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 ABSTRACT

General-purpose microprocessors are increasingly being used for control applications due to their
widespread availability and software support for non-control functions like networking and operator
interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional
RTOS serves as the sole operating system, and provides all OS services. Examples1 include ETS, LynxOS,
QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time
OSes, and provide minimal services needed for the time-critical portions of an application. Examples
include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is
an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software
effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and
multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of
microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst
case for soft real-time operating systems. The question of its significance on the performance of a controller
arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the
impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-
loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques
for measuring timing jitter are discussed, and comparisons between various platforms are presented.
Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor
control is analyzed.
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1. BACKGROUND

The objective of the work described in this paper is to quantify the timing jitter introduced by general-
purpose microprocessors running real-time operating systems, and determine the effects on motor control.
The motivation for this work was the observation that the use of general-purpose microprocessors, such as
the Intel Pentium, is increasing for real-time applications. The reasons for this increase are the continual
performance improvement achieved by processor manufacturers, and the convenience of complete PC-
compatible platforms that provide mass storage, networking, I/O expansion, video, and user input all at low
cost. These benefits are particular attractive for control researchers who deploy small numbers of systems
and who can leverage computers traditionally used for administrative work.

                                                          
1 No approval or endorsement of any commercial product by the National Institute of Standards and
Technology is intended or implied. Certain commercial equipment, instruments, or materials are identified
in this report in order to facilitate understanding. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose. This publication was prepared by
United States Government employees as part of their official duties and is, therefore, a work of the U.S.
Government and not subject to copyright.
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Enabling the use of general-purpose computers for control is the availability of real-time operating systems
(RTOS) that schedule tasks at deterministic intervals. Two classes of real-time operating systems exist for
these platforms. The traditional RTOS serves as the sole operating system, and provides all OS services.
Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time
scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical
portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and
RTX for Windows NT. Full RTOSes have the advantage that all tasks execute with real-time determinism,
even those that make use of networking and file systems. However, relatively few applications are available
for these RTOSes. Real-time extensions to common operating systems such as Windows NT and Linux
enable the use of the full range of existing applications in the original non-realtime part, while enabling
real-time task execution in the extension’s limited environment. The disadvantage is that fewer resources
are available to real-time tasks.

Despite the best efforts of RTOS designers to ensure deterministic tasking, the underlying hardware in
general-purpose computers introduces timing uncertainties due to microprocessor and bus effects.
Microprocessors such as the Pentium contain many optimization features, such as instruction and data
caches, instruction pipelines, and speculative execution. These features significantly speed up average
execution times, but occasionally introduce large delays. For example, copies of data from off-processor
memory are kept in the on-processor cache, reducing the time for subsequent accesses. However, if the
cached data is replaced and then re-referenced, it must be fetched again. In an environment where real-time
and non-real-time tasks share the processor, it is practically impossible to prevent real-time task data from
being replaced occasionally, even if the non-real-time tasks run at the lowest priority. Surprisingly, as
processor speeds increase, the effect is more pronounced. For a given real-time task period, the faster the
processor, the more non-real-time task code can run during the idle period and “dirty up”  the cache.

In contrast to general-purpose microprocessors, digital signal processors (DSPs) forgo unpredictable
features like caches and pipelines, opting instead for simple instruction sets that optimize commonly used
instructions for speed. Naively one would expect that disabling a microprocessor’s cache would reduce
timing uncertainty. However, other features such as instruction pipelining and speculative execution are
part of the microprocessor architecture and cannot be eliminated, and the absence of a cache magnifies the
uncertainty contribution of these remaining features. Even if timing uncertainty was eliminated, the speed
penalty may be intolerable: a test of the BYTE benchmark code on a PC showed a twenty-fold decrease in
speed with the cache disabled.

2. MEASURING JITTER

In order to determine whether the advantages of general-purpose computers for control platforms outweigh
the timing uncertainty drawback, it is important to quantify timing uncertainty and derive its impact on
control. For the work described in this paper, we ran timing tests on a single 450-MHz Pentium II computer
with a 512 Kbyte cache, and two RTOSes, Real-Time Linux (RTL) from New Mexico Tech [1], and Real-
Time Application Interface (RTAI) from the Polytechnic University of Milan [2]. These RTOSes are
extensions to non-real-time Linux, which runs as a process when no real-time task is executing. Thus, they
provide a good test environment in which the cache is likely to be affected outside the control of real-time
code.

Jitter data was generated by a real-time task in RTL that read the Pentium Time Stamp Counter (TSC) at a
constant period, and logged the values into memory. Other tasks were kept to a minimum. To derive
deviations of the TSC values from the nominal values expected for a task of a constant period, a least
squares method was used [3]. Figure 1a shows a plot of the deviations for a 100-sample set. The first few
points show large deviations, consistent with code that has not yet loaded into cache. Subsequent points
show smaller deviations. The regularity shows that execution patterns exist. Figure 1b shows a histogram of
the data. The clusters correspond to the various code paths taken. Determining the reasons for the particular
patterns requires detailed analysis of the instructions that make up the entire code path between occurrence
of the timer interrupt, context switching, the scheduler, context switching, and the logging task. For the
purpose of estimating jitter, however, the difference between the maximum and minimum deviations from
the nominal period is a worst case measure. Figure 2 shows a plot of the deviations for a 10,000-sample set



(with connecting lines removed). From the figure, it can be seen that the worst-case jitter is about 3.5
microseconds.

(a) (b)

Figure 1. (a) A plot of 100 samples of timing jitter, in microseconds, for a 500-microsecond task
that logs the Pentium Time Stamp Counter (TSC). The boxes enclosing points with similar jitter
correspond to the histogram in (b). The regularity of jitter values suggests a common origin, due to
combinations of cache access patters and execution branches in the code executing between the
incidence of the timer interrupt and the capture of the TSC.

Figure 2. A plot of 10,000 samples of timing jitter. This is similar to the plot in Figure 1a, with
connecting lines removed. The range of jitter for this data is about 3.5 microseconds. Note the
high jitter for the first point, due to the cache fill, and that high jitter recurs throughout the samples
as the processor is impacted by other tasks. The total time for this test was 5 seconds.

Jitter depends on the execution environment. In the previous figures, the tests were conducted in single-user
mode, with no network services or graphics acceleration. However, even in this limited environment,
several non-real-time Linux tasks were executing, and disk interrupts were likely to occur. Figure 3a shows
jitter histograms in RTL with normal loading, heavy network loading, and heavy disk loading. Note how
the jitter range increases with higher loading. Since the scheduler code always precedes the task code, the
execution pattern of the scheduler will also impact jitter. Figure 3b shows the jitter histogram for the same
tests conducted in RTAI. Figure 3c shows the heavy disk loading histograms for both, showing results that
are comparable but with different patterns. These tests show that jitter is dependent on the execution
environment (what other tasks are running) and the scheduling algorithm, and worst-case values are on the
order of ten microseconds.
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Figure 3. (a) Jitter histogram for RTL with normal loading, heavy disk loading, and heavy network
loading. Note that jitter range increases as the execution environment is more heavily loaded with
non-real-time processes. (b) The results of the same tests for RTAI. (c) Comparisons of RTL and
RTAI for heavy disk loading. Note that the results are comparable, but with different patterns
reflecting the differences in scheduling algorithms.

3. COMPENSATING FOR JITTER

Despite the apparent lack of control over jitter effects on the part of the programmer, it is possible to reduce
jitter in software if some CPU bandwidth can be sacrificed. The technique is to schedule the task early by at
least the measured worst-case jitter, then disabling interrupts and entering a tight polling loop that reads the
TSC until the desired time stamp is seen or has past. The time-critical task code is then executed.

On average we can expect that the amount of time spent polling will be about half the actual period of the
task. The shorter the period, i.e., the more frequently the task executes in anticipation of the desired TSC,
the less time will be spent polling. For short periods, it is likely that the task will wake up, note that the
TSC event is longer than its period, and sleep again. Eventually the task will need to poll to achieve the
desired time stamp. At some point the added overhead of invoking the task will outweigh the benefit of
reducing the time spent polling. An estimate of the optimal point can be made as follows. In Figure 4, the
nominal (desired) task period is shown as T. The actual task period is shown as A. S indicates the time to
service the task call, to the point where it either sleeps or polls. The gray region indicates polling until the
TSC shows that the time-critical code should execute.

Figure 4. Schematic showing calls to a task that periodically checks the Time Stamp Counter
(TSC) for a target expiration at a desired period T, running more quickly at period A. Most of the
task calls result in immediate returns since the target TSC is far off. As it approaches, eventually
the task will enter a tight polling loop and execute the time-critical task code once the target TSC
has been reached. S indicates the overhead time servicing the early calls. The gray area indicates
the time spent polling.
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To estimate the extra processor loading in this scheme, note that the number of task invocations is T/A,
with T/A-1 invocations being early wake-sleep calls and the last being a wake-poll-execute call. The
amount of extra time servicing these early calls is T/A-1 times the service time S. For the last task
invocation in which polling is done, the servicing time is A in the worst case. The total extra processor load
over the nominal period T is thus

( )
T

ASAT
load

+−= 1
[1]

If the nominal period is too low, more time than necessary will be spent servicing the early tasks,
increasing the loading. If the nominal period is too high, then more time will be spent polling. Figure 5
shows the loading as a function of A, with a nominal time of 500 microseconds and a task service time of 5
microseconds.

Figure 5. Processor loading as a function of task period, for a task targeting a 500-microsecond
period. For short task times, so many calls occur that the overhead servicing them outweighs the
short polling time necessary for the final call. For longer task times, fewer calls occur but the
polling time for the final call may be large. The plot shows an optimal task time that minimizes
loading. In this case, for an assumed 5-microsecond service time, the minimum is a 50-
microsecond task with less than 20% loading. About 9 calls will return immediately, and the 10th
will poll.

Minimizing equation [1] with respect to A gives a value of

STA =min [2]

and a corresponding minimal load of

T

SST
load

−= 2
min [3]

For a 500 microsecond nominal period and task service time of 5 microseconds, as in Figure 5, equation [2]
yields a minimizing period of 50 microseconds, and equation [3] yields a processor loading of 19%.

Determining the actual service time S for a particular system is not trivial. It includes the context switch
time to the scheduler, the scheduler code itself, the context switch time to the task, the task code, and the
context switch time back to the interrupted process. This can be measured by instrumenting the task code to
trigger an output as its final action, and using an oscilloscope to measure the time difference between the



timer chip interrupt signal and task output. The measurement does not include the final context switch time
and will be an underestimate.

Figure 6 shows the jitter plots for uncompensated and compensated tasks. The uncompensated points are
the same as in Figure 1a. The compensated points show a much lower jitter. For this data, the jitter values
were 3.60 microseconds and 0.098 microseconds for the uncompensated and compensated tasks,
respectively. This is an improvement of about 40 times, with a cost of about 20% in additional processor
usage.

Figure 6. A comparison of uncompensated and compensated task jitter, with values 3.60
microseconds and 0.098 microseconds, respectively.

4. IMPACT OF JITTER ON MOTOR CONTROL

Given that jitter is a fact of life with general-purpose microprocessors, it is reasonable to consider the
magnitude of its effect on real-time control. In this work we first considered stepper motors, whose
performance is sensitive to the timing of the driving pulses. At a given nominal frequency, additional
torque is generated as the driving pulses arrive earlier or later due to jitter. The additional displacement
∆θ of the motor during the jitter increment is the motor speed ω times the jitter ∆t, and the resulting
additional torque ∆T is this displacement multiplied by the small-angle spring constant k of the motor:

t∆=∆ ωθ [4]

θ∆−=∆ kT [5]

From reference [4], the small-angle spring constant is

S

h
k

2

π= [6]

where h is the holding torque, and S is the step angle of the motor. From equations [4]-[6] we can
compute the additional torque due to jitter,

t
S

h
T ∆−=∆ ωπ

2
[7]

To gauge the magnitude of effect, consider a typical stepper motor running at the speed at which it can
output half its holding torque. This is the middle to high range of the motor’s performance. We would like
to know what fraction of the available torque will be taken up by jitter. If this exceeds the available torque,
the motor will lose steps. Table 1 shows parameters for some typical stepper motors and the resulting



magnitude of torques Tu and Tc due to the uncompensated jitter (3.6 microseconds) and compensated jitter
(0.098 microseconds) measured in the earlier tests. The percent columns show the percent of the available
torque (half the holding torque) at this speed, for each jitter value.

h S ω T at ω Tu Tu% Tc Tc %
23 oz-in 0.9 deg 15 rev/sec 11.5 oz-in 0.88 oz-in 7.6% 0.021 oz-in 0.18%
80 oz-in 0.9 deg 6.7 rev/sec 40 oz-in 1.3 oz-in 3.2% 0.033 oz-in 0.082%
500 oz-in 0.9 deg 15 rev/sec 250 oz-in 19 oz-in 7.6% 0.46 oz-in 0.18%

Table 1. Torque effects from jitter using parameters for 3 typical stepper motors and
uncompensated and compensated jitter measurements of 3.6 and 0.0988 microseconds,
respectively. The values in the percent columns are the percent of the available torque T at ω taken
up by jitter. For these motors, jitter consumes less than 10% of the available torque.

As the table shows, for these motors even uncompensated jitter will consume less than 10% of the motor’s
torque, indicating that performance should be acceptable.

5. SUMMARY

General-purpose microprocessors are being increasingly used for real-time control applications. Processor
features such as caches and pipelines improve overall performance, but add uncertainty to task execution
times. This uncertainty is termed jitter, and is practically impossible to quantify analytically. Jitter depends
on the hardware platform, operating system scheduler, and the tasks that share the processor. Built-in
processor time stamp counters can be used as a convenient way to measure jitter experimentally. Typical
jitter values are on the order of a few microseconds for the platforms tested. Jitter can be compensated
using a polling technique, at the expense of processor loading. An analysis of the technique yields optimal
values for the period of the compensated task, and shows a reduction in jitter of a factor of 40 with a 20%
increase in processor utilization. The impact of jitter on stepper motor control is analyzed. Jitter will
contribute additional torque load to the motor that has the potential to exceed the available torque at high
speeds and cause a loss of position steps. The magnitude of the additional torque is determined for several
typical stepper motors at moderate to high speeds. For uncompensated jitter the additional torque is less
than 10% of the available torque. For compensated jitter, the contribution is less than 1%. This indicates
that general-purpose microprocessors can be used for satisfactory stepper motor control.
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