

An Iterative Procedure for Efficient Testing of B2B: A
Case in Messaging Service Tests

Jaewook Kim and Serm Kulvatunyou
Manufacturing Systems Integration Division, National Institute of Standards & Technology,
Gaithersburg, MD 20899-8263, USA
jaewook@nist.gov and serm@nist.gov

Keywords: conformance and interoperability testing, B2B messaging service,
interoperability of E-Business solutions, tools for interoperability

Abstract

Testing is a necessary step in systems integration. Testing in the context of inter-
enterprise, business-to-business (B2B) integration is more difficult and expensive
than intra-enterprise integration. Traditionally, the difficulty is alleviated by
conducting the testing in two stages: conformance testing and then interoperability
testing. In conformance testing, systems are tested independently against a
referenced system. In interoperability testing, they are tested simultaneously
against one another. In the traditional approach for testing, these two stages are
performed sequentially with little feedback between them. In addition, test results
and test traces are left only to human analysis or even discarded if the solution
passes the test. This paper proposes an approach where test results and traces from
both the conformance and interoperability tests are analyzed for potential
interoperability issues; conformance test cases are then derived from the analysis.
The result is that more interoperability issues can be resolved in the lower-cost
conformance testing mode; consequently, time and cost required for achieving
interoperable solutions are reduced.

1 Introduction

Although common B2B standards have been developed, interoperability cannot be
achieved without testing. This is because (1) the software systems involved in the

2 J. Kim and S. Kulvatunyou

inter-enterprise integration vary greatly and are implemented with various user-
specific assumptions, and (2) business terms used in the standards do not always
have precise meanings, which are left open for different interpretations by systems
implementers.

Given these difficulties, integration testing often requires collaborations among
experts from different locations and time zones. It is a difficult, costly, and time-
consuming activity. These experts have adopted a two-stage, sequential approach:
Conformance then Interoperability Tests (CIT). First, they perform the
conformance tests independently against a reference implementation or a test data
suite. After conformance is verified, they then perform pair wise testing of the two
solutions to resolve interoperability problems. The expectation is that most
interoperability issues are resolved in the conformance testing, which is less
expensive and easier to perform [1].

The sequential CIT has two challenges. First, conformance and interoperability
tests require different testing tools, suites, and methodologies. Second, a significant
amount of time is still required to achieve interoperability because both the
conformance and interoperability test suites are static and cannot account for all
interoperability issues. There are existing research works that deal with the first
challenge including [2], [3], and [4], but little has been done to address the latter
challenge.

In this paper, we discuss a procedure to increase the capabilities of
conformance testing to reduce the time and cost of interoperability testing. In the
traditional two-stage testing there is little or no feedback between the conformance
and interoperability tests. That means the interoperability issues presented in the
interoperability testing mode are resolved only in that mode. Resolving issues in
the interoperability mode is difficult and costly. The reasons are two-fold. The
interoperability testing first requires engineers to be physically present at both ends
of the test, and second, one system cannot step through (or control) the other
system (e.g., to pause, restart, or make changes). In addition, test results (for both
conformance and interoperability tests) and traces are left only to human analysis
or even ignored when the test evaluation is non-negative.

2 Background

In this research, we characterize interoperability issues into `anticipated', `potential',
and `unanticipated' issues. In general, conformance test suites are written mainly
for anticipated issues - standard specification experts write test cases for those
issues they can anticipate. The subsequent interoperability tests are performed
typically on those same issues, but the issues lead to potential issues which are not
exposed. This is frequently not sufficient to guarantee interoperability, because
there are always unanticipated issues. Consequently, we characterize the
interoperability testing as the process to find and resolve issues not covered by the
conformance test suite.

To analyze the traditional two-stage testing approach, we follow the approach
in [7], where the authors classify the type of conformance test cases according to a
conformance test harness, which can be derived from the test framework.

An Iterative Procedure for Efficient Testing of B2B: A Case in Messaging Service Tests 3

Generally, the functionality of the Systems Under Test (SUT) can be viewed as
either a pre-processing or post-processing [2]. In pre-processing mode, the system
generates a message conforming to a standard specification; in the post-processing
mode the system interprets a standard message. Typically, a pair of reciprocal,
conformance test cases is written against the standard message structure to test
both [5]. Figure 1 illustrates the conformance testing processes for the two
functionalities. Every SUT should be verified by the conformance testing with
these pairs of test cases before integrating with another partner SUT.

SUT

Test Case

Test
Instruction

Output
Message

Assert
Instruction

Pre-processing Result
Analysis

 Test Case

Nominal
Message

Assert
Instruction

Post-processing Result
Analysis

SUT

 a. pre-processing conformance test b. post-processing conformance test

Fig. 1. Conformance testing processes for pre-processing and post-processing

An interoperability test is defined with respect to a pair of SUTs. The test typically
requires one SUT to produce a standard message, which is used as input to another
SUT. Figure 2 shows the interoperability testing process. From Figure 2, we
conclude that an interoperability test case can be represented by a pair of pre- and
post-processing conformance test cases. That is, we can decompose each
interoperability test case into two independent conformance test cases [3].
Consequently, we believe that testing issues from the interoperability test cases can
be resolved by simulating localized conformance test cases.

SUT1

Test Case

Test
Instruction

Output
Message

Pre-processing Result
Analysis

SUT2

Input
Message

Post-processing

Assert
Instruction

Fig. 2. Interoperability testing

The RFC 2119 [6] standard classifies conformance test cases on three levels:
required, recommended, and optional. Every software solution must pass all
required test cases, and may selectively pass the other two. Recommended test
cases are called conditional-mandatory. This means that, in general, software
solutions must pass those test cases, but developers may ignore them in particular
and well-controlled circumstances. Optional test cases may be ignored [7]. These
flexible requirements complicate interoperability testing and lead to the potential
and unanticipated issues described above.

In this paper, we propose a test procedure, namely, the Iterative Test Procedure
(ITP). The procedure employs two notions, (1) detecting as many as possible
unanticipated issues before performing the interoperability test and resolving them

4 J. Kim and S. Kulvatunyou

in the conformance testing mode; and (2) resolving remaining interoperability
using a conformance testing approach. The ITP achieves these two objectives by
analyzing test results and traces.

3 Related Works

The general approach to interoperability testing is to apply a conformance testing
approach that individually checks software solutions against relevant standards.
The approach for conformance testing has been standardized by the International
Organization for Standardization (ISO) [8] and International Telecommunication
Union Telecommunication Standardization Sector (ITU-T) [9]. This approach
reduces testing costs by resolving interoperability issues during conformance
testing, which is less expensive. Numerous researchers [7], [10], [11], and [12]
have proposed architectures for implementing this approach. However, as noted in
[13], this approach cannot resolve all interoperability issues. Thus the expensive
interoperability testing is still needed.

To reduce the interoperability testing cost, a number of researchers developed
efficient test-suite generation techniques. For example, [14], [15], and [16] provide
methodologies or tools for deriving test suites automatically and [17] provides
efficient algorithms to minimize the number of test cases. However, this research
has only dealt with the static test suites generated from the original specification.
None of these researchers has considered constructing test cases dynamically from
the results of other tests.

In the architecture area, [3] proposed an approach to choose and apply an
effective interoperability test harness based on both the type of conformance test
suite and the relationship between the conformance and interoperability test
architectures. In addition, [2] proposes an architecture that analyzes the
interoperability problems by applying the conformance tool and test suite in the
interoperability test harness. The former approach only helps to choose a proper
interoperability harness. The latter approach practically integrates the conformance
test assertions into the interoperability test harness. Neither of the approaches helps
reduce the number of interoperability trials.

4 Proposed Iterative Test Procedure

The ITP intelligently anticipates interoperability issues and generates conformance
test cases from conformance and interoperability test results and traces. The
procedure is depicted in Figure 3. Two intelligent modules, a Conformance Test
Results Analyzer (CTRA) and an Interoperability Test Results Analyzer (ITRA),
are added to the traditional CIT procedure. We note that the procedure in Figure 3
does not require that SUT1 and SUT2 be concurrently present except in the
interoperability testing.

An Iterative Procedure for Efficient Testing of B2B: A Case in Messaging Service Tests 5

Negative

TR Standard
CTS

End,
Successful IT

Interoperability
Test Result
Analyzer

Failed TR & MT

No PII Detected

Conformance
Testing

Conformance
Testing

SUT1 SUT2 SUT1 & SUT2

Non-negative TR & MT

Interoperability
Testing

Negative
TR Standard

CTS

Simulated CTC for Failed IT
(Optionally Add CTC to CTS)

Simulated CTC for Failed IT
(Optionally Add CTC to CTS)

ITS

Non-negative TR & MT

CTC for
PII Detected

(Optionally Add CTC to CTS)
Conformance
Test Result
Analyzer

CTC for
PII Detected

(Optionally Add CTC to CTS)

Fig. 3. Proposed iterative test procedure (CTS: conformance test suite, ITS: interoperability
test suite, CTC: conformance test case, TR: test result, MT: message trace, IT:
interoperability test, and PII: potential interoperability issue)

The purpose of the CTRA is to detect potential and unanticipated issues from two
conformance test results. SUTs should conform to the conformance test suite
before the CTRA analyzes their test results (as indicated by the retry loop
associated with the negative test results in Figure 3). We note that conformance to
a test suite does not necessarily mean that the SUT passes all test cases. In other
words, the CTRA only analyzes non-negative conformance test results where
results associated with all required test cases are `pass', while the recommended
and optional test cases are either `undetermined' or `fail'. If any issues are detected,
the CTRA recommends and generates corresponding conformance test cases. Each
SUT is then checked against those test cases before proceeding to perform the
interoperability test. The CTRA also recommends moving unanticipated issues into
the status of anticipated issues by adding the corresponding test cases to the
conformance test suite.

As described earlier in Section 2, the role of the interoperability test is to find
unanticipated issues, which typically are induced by a specific interoperability
context such as specific system configurations. The ITRA analyzes failed test
results and traces from the interoperability test and simulates conformance test
scenarios so that SUTs can independently find and resolve the problem. In Section
5, we describe the CTRA and ITRA in detail.

5 Test Results Analyzers

5.1 Conformance Test Results Analyzer

As we mentioned in Section 2, an interoperability test case may be a derivative of a
pair of reciprocal pre- and post-processing test cases. For example, Figure 2 can be

6 J. Kim and S. Kulvatunyou

viewed as a superimposition of Figure 1a and Figure 1b. The CTRA pays attention
to this type of conformance test cases. Ideally speaking, if SUT1 and SUT2 pass
the pre-processing and the post-processing test cases in the conformance testing
mode, they will pass the respective interoperability test case. However, the
following scenarios can happen.

First, the pre- and post-processing test cases may be optional. If an SUT skips
the tests or ignore the test results, it will most likely fail the corresponding
interoperability test cases. Second, SUT1 may produce a peculiar message (such as
the output message in Figure 2), which, though still valid, is different from the
nominal message (the nominal message in Figure 1b) parametrically defined by the
conformance test suite. The SUT2 may not be able to process the peculiar message
from the SUT1. Third, it is not possible that the conformance test suite will cover
all cases. The SUT may make some assumptions that are not accounted for in the
conformance test suite and/or the conformance test case verification.

In the first scenario, the CTRA identifies interoperability issues using
conformance test results from both SUTs and a target interoperability test suite. If
the interoperability test suite contains any test case that corresponds to a pair of
optional pre- or post-processing test cases that either or both SUTs have not
passed, the CTRA recommends that the SUTs perform these conformance tests
first.

For the second and third scenarios, the CTRA identifies interoperability issues
from the trace of output messages including the nominal message in the pre-
processing test case and the actual message output from the SUTs. Even if the
actual message conforms to the standard specification, if there is any discrepancy
between the nominal message and the actual message, the CTRA constructs new,
conformance test cases. If the SUT1 produces the same message as the nominal
message of Figure 1b or the SUT2 is tested by a post-processing test case including
the output message of the SUT1 in Figure 1a before this interoperability test
scenario, they will more likely pass the derived interoperability test-case scenario.
It is important to note that when the CTRA compares messages, it intelligently
disregards the areas of the message where the contents are parameterized.

Thus, we summarize a set of rules the CTRA uses to recommend conformance
test cases.

Rule 1 CTRA recommends pre- and/or post-processing test cases where the
result is `undetermined' or `fail' if an interoperability test case
derived from the corresponding optional pre- and post-processing
test cases is included in the interoperability test suite.

Rule 2 For each pair of `pass' pre- and post-processing tests, from which the
interoperability test case in the interoperability test suite is derived,
compare the pre-processing’s actual output message with the
nominal message in the post-processing test case. If they are not
identical,

Rule 2.1 Generate a new post-processing test case using the pre-processing’s
actual output message and recommend the post-processing system to
pass it, or

An Iterative Procedure for Efficient Testing of B2B: A Case in Messaging Service Tests 7

Rule 2.2 Recommend that the pre-processing system produce the same output
message as the nominal message.

Rule 3 CTRA recommends the expert of the target specification to analyze the
conformance test cases generated from RULE 2 and updates the
conformance test suite according to the generality and consistency of
those test cases. This can help increase future interoperability
efficiency by extending the coverage of the conformance test suite.

5.2 Interoperability Test Results Analyzer

The ITRA provides an efficient mechanism to detect and correct issues in the
failed interoperability tests. The correlation between SUTs’ interactions typically
makes it difficult to analyze test results and resolve the failure in the
interoperability testing mode. To reduce these correlations, the ITRA constructs a
pair of conformance test cases that reflect the interoperability tests and
recommends each SUT to investigate the issue independent of each other.

Figure 4 illustrates an execution scenario of an interoperability test case to
verify whether a pair of SUTs can perform a basic message exchange (Message A
and B). The ITRA requires that the interoperability test harness includes a monitor
test component that transparently records messages exchanged between SUTs. The
test procedure is as follows. First, the SUT1 receives a test instruction from an
interoperability test case. It then creates and sends Message A to the SUT2.
Message A is generated according to the test instruction, presumably, in
accordance with the standard specification. Second, the SUT2 receives and
processes the message and then creates a response Message B. The response is
generated, presumably, according to the standard specification. This response
message will be sent to the SUT1. Finally, the test executor analyzes and reports a
test result by comparing the response message with an assert instruction in the test
case. It is noted that the monitor records all messages exchanged.

Test
Instruction Message

A

Message
B

Assert
Instruction

Result
Analysis

SUT1 SUT2 Monitor

Test Case

Fig. 4. Interoperability test case example

In this interoperability test, the ITRA defines three types of scenarios to detect
interoperability problems as shown in Figure 5. In the Figure 5a and 5b, the
monitor detects that each SUT did not send any message. In this case, the ITRA
generates and recommends a new conformance test case for either the SUT1 or
SUT2. In the Figure 5c, the monitor receives all messages but the test result is `fail'
because SUT1 cannot process the response message from the SUT2 (the message
has unexpected content). In this case, the ITRA generates and recommends a pair

8 J. Kim and S. Kulvatunyou

of conformance test cases for both SUTs. These test cases simulate the same
interoperability test, but they allow SUTs to figure out and resolve the problem
independent of each other instead of repeatedly retrying the more convoluted
interoperability tests.

S1 S2 M

RA

S1 S2M

RA

S1 S2 M

RA

Fail Fail Fail

AI AI AI

TI TI TI

 a. scenario 1 b. scenario 2 c. scenario 3

Fig. 5. Failed interoperability scenarios (TI: test instruction, AI: assert instruction, and RA:
result analysis, S1: SUT1, S2: SUT2, and M: monitor)

Figure 6 illustrates a pair of conformance test cases generated from the
interoperability test case in Figure 4. ITRA generates these test cases by using test
traces recorded by the monitor. Note that the test driver component in Figure 6
simulates the partner SUT, and the nominal Message A and the nominal Message
B are parameterized based on actual message traces; e.g., the message date and
time has to be current.

SUT1 TD

TC TI

AI RA

AI &
TI

Post-
processing

Post-
processing

Msg
(A)

Msg
(Bn)

 TD SUT2

TC TI

AI RA

Post-
processing

Pre-
processing

Msg
(An)

Msg
(B)

 a. conformance test case for SUT1 b. conformance test case for SUT2

Fig. 6. Generated conformance test case for SUT2 (TC: test case, TD: test driver, Msg:
message, Msg An: nominal message based on message A, and Msg Bn: nominal message
based on message B)

We summarize below a set of rules that the ITRA will use to recommend
conformance test cases.

An Iterative Procedure for Efficient Testing of B2B: A Case in Messaging Service Tests 9

Rule 1 When the monitor does not receive a message from a SUT, the ITRA
generates a conformance test case and recommends the SUT to pass
the test via an independent conformance testing.

Rule 2 If the monitor receives all messages but the test result is `undetermined'
or `fail', the ITRA generates a pair of conformance test cases for
SUT1 and SUT2 and recommends each SUT to pass these test cases
independently.

Rule 3 ITRA recommends that the expert of the target specification analyze the
conformance test cases generated from RULE 1 and 2 and update
the conformance test suite in the same way as Rule 3 for CTRA in
Section 4

An engineer should consider how to eliminate the unanticipated interoperability
issues. It may be that the standard specification is ambiguous or the conformance
test suite is missing some important test cases and/or verification conditions.

6 Case Study

For comparative study, we illustrate an experimental test scenario to apply the ITP
to the traditional CIT in the ebXML IIC test framework [7]. This experimental test
scenario is inferred from experiences in the testing of the ebXML Messaging
Service (ebMS) specification [18] within the Korea B2B Interoperability Testbed
(KorBIT) [19]. Two examples of fatal interoperability problems are illustrated
below:

• XML Prolog mismatch: SUT1 supports and generates the SOAP message
with an XML declaration in XML Prolog but SUT2 does not. The
declaration is an optional functionality of the ebMS specification. The
SUT2 cannot parse any message from the SUT1 because it disregards this
test case.

• Timestamp expression mismatch: SUT2 supports post-processing of
various timestamp expressions but in a certain configuration setting it
generates a timestamp using the expression containing a decimal fraction as
default such as “20050630T103420.60”. The SUT2 only supports
timestamp expressions such as “20050630T103420”, “2005-06-
30T10:34:20” or “050630T103420”. When the SUT B sends a message
including the decimal timestamp to the SUT1, the SUT1 cannot parse the
message because it cannot process the decimal timestamp. The standard
ebMS conformance test suite [20] does not account for timestamp
representation and processing.

To resolve these interoperability problems, experts can use either traditional CIT or
proposed ITP. For a comparison between the two approaches, Table 1 shows how
each approach resolves the interoperability problems. In addition, Table 2 shows

10 J. Kim and S. Kulvatunyou

how the ITP requires less time and expense than that of the CIT for resolving the
interoperability problems.

Table 1. Procedure for CIT and ITP to resolve interoperability problems

Interoperability
Problems Procedure for CIT Procedure for ITP

XML Prolog
mismatch

Conformance testing may not
detect this interoperability
problem because the
conformance test case regarding
the XML Prolog is optional, but
interoperability testing will fail
due to the difference in message
packaging. The CIT
recommends that both SUTs
repeat the same interoperability
test to debug the problem
without any suggestion.

Using Rule 1 in Section 5, the
CTRA can detect this
interoperability problem before the
interoperability testing. It
recommends that the SUT2 passes a
post-processing test case
corresponding to this problem in the
conformance testing or the SUT1
packages messages without an
XML declaration in the XML
Prolog. In this case, both SUTs
know in advance about the problem.

Timestamp
expression
mismatch

Conformance testing cannot
detect this interoperability
problem, but interoperability
testing fails due to the difference
in timestamp formats. The CIT
recommends that both SUTs
repeat the same interoperability
test to debug the problem.

The SUT2 configuration does not
produce the decimal timestamp
during the conformance test. Hence,
the CTRA cannot detect this
problem. The SUTs subsequently
fail the interoperability test. ITRA
uses Rule 1 in Section 6. It
generates and recommends a new
conformance test case for SUT1,
which simulates the same
interoperability test. The SUT1 can
perform the test and analyze the
cause of the problem independently
without consuming the time of
SUT2 engineers.

Table 2. Solution comparison of CIT and ITP

Interoperability
Problems Test Cost for CIT Test Cost for ITP

XML Prolog
mismatch

Because the ebMS vendors could
find this problem using CTRA, it
took them only a few days to
perform the recommended
conformance tests before the
interoperability testing.

Timestamp
expression
mismatch

In the KorBIT interoperability
trials, an ebMS vendor had taken
several weeks to detect and
resolve these problems because
the vendor could not expect the
problems in the interoperability
tests. The vendor had to analyze
his system in detail to find the
cause and consider correlations
with his integrating vendor.

Because the SUT1 could simulate
the interoperability test without the
SUT2 by using the conformance
test case generated from ITRA, it

An Iterative Procedure for Efficient Testing of B2B: A Case in Messaging Service Tests 11

had taken the ebMS vendor for
SUT1 a few days to perform and
analyze the generated conformance
tests. After detecting the failure
cause , it had takenboth ebMS
vendors a few more days to resolve
it.

In this case study, ITP could efficiently resolve the interoperability issues with two
additional conformance test cases. Furthermore the expert can update new test
cases in the conformance test suite, such as a conformance test case to check if the
SUT can process a timestamp expression containing a decimal fraction.

7 Conclusion and Future Work

This paper characterizes the interoperability issues into the anticipated, potential,
and unanticipated. The conformance test cases are written for the anticipated issues
while potential and unanticipated issues are discovered in the interoperability test.
Software solutions may not pass all conformance test cases, resulting potential
interoperability issues that can occur in the interoperability test. By the virtue that
the conformance testing is less expensive and less complicated than the
interoperability testing, we proposed an Iterative Test Procedure (ITP), which
recognizes potential and unanticipated interoperability issues and
generates/recommends test cases to resolve them in the conformance testing mode.
The ITP includes rules for recognizing these issues implemented in the
Conformance Test Result Analyzer (CTRA) and the Interoperability Test Result
Analyzer (ITRA). These rules are not standard specific. CTRA and ITRA modules
analyze test results and message traces, intelligently compose parameterized test
messages, and subsequently form conformance test cases.

The ITP has been applied to the testing of the messaging standard specification.
We hypothesize that the same approach can benefit the conformance and
interoperability testing of other e-business layers such as the business process and
business document specifications. Our future research will follow this hypothesis.

Disclaimer

Certain commercial software products are identified in this paper. These products
were used only for demonstration purposes. This use does not imply approval or
endorsement by NIST, nor does it imply that these products are necessarily the best
available for the purpose.

12 J. Kim and S. Kulvatunyou

8 References

[1] Scott Moseley, Steve Randall, Anthony Wiles, (2004) In Pursuit of Interoperability,
International Journal of IT Standards and Standardization Research, vol. 2 no. 2, pp.
34-48

[2] James D. Kindrick, John A. Sauter, Robert S. Matthews, (1996) Improving
Conformance and Interoperability Testing, StandardView, vol 4, issue 1, pp. 61-68

[3] Sungwon Kang, Relating interoperability testing with conformance testing, (1998)
Global Telecommunications Conference, vol 6, pp. 3768-3773

[4] Durand, J., Kass, M., Wenzel, P. (2003) The ebXML Test Framework and the
Challenges of B2B Testing, ebXML Conference 2003

[5] Boonserm Kulvatunyou, Nenad Ivezic, Albert T. Jones, (2005) Content-Level
Conformance Testing: An Information Mapping Case Study, International Conference
on Testing of Communicating Systems: 17th IFIP TC6/WG 6.1 International
Conference, TestCom 2005, Montreal, Canada, pp.349-364

[6] S. Bradner, (1997) RFC2119: Key words for use in RFCs to Indicate Requirement
Levels

[7] ebXML Implementation, Interoperability and Conformance (IIC) Technical
Committee, ebXML IIC Test Framework Version 1.0

[8] ISO/IEC 9646: 1994, OSI Conformance Testing Methodology and Framework Parts
1-7

[9] ITU-T X.290 Series, (1994) Conformance Testing Methodology and Framework
[10] ETSI TS 102 237-1, Interoperability test methods & approaches, Part 1: Generic

approach to interoperability testing
[11] Stephen Castro, (1991) The relationship between conformance testing of and

interoperability between OSI systems, Computer Standards and Interfaces 12, pp.3-11
[12] Arakawa, N., Phalippou, M., Risser, N., Soneoka, T., (1993) Combination of

conformance and interoperability testing, in Formal Description Techniques, M. Diaz
and R. Groz, Eds. New York: Elsevier, 1993, vol. C-10, pp. 397-412.

[13] O. Rafiq, R. Castanet, (1990) From conformance testing to interoperability testing,
Proceedings of the 3rd International Workshop on Protocol Test System

[14] Sungwon Kang, Myungchul Kim, (1997) Interoperability Test Suite Derivation for
Symmetric Communication Protocols, FORTE, pp. 57-72

[15] Soonuk Seol, Myungchul Kim, Sungwon Kang, Jiwon Ryu, (2003) Fully automated
interoperability test suite derivation for communication protocols, Computer
Networks 43(6), pp. 735-759

[16] Mazen, M., Dibuz, S., (1998) Pragmatic method for interoperability test suite
derivation, In Proceedings of 24th Euromicro Conference, pp. 838-844, IEEE

[17] D. Richard Kuhn, Vadim Okun, (2006) Pseudo-Exhaustive Testing for Software, 30th
NASA/IEEE Software Engineering Workshop, April 25-27

[18] OASIS ebXML Messaging Services Technical Committee, ebXML Message Service
Specification Version 2.0

[19] Korea B2B/A2A Interoperability Testbed (KorBIT), http://www.korbit.org
[20] ebXML Implementation, Interoperability and Conformance (IIC) Technical

Committee, ebXML Messaging (2.0) Conformance Test Suite Version 1.0

