRL [6] has show very limited 
successes in representing the two challenges discussed above. Experiments with new condition ontologies have shown 
more success, but offer the disadvantage of not being conformant with more well-know efforts. This is still an area of 
active research within this project and future publications will describe results as they occur. 

3.5. Organizing the Knowledge 
 
Due to the shear size of the ontology, we have taken the approach of organizing the knowledge into namespaces. A 
namespace is a tag prefixed to the name of the class or instance that separates the knowledge in the ontology into 
“pieces,” where each piece represent a group of like concepts. Numerous namespaces can be imported into a single 
ontology and a single namespace can be reused in multiple ontologies. The contents of namespaces are often stored in a 
separate file. 
 
For this effort we have identified a set of five high-level namespaces that build off of the concepts presented in OWL-S 
(shown in Figure 5), namely: 
 
• Basic – data structures to capture abstract, highly reusable concepts (e.g., location, spatial relations) 
• Behavior – data structures which help to describe services, agents, and conditions (e.g., and-conditions, or-

conditions, external service requests) 
• Military Concepts – data structures to capture common concepts within military procedures (e.g., assembly area, 

control points, troops) 
• Environment – data structures to capture environmental concepts (e.g, water bodies, shrubs, weather conditions) 
• Military Equipment – data structures to capture information about the equipment that the military uses (e.g., 

communication devices, weapons, measuring devices) 
 

 
Figure 4: Condition Example 



 

 
 

Figure 5: Namespaces 
 

Figure 6: OWL-S Visualization Tool 
 
 
In addition, we have adopted the approach that we would define a separate namespace for every agents’ services and 
processes in every tactical behavior. For example, in the “Conduct a Tactical Road March to an Assembly Area” tactical 
behavior, we have defined the services and corresponding process models for most of the agents shown in Figure 3. We 
would namespaces have called Troop-ConductTacticalRoadMarchToAA, Platoon-ConductTacticalRoadMarchToAA, 
etc. 
 

3.6. Visualization of the Ontology 
 
While presenting this work to our funding sponsors, it quickly became obvious that we needed a better way to display 
the information in the ontology. A whole bunch of windows with a small amount of text in each didn’t work well. As 
mentioned earlier, one of the reasons we chose Protégé was its ability to be extended using “plug-ins.” A plug-in is a 
piece of code that performs a given functionality that can be incorporated into Protégé. We developed a visualization tool 
based upon the open source GraphViz program [4] that allows us to graph OWL-S models. A snapshot of the 
visualization tool is shown in Figure 6. In this figure, boxes represent either composite processes (represented by the 
double box), or simple processes (represented by the single box). Composite processes can be decomposed into an 
underlying process model. In the figure, the Composite_Task_C box on the right side of the figure was expanded to the 
process model on the left side of the figure. The dark arrows represent process flow and the light arrows represent data 
flow. Large diamonds represent decision points, usually where a condition is evaluated. Small diamonds show where two 
flows join together. Other shapes represent control flow, such as splits, joins, while, and repeat statements. 
 

4. HOW THE ONTOLOGY COULD BE USED 
 
Initial application of the IS Ontology have focused on the control of autonomous vehicles. The ontology was originally 
built to capture all pertinent information about tactical behaviors in an unambiguous and computer-interpretable format 
such that his information could be embedded into an autonomous vehicles control system to enable that vehicle to 
perform tactical behaviors without the need for direct human supervision. Figure 6 shows some initial thoughts on how 
the ontology could be applied to the control of autonomous vehicles.  
 
The concept on the left side of the figure has been described through the course of this paper, namely, using the RCS 
methodology and the OWL-S specification to develop the ontology. However, this ontology still needs to be parsed and 
used. That is where the development of the OWL-S Interpreter Rules comes in. These interpreter rules describe the 
proper way to interpret the OWL-S constructs, including how to capture and use the sequence information, how to 
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determine the proper decomposition of processes, how to evaluate conditions, etc. This would only have to be developed 
once, and then would be available to be used for all future ontologies that conform to the OWL-S specification. Although 
the ontology describes the tasks that must occur when performing a tactical behavior, it does not describe whether the 
agent that is performing those tasks is human or machine. Due to the limited capabilities of intelligent vehicles, a 
determination must be made as to what the vehicle is able to perform and what the human must do. Also, the ontology is 
developed to clearly and unambiguously specify the knowledge representations for tactical behaviors, not to optimize the 
process. The process of assigning tasks to humans and machines and to optimize the process is represented by the Task 
Allocation and Optimization section of the figure. This is a difficult task, and one that requires much human intervention. 
Once this is done, the results of the OWL-S Interpreter and the task allocation and optimization are envisioned to be fed 
to an inference engine1, such as the ones shown in the figure. The inference engine uses this information as it underlying 
knowledge to build up its rule-based and known facts about the world. Then, as the intelligent vehicle is performing its 
activities and perceives and learns more information about the world, it writes this information into its world model. The 
existence of this knowledge causes rules in the knowledge base to fire, thus invoke behaviors that are commanded to the 
vehicle. The vehicle performs these behaviors, and in doing so, perceives and learns more information about the world. 
This cycle continues until the mission is complete. 
 
Figure 6 paints a fairly simplistic picture of how the ontology can be applied. Though the details in implementing it 
would make the figure much more complicated, it is believed that the overall process flow, as shown, would be relatively 
unchanged. 
 

5. CURRENT STATUS AND FUTURE WORK 
 
In this paper, we describe an ongoing effort to develop an IS Ontology for the purpose of capturing knowledge about 
tactical behaviors to facilitate intelligent vehicle development and execution. The ontology is being built using the 
Protégé environment and is based upon the OWL-S upper ontology.  

                                                           
1 Certain commercial software and tools are identified in this paper in order to explain our research. Such identification does not imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the software tools identified are 
necessarily the best available for the purpose. 

 

Figure 6: Applying the IS Ontology to the Control of Autonomous Vehicles 
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To date, service models have been developed for the following agents: troop, platoon, section, vehicles, mobility, 
propulsion, engine controller, engine, surveillance, and sensor subsystem (as shown in Figure 3). All of the service 
models are currently focused solely on the scenario described in Section 2.2.  We have only done one strand of this 
scenario (e.g., we elaborated one service in each level of the hierarchy, although there were almost always many services 
that each agent may have to perform to accomplish the overall goal of “Conducting a Tactical Road March to An 
Assembly Area.”) Also, this one scenario represents one of hundreds, if not thousands, of tactical behaviors that an army 
soldier is expected to be able to perform. It is clear that, as the details of this scenario is further modeled and more 
scenarios are explored, the size of the ontology will grow to be very large. At the time when this document was written, 
we have modeled 489 classes, 213 properties (attributes), and 2674 instances.  
 
Through the development of this ontology, it has become apparent that the applications of a “standard” and well-defined 
representation of tactical behaviors are far-reaching above and beyond that of controlling autonomous vehicles.  Some of 
the potential communities that have been identified, along with their associated benefit in such a representation, include: 
• Material Acquisition Community: Documenting behavioral requirements for manned, aided, and unmanned systems; 

and analyzing the completeness/consistency of requirements and predicting the performance of systems developed 
to meet those requirements.  

• Vendor Community: Unambiguously interpreting behavioral requirements; and rapid development of 
simulation/prototypes to evaluate design alternatives. 

• Training Community: Availability of machine-readable sources of tactical knowledge for automatic generation of 
training materials and training scenarios 

 
Initial results of this effort have shown that: 
• Ontologies appear to be an excellent approach for capture information in a computer-interpretable format about 

tactical behaviors 
• The RCS methodology has provided information requirements to the ontology at a level of detail that greatly 

facilitates the ontology development process. A large part of building any type of ontology is extracting the detailed 
information requirements that must be represented. The RCS methodology directly addresses this need. 

• OWL-S provide a very nice mapping to the RCS methodology and serves as an excellent upper ontology to 
represent tactical behaviors  
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