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ABSTRACT— In this paper, we evaluate the performance
of an iterative registration algorithm for position estimation of
Unmanned Ground Vehicles (UGVs) operating in unstructured
environments. Field data obtained from trials on UGVs traversing
undulating outdoor terrain is used to quantify the performance of
the algorithm in producing continual position estimates. These
estimates are then compared with those provided by ground
truth to facilitate the performance evaluation of the algorithm.
Additionally, we propose performance measures for assessing the
quality of correspondences. These measures, collectively, provide
an indication of the quality of the correspondences thus making
the registration algorithm more robust to outliers as spurious
matches are not used in computing the incremental transformation.
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1. INTRODUCTION
Active range sensing has become an integral part of

any unmanned vehicle navigation system due its ability to
produce unambiguous, direct, robust, and precise images
consisting of range pixels. This is in direct contrast to pas-
sive sensing where the inference of range largely remains
computationally intensive and not robust enough for use
in natural outdoor environments. Depending on the speed
of the vehicle, operating environment, and data rate, such
range images acquired from a moving platform need to be
registered to make efficient use of information contained in
them for various navigation tasks including map-building,
localization, obstacle avoidance, and control.

Iconic methods that attempt to minimize the discrepan-
cies between sensed data and a model of the environment
have been utilized for range registration. The attraction of
these methods lies in the fact that the matching works
directly on data points. Because the search is confined to
small perturbations of the range images, it is computation-
ally efficient. For example, Kanade et al. [3] compared el-
evation maps obtained from 3D range images to determine
vehicle location. A similar iconic approach has also been
adopted by Shaffer [10] but it does not take into account
the uncertainty associated with the observation data.

We have developed a temporal iterative algorithm for
registering range images obtained from unmanned vehicles.
Formally, the process of registration is defined as follows:
Given two sets of range images (model set:M and data set:
D), find a transformation (rotation and translation) which
when applied toD minimizes a distance measure between
the two point sets. Despite the apparent simplicity of the
problem, to register range images from unmanned vehicles
traversing unstructured environments, the terrain of travel,
sensor noise and determination of accurate correspondences
make it quite challenging.

The registration algorithm is a modified variant of the
well-known Iterative Closest Point (ICP) algorithm [1]. At
each iteration, the algorithm determines the closest match
for each point and updates the estimated position based on
a least-squares metric with some modifications to increase
robustness. The modified algorithm has been shown to be
robust to outliers and false matches during the registration
of 3D range images obtained from a scanning LADAR
rangefinder on an Unmanned Ground Vehicle (UGV) and
also towards registering LADAR images from the UGV
with those from an Unmanned Aerial Vehicle (UAV) that
flies over the terrain being traversed [9]. For completeness,
the temporal iterative registration algorithm is summarized
in Section 2.

In this paper, we evaluate the performance of the regis-
tration algorithm for position estimation of UGVs operating
in unstructured environments. Field data obtained from two
trials on UGVs traversing undulating outdoor terrain is used
to quantify the performance of the algorithm in producing
continual position estimates. Using the data obtained from
the first trial, the iterative registration algorithm aids the po-
sition estimation process whenever Global Positioning Sys-
tem (GPS) estimates are unavailable or are below required
accuracy bounds. In the second trial, ICP is combined with
a post-correspondence Extended Kalman Filter (EKF) to
account for uncertainty present in the range images. For
both the trials, the position estimates are then compared
with those provided by ground truth to facilitate the perfor-
mance evaluation of the registration algorithm. In addition,
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we propose performance measures for assessing the quality
of correspondences. These measures, collectively, provide
an indication of the quality of the correspondences thus
making the registration algorithm more robust to outliers as
spurious matches are not used in computing the incremental
transformation. The registration algorithm is then combined
with proposed performance metrics and compared to the
traditional ICP algorithm in terms of accuracy and speed.

The paper is structured as below: Section 2 describes the
iterative temporal registration algorithm. Section 3 presents
experimental results when the iterative algorithm is used
for obtaining position estimates. Section 3.1 compares
registration-aided position estimates with those provided
by GPS. Section 3.2 details a map-aided registration algo-
rithm for pose estimation. Section 4 develops performance
measures for quality assessment of correspondences within
the registration process and provides the associated results.
Section 5 provides the conclusions and outlines areas of
continuing research.

2. ITERATIVE TEMPORAL REGISTRA-
TION ALGORITHM

The process of registration is stated formally as:

min(R,T)

∑

i

||Mi − (RDi + T) ||2 (1)

whereR is the rotation matrix,T is the translation vector
and the subscripti refers to the corresponding points of the
setsM andD.

2.1. Iterative Closest Point Algorithm

The ICP algorithm can be summarized as follows: Given
an initial motion transformation between the two point
sets, a set of correspondences are developed between data
points in one set and the next. For each point in the first
data set, find the point in the second that is closest to it
under the current transformation. It should be noted that
correspondences between the two point sets is initially
unknown and that point correspondences provided by sets
of closest points is a reasonable approximation to the true
point correspondence. From the set of correspondences, an
incremental motion can be computed facilitating further
alignment of the data points in one set to the other. This find
correspondence/compute motion process is iterated until a
predetermined threshold termination condition.

In its simplest form, the ICP algorithm can be described
by the following steps:

1. For each point in data setD, compute its closest point
in data setM. In this paper, this is accomplished via
nearest point search from the set comprisingND data
andNM model points.

2. Compute the incremental transformation (R,T) using
Singular Value Decomposition (SVD) via correspon-
dences obtained in step1.

3. Apply the incremental transformation from step2. to
D.

4. If relative changes inR andT are less than a threshold,
terminate. Else go to step1.

To deal with spurious points/false matches and to account
for occlusions and outliers, we modify and weight the least-
squares objective function in Equation (1) such that [11]:

min(R,T)

∑

i

wi ||Mi − (RDi + T) ||2 (2)

If the Euclidean distance between a pointxi in one set

and its closest pointyi in the other, denoted bydi
4
=

d(xi, yi), is bigger than the maximum tolerable distance
thresholdDmax, then wi is set to zero in Equation (2).
This means that anxi cannot be paired with ayi since
the distance between reasonable pairs cannot be very big.
The value ofDmax is set adaptively in a robust manner by
analyzing distance statistics.

Let {xi, yi, di} be the set of original points, the set of
closest points and their distances, respectively. The mean
and standard deviation of the distances are computed as:

µ =
1
N

N∑

i=1

di; σ =

√√√√ 1
N

N∑

i=1

(di − µ)2

whereN is the total number of pairs.
The pseudo-code for theAdaptive Thresholding(AT) of

the distanceDmax is given below:

if µ < D
Ditn

max = µ + 3σ;
elseif µ < 3D

Ditn
max = µ + 2σ;

elseif µ < 6D
Ditn

max = µ + σ;
else Ditn

max = ε;

whereitn denotes the iteration number andD is a function
of the resolution of the range data.

During implementation,D was selected based on the
following two observations:

1) If D is too small, then several iterations are re-
quired for the algorithm to converge and several good
matches will be discarded, and

2) If D is too big, then the algorithm may not converge at
all since many spurious matches will be included. The
interested reader is referred to [11] for more details on
the effect and selection ofD andε on the convergence
of the algorithm.

At the end of this step, two corresponding point sets,
PM:{pi} andPD:{qi} are available.

The incremental transformation (rotation and translation)
of step2. is obtained as follows:

• CalculateH=
∑ND

i=1(pi − pc)(qi − qc)T ; (pc,qc) are
the centroids of the point sets (PM,PD).



• Find the Singular Value Decomposition (SVD) ofH
such thatH = UΩVT whereU and V are unitary
matrices whose columns are the singular vectors and
Ω is a diagonal matrix containing the singular values.

• The rotation matrix relating the two point sets is given
by R = VUT .

• The translation between the two point sets is given by
T = qc −Rpc.

This process is iterated as stated in step4. until the
mean Euclidean distance between the corresponding point
setsPM andPD is less than or equal to a predetermined
distance or until a given number of iterations is exceeded.

3. EXPERIMENTAL RESULTS
3.1. Registration-aided Position Estimation

In this section, we estimate the position of an UGV oper-
ating in an unknown outdoor environment. The registration
algorithm is used for aiding position estimation whenever
GPS errors are above a predetermined threshold1.

An Extended Kalman Filter (EKF) was used to fuse
encoder, GPS and compass observations to arrive atground
truth position estimates. It should be noted here that the
EKF pose estimate is always superior than that provided by
GPS alone and thus has been considered as ground truth.
Consequently, a better position fix is guaranteed even when
GPS is subject to multipathing errors. The ground truth was
obtained in a similar fashion as reported in [8].

Figure 1 shows the results of the position estimation
using the registration algorithm. As mentioned earlier, reg-
istration of range images is used to aid position estimation
when GPS reported positional errors exceed a given thresh-
old. In Figure 1(a), the registration-aided position estimates
are denoted by ‘+’ and that of the GPS by ‘◦’. The wheel
encoder estimates are also shown by ‘×’ for comparison.
The error between the GPS and the registration-aided
position estimates as compared with the ground truth are
shown in Figure 1(b). It is evident that the registration-aided
estimates are far superior than that of GPS alone.

3.2. 2D Map-aided Position Estimation

A map-aided position estimation algorithm for comput-
ing accurate pose estimates for a UGV operating in tunnel-
like environments is described in this section. Using ground
truth2 together with the information from a range and
bearing scanning laser rangefinder, a map of the operating
domain, represented by a polyline that adequately approx-
imates the geometry of the environment, is obtained. The
map building process relies on position estimation provided
by artificial landmarks.

1The error in the GPS positions reported were obtained as a function of
the number of satellites acquired. As an alternative, the so-calleddilution
of precisionmeasure associated with the GPS can be used for the same
purpose [2].

2The ground truth was obtained using a rotating laser scanner and
known artificial landmarks placed at surveyed locations [7].

An Iterative Closest Point-Extended Kalman Filter (ICP-
EKF) algorithm is used to match range images from a scan-
ning laser rangefinder to the line segments of the polyline
map [6]. For this application, ICP alone does not provide
sufficiently reliable and accurate vehicle motion estimates.
These shortcomings are overcome by combining the ICP
with a post-correspondence EKF. Once correspondences are
established, a post-correspondence EKF, with the aid of a
non-linear observation model, provides consistent vehicle
pose estimates.

The ICP-EKF algorithm has several advantages. First,
the uncertainty associated with observations is explicitly
taken into account. Second, observations from a variety of
different sensors can be easily combined as the changes are
reflected only as additional observational states in the EKF.
Third, laser observations that do not correspond to any line
segment of the polyline map are discarded during the EKF
update stage thus making the algorithm robust to errors in
the map.

The estimated vehicle positions (solid line)3 provided by
the ICP-EKF algorithm along with the ground truth (dotted
line) is shown in Figure 2(a). The vehicle travels a distance
of 150 meters from right to left. The corresponding2σ
confidence bounds for the absolute error inx, y and φ
are shown in Figure 2(b). It can be seen that the errors
are bounded and thus the pose estimates are consistent. It
is also clear that the estimated path is in close agreement
with the ground truth.

4. PERFORMANCE MEASURES
The correspondence determination process is the most

challenging step of the iterative algorithm. Establishing
reliable correspondences is extremely difficult as the UGV
is subjected to heavy pitching and rolling motion charac-
teristic of travel over undulating terrain. This is further
exacerbated by the uncertainty of the location of the sensor
platform relative to the global frame of reference. In ad-
dition to these factors, noise inherently present in range
images complicates the process of determining reliable
correspondences.

One solution to overcome the above deficiencies is
to extract naturally occurring view-invariant features, for
example, corners, from range images. Suchground control
pointscan then be used for establishing reliable registration
with the ICP algorithm converging to the global minimum.
A hybrid approach to register aerial images obtained from
a UAV with those from the UGV was developed by aug-
menting the modified ICP algorithm with a feature-based
method. The feature-based hybrid approach was shown to
be effective in producing reliable registration for UGV
navigation [9].

For the map-aided position estimation scheme described
in Section 3.2, the ICP-EKF algorithm failed to produce

3As the estimates and the their corresponding ground truth are very
close, extra effort is required on the part of the reader to distinguish
between the two.
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Fig. 1. Registration-aided position estimation. The aided estimates are shown by ‘+’ and that of GPS by ‘◦’. The wheel encoder estimates shown by
‘×’ are included for comparison. In (b), position errors as compared to the ground truth is depicted (GPS estimate is shown in dashed-dotted line).

unambiguous correspondences with the map whenever vari-
ations in data sets were not unique. To enable ICP to pro-
duce accurate correspondences, a strategy to augment the
ICP-EKF algorithm with artificial/natural landmarks was
devised to provide external aiding. To facilitate the selection
of landmarks, an entropy-based metric was developed to
enable the evaluation of information contained in a potential
landmark. A curvature scale space algorithm was developed
to extract natural landmarks from laser rangefinder scans
[5]. The proposed landmark augmentation methodology has

been verified for the localization of a Load-Haul-Dump
truck and resulted in the ICP-EKF algorithm producing
reliable and consistent estimates [6].

We propose the following measures towards performance
evaluation of the registration algorithm for position estima-
tion.

4.1. ICP Estimate and Dead-reckoning Prediction Measure

The ICP itself can be used to compute the estimates of
the pose of the UGV. This can be compared with dead-
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Fig. 2. 2D Map-aided Position Estimation. ICP-EKF estimated position
the trial vehicle (solid line) and the ground truth (dotted line) are shown in
(a). The 2σ confidence bounds are computed using the covariance estimate
for the error inx, y and φ compared to the actual error computed with
the ground truth estimates as depicted in (b).

reckoning estimates each time before the correspondences
are computed. More specifically, the prediction covariance
(from dead-reckoning) can be utilized as a check on the ICP
estimates, since if the associated state covariances become
large, this is an indication of the state estimation filter
divergence as a result of the poor ICP estimates.

The largest Eigen value of the predicted state covariance
matrix (that is a measure of the total positional uncertainty)
can be used as a measure to check the quality of the ICP
estimates.

Also the determinant of the predicted state covariance
matrix can be used as a measure since it represents total

predicted uncertainty and this can be observed to see if the
ICP produces reliable and non-divergent estimates (since
once the ICP estimates start behaving erratically, this is
reflected by similar behavior in the correspondences).

4.2. Mean Squared Error Measure

To indicate if the correspondences make sense the fol-
lowing measure is proposed:

Pmse =
1
n

n∑

i=1

[d (pi, `i)]
2

where pi and `i are theith of n range data points and
d (pi, `i) is the distance from thepth

i point to the`th
i point.

Global minimum of the function will occur at thetrue pose
of the vehicle.

At the true pose, all or at least the majority of the range
data points will be close to their corresponding points, thus
yielding a very low value for the correct solution. The
problem with this measure is that it is difficult to decide if
the pose is true in the presence of outliers and occlusions.

4.3. Classification Factor

Similar to [4], we definewell defined data pointsas those
points that lie within some distance threshold from their
corresponding points:

Pcf =
1
n

n∑

i=1

(
1− dm

dm + cm

)

whered = d(pi, `i), c = neighborhood size,m = sigmoid
steepness4. At true pose, global maximum should approach
close to unity and will be less in the neighborhood of well
defined data points. Note thatPcf values can fall only
between [0,1].

Indirectly this measure indicates thefuture-goodnessof
the pose estimate if a certain threshold is exceeded. The
problem with this measure could be that it is not as
sensitive asPmse since it applies only for a certain local
neighborhood. ThusPmse can be used as a comparative
performance measure whereasPcf for pass/fail decisions
for the correspondences before they are passed on for
computing the incremental transformation.

4.4. Comparative Performance Measure

It is the ratio defined by

Pcpm =
Pcf

2

Pmse

The peak of this measure should occur at the true pose.
In other words, this measure serves as a nonlinear scaling
factor applied to the inverse of the measure,Pmse.

4A sigmoid function is given byf(a) = 1
1+e−ga where g denotes

gain.



4.5. Results and Discussion

In this section, we use 3D LADAR data obtained during
field trials to illustrate the utility of the proposed metrics
in assessing the quality of correspondences. The LADAR
was mounted on a UGV traversing rugged terrain on a
pan/tilt platform to increase its narrow20◦ field of view.
The range of the tilt motion is±30◦ resulting in an effective
field of view of about90◦ and providing a range image
of 32 lines × 180 pixels where each data point contains
the distance to a target in the operating environment. The
angular resolution of this LADAR is0.658◦ × 0.5◦ in the
horizontal and vertical directions, respectively.

We illustrate the combined utility of adaptive threshold-
ing and thePmse measure by using it to register 3D range
images. We then compare the registration results with direct
ICP (i.e., without AT andPmse). For the comparison, the
same termination threshold condition is employed for both
the algorithms.

Figures 3 and 4 summarize the comparative results.
Figures 3(a) and (b) show the registered LADAR images
via the direct and combined ICP algorithms, respectively.
The combined ICP needed39 iterations whereas the direct
ICP took82 iterations. The mean distances before and after
registration were0.19 m and0.07 m for the two algorithms,
respectively. Figures 4(a) and (b) show the closest point
distance before and after registration. It is thus evident
that the combined ICP algorithm is vastly superior than
the direct ICP algorithm both in terms of accuracy and
speed. Even though thePmse metric is sensitive to outliers,
we contend that the adaptive thresholding methodology in
combination with the mean-squared error metric provides
an acceptable means in inferring the validity of the position
estimate.

5. CONCLUSIONS AND FURTHER WORK

The evaluation of performance of an iterative registration
algorithm for position estimation of UGVs operating in
unstructured environments was the main theme of this
paper. The modified ICP algorithm was used to aid the
position estimation process and the resulting estimates were
compared with ground truth to facilitate the performance
evaluation for two sets of field data. Field data obtained
from trials on UGVs traversing undulating outdoor terrain
was used to quantify the performance of the algorithm in
producing continual position estimates.

In the first set of experimental results, registration-aided
position estimates were generated whenever GPS estimates
were unavailable or unreliable. For the second set of trials,
the ICP-EKF algorithm was used for map-aided position
estimation. In both cases, the presented results demon-
strated the efficacy of the registration algorithm for position
estimation.

The second part of the paper developed performance
measures towards assessing the quality of correspondences

required for accurate and efficient registration. The modi-
fied algorithm was combined with the mean-squared error
metric to register 3D LADAR range images. The combined
algorithm was then evaluated against the direct ICP algo-
rithm. The accompanying results showed the superiority
of the combined algorithm both in terms of speed and
accuracy.

Future work includes combining the measures to achieve
efficient 3D registration for mapping and position esti-
mation tasks, both in indoor and outdoor environments.
Currently, we are in the process of obtaining LADAR data
in areas where GPS accuracy degrades and then approaches
its best estimate. Such data sets would be of immense value
in evaluating the utility of the registration algorithm and the
proposed performance measures.
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(a) Direct ICP

(b) Modified ICP with AT andPmse

Fig. 3. Illustration of 3D LADAR registration via the direct (w/o AT andPmse) and combined ICP algorithms. The model (‘◦’) and data (‘+’) points
after registration are shown.
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Fig. 4. The registered (shown in dashed-dotted line) and unregistered closest point distances are shown corresponding to the registration of range
images depicted in Figures 3(a) and 3(b), respectively.


