
Notes on an Information Model
for Production Rules Exchange

Peter Denno,
National Institute of Standards and Technology,

Gaithersburg, Maryland, 20899
peter.denno@nist.gov

ABSTRACT

Production rules are rules used in production systems, sometimes called production rule
engines. Production rule engines are commonly used to implement expert systems. This
report describes an information model for the exchange of production rules and for
description of the relationship of the rules to a data population. The report is a precursor to
a standardization effort in the ISO 10303 suite of standards. The report takes the form of a
standards document generally, but departs from that form in places to provide more user-
friendly explanation.

1.0 Scope

This report provides guidance on two forms of data structure mapping: (1) mapping of
production rules to EXPRESS-based data [1], and; (2) mapping of instances in an
EXPRESS population to structures typically found in production rule systems. The
EXPRESS information model which this report describes is provided in an appendix to
this report. The information model provides:

• information describing rules for their use with typical production rule software
• information identifying the entity data type instances of a given EXPRESS pop-

ulation, and their attributes, that are subject to the rules
• information identifying the disposition of the rules with respect to the organiza-

tion that produced them
• information providing logical grouping of rules
• information identifying the production rule software, and its version, with which

the rules are intended to be used
• constraints concerning the form of rules

Out of scope for the information model are:

• provisions describing the syntax of rules with respect to particular production
rule software

• provisions describing the execution semantics of rules
1 of 20

2.0 Definitions

• atomic formula - a syntactic structure consisting of a predicate symbol of
some arity n, and an n-tuple of terms

• condition - an atomic formula, or negated atomic formula, in the premise of a
rule
Note: conditions serve as patterns used in the pattern matching process of a
production rule engine

• constant - a symbol that invariantly names a distinct object
• function - a term-forming relation that maps from an n-tuple of argument to at

most one object
• ground fact - an atomic formula that is free of variables
• interpretation - the assignment of objects from the domain to the appropriate

constructs of a formal language
Note: These assignments are made by a human.

• object - the thing referred to by a symbol in an interpretation
• population mapping - a mapping of data governed by an EXPRESS schema

to working memory of a production rule engine
• predicate - a sentence-forming relation among objects

Note: A predicate is encoded as an atomic formula. A predicate (father-of henry
peter) might read “Henry is the father of Peter.”

• predicate symbol - a name that refers to the form of a predicate
• production memory - the internal representation of rules in a production rule

system
• row value - a sequence of values, none of which are row values
• row variable - a variable naming a row value in the context of a substitution
• substitution - a mapping from variables to terms
• symbol - an atomic lexical structure
• term - an expression denoting an object
• variable - a symbol that, in the context of a substitution, names an object
• working memory - the internal representation of asserted facts in a production

rule system
2 of 20

3.0 Fundamental Concepts

3.1 Two Targets of the Mapping

As stated above, this report describes two forms of mapping: (1) mapping of production
rules to EXPRESS-based data, and; (2) mapping of EXPRESS data types, and
instances in an EXPRESS population, to three structures typically found in production
rule systems: symbols, row values, and ground facts. The purpose of the first form of
mapping is to allow production rules and related data to be exchanged by EXPRESS-
based software tools. The purpose of the second form of mapping is to describe relation-
ships between EXPRESS-based populations and the rules. The mapping defines how
the extents of predicates can be populated so that there is an interpretation where all the
rules are true.

Mapping of the production rules to the exchange form is described in Clause 3.2. Map-
ping of EXPRESS-based data to production rule system structures described in
Clause 3.3.

EXAMPLE 1: A CLIPS [5] rule is described by data conforming to this report using the
form of mapping (1), mapping rules to EXPRESS-based data.

EXAMPLE 2: A property defined by an attribute of an entity instance is mapped to a
ground fact using the form of mapping (2), mapping EXPRESS-based data to production
rule system structures.

EXAMPLE 3: An EXPRESS aggregate value is mapped to a production rule row value
using form of mapping (2). The row value is a substitution for a row variable in the
premise of a rule.

3.2 Mapping Rule System Objects to EXPRESS-based Data

Objects are those things that a rules engine allows to play roles in the terms of predi-
cates. The range of such things may exceed the scope of provisions for object identifica-
tion described in this report. Term_select comprises types of objects that may serve as
terms in predicates.
TYPE Term_select = SELECT (Symbol, Constants, Func, Rule_variable,
Row_Variable); END_TYPE;
3 of 20

3.2.1 Primitive Types

String, number, and logical values of the rule system (rule system ‘constants’) are
mapped to their respective EXPRESS types, STRING, NUMBER, and LOGICAL.
TYPE PR_NUMBER = NUMBER; END_TYPE;
TYPE PR_STRING = STRING; END_TYPE;
TYPE PR_LOGICAL = LOGICAL; END_TYPE;
TYPE PR_BINARY = BINARY; END_TYPE;

TYPE Constants = SELECT (PR_NUMBER, PR_STRING, PR_LOGICAL, PR_BINARY);
END_TYPE;

3.2.2 Symbols

Symbols are used by the rules system to name the things on which assertions are made.
Symbols are mapped to the entity type Symbol.

ENTITY Symbol;
 name : STRING;
END_ENTITY;

Example: EXPRESS entity instances could be represented by symbols. An entity
instance encoded using the clear text encoding (ISO 10303-21) [6]
#34=POINT(1.0,2.0,1.0); might be represented in the production system as a Symbol
with name '#34'.

3.2.3 Row values

Row values are available in some production rule systems. Row values are mapped to
Row_value.
ENTITY Row_value;
 values : LIST OF Term_Select;
 WHERE
 WR1: SIZEOF(QUERY(v <* SELF.values | contains_variable(v))) = 0;
 WR2: SIZEOF(QUERY(v <* SELF.values | 'PRODUCTION_RULE_ARM.ROW_VALUE'

IN TYPEOF(v))) = 0;
END_ENTITY;

3.2.4 Functions

The entity data type Func is used to represent the notion of function in the production
rule system.
ENTITY Func;
4 of 20

 func_sym : Function_Symbol;
 terms : LIST OF Term_select;
END_ENTITY;

3.2.5 Variables

Kinds of variables are distinguished by their scope and the kind of value that they may
name. Production rule systems vary with respect to their provisions for grouping rules for
execution. This specification provides for grouping by Rule_set, which identifies a col-
lection of rules, and Rule_set_group, which identifies a collection of rule sets. Variable
may be scoped to individual rules, a rule set, or a rule group. A row variable is a variable
naming a row value in the context of a substitution.
TYPE Scope_select = SELECT (Rule_definition, Rule_set, Rule_set_group);
END_TYPE;

ENTITY Abstract_variable
 ABSTRACT SUPERTYPE OF (ONEOF (Scalar_variable, Row_variable));
 name : STRING;
 scope : Scope_select;
 UNIQUE
 UR1 : name, scope;
END_ENTITY;

ENTITY Scalar_variable
 SUBTYPE OF (Abstract_variable);
END_ENTITY;

ENTITY Row_variable
 SUBTYPE OF (Abstract_variable);
END_ENTITY;

3.2.6 Atomic Formulas and Conditions

An atomic formula is a syntactic structure consisting of a predicate symbol of some arity
n, and an n-tuple of terms. An atomic formula represents a predicate, a sentence-forming
relation among the values represented by the n terms. The subtype Rule_condition of
entity data type Atomic_formula is used to specify a condition of a rule.

 ENTITY Atomic_formula;
 pred_sym : Predicate_symbol;
 terms : LIST OF Term_select;
END_ENTITY;

SUBTYPE_CONSTRAINT Atomic_formula_sc FOR Atomic_formula;
 ABSTRACT SUPERTYPE;
 ONEOF (Rule_condition, Ground_fact);
5 of 20

END_SUBTYPE_CONSTRAINT;

ENTITY Rule_condition
 SUBTYPE OF (Atomic_formula);
 positive : BOOLEAN;
END_ENTITY;

The attribute positive indicates the relationship of working memory to the satisfaction
of the condition. When positive is TRUE, the condition is satisfied if a working memory
element is found that matches the pattern in the context of some variable substitutions.
When positive is FALSE, the condition is satisfied if no working memory element is
found that matches the pattern in the context of the variable substitutions. Note that the
matching is presumed to be performed in the context of variable substitutions that are
consistent across all conditions of the rule.

3.2.7 Ground Facts

A ground fact is an atomic formula containing no variables. The entity data type
Ground_fact is used to represent an item that shall be made present in the working
memory of the production rules engine before the execution of rules commences.
ENTITY Atomic_formula;
 pred_sym : Predicate_Symbol;
 terms : LIST OF Term_select;
END_ENTITY;

SUBTYPE_CONSTRAINT Atomic_formula_sc FOR Atomic_formula;
 ABSTRACT SUPERTYPE;
 ONEOF (Rule_condition, Ground_fact);
END_SUBTYPE_CONSTRAINT;

ENTITY Ground_fact
 SUBTYPE OF (Atomic_formula);
 WHERE
 WR1: SIZEOF(QUERY(r <* SELF\Atomic_formula.terms |
 contains_variable(r))) = 0;
END_ENTITY;

3.2.8 Rules

A Forward_chaining_rule represents an assertion stating that for any set of substitu-
tions under which the premise is satisfied, the ground facts represented by the conclu-
sion under those substitutions also hold.
6 of 20

A Back_chaining_rule represents an assertion stating that for any set of substitutions
under which the body is satisfied, the ground facts represented by the head under those
substitutions also hold.

Forward_chaining_rule is distinguished from Back_chaining_rule by the expres-
sions allowed in the head and body of each.
ENTITY Forward_chaining_rule
 SUBTYPE OF (Rule_definition);
 premise : Clause_Select;
 conclusion : Literal_conjunction;
 WHERE
 WR1 (local_vars_of(SELF.conclusion) <=
 local_vars_of(SELF.premise));
END_ENTITY;

TYPE Clause_select = SELECT (Simple_clause, Complex_clause);
END_TYPE;

ENTITY Simple_clause;
 formulas : LIST [1:?] OF Rule_condition;
END_ENTITY;

ENTITY Literal_conjunction
 SUBTYPE OF (Simple_clause);
END_ENTITY;

Example: The following depicts a CLIPS rule and its encoding using the clear text
encoding (ISO 10303-21) [6]. The premise of the rule uses the Simple_clause syntax:

(defrule rule1
 (rep_context.kind ?x 'Systems Engineering')
 (view_def_context.ctx_name ?x ?view)
 =>
 (syseng.view ?x ?view))

#1=FORWARD_CHAINING_RULE('fcr1','rule1',
'test rule',#100,(),#101,(),$,#2,#10);
#2=LITERAL_CONJUNCTION((#3,#7));
#3=RULE_CONDITION('rep_context.kind',(#4,'Systems Engineering'),.T.);
#4=RULE_VARIABLE('?x',.F.);
#7=RULE_CONDITION('view_def_context.ctx_name',(#4,#8),.T.);
#8=RULE_VARIABLE('?view',.F.);
#9=RULE_CONDITION('syseng.view',(#4,#8),.T.);
#10=LITERAL_CONJUNCTION((#9));

#100=VIEW_DEFINITION_CONTEXT('rule demo','spec writing',
7 of 20

'need example for spec');
#101=RULE_VERSION('ver 1','Version 1',#102);
#102=RULE_PRODUCT('rp1','rule product 1','A rule product');

In the context of a substitution, a variable names an object. The object is the value of the
variable under the substitution. When no substitution applies, the variable is said to be
unbound. All local variables occurring in the conclusion of a rule shall also appear in the
premise of a rule. The rule WR1 of Forward_chaining_rule enforces this constraint
against unbound variables in the conclusion.

3.2.9 Common Syntactic Features of Rules

Production rule systems commonly provide syntactic features that, though they have no
effect on the execution model of the system, make the formulation of rules less verbose.
An example of such a syntactic convenience is the nesting of conjunctions and disjunc-
tions of conditions in the premise of a rule. This report provides for this syntactic feature
using the Complex_clause entity data type.
TYPE Clause_select = SELECT (Simple_clause, Complex_clause);
END_TYPE;
ENTITY Complex_Clause;
 clauses : LIST [2:?] OF Clause_select;
END_ENTITY;

ENTITY Complex_conjunctive_clause
 SUBTYPE OF (Complex_Clause);
END_ENTITY;

ENTITY Complex_disjunctive_clause
 SUBTYPE OF (Complex_Clause);
END_ENTITY;

EXAMPLE: The following depicts a CLIPS rule and its encoding using the clear text
encoding (ISO 10303-21) [6]. The premise of the rule uses the Complex_clause syntax:
(defrule rule2
 (OR
 (AND (foo ?x 7)
 (bar ?x ?y))
 (AND (baz ?z)
 (not (foo ?x 7)))
 (AND
 (taz ?z 2)
 (OR (taz ?z 3) (gaz ?z 3))
 (OR (taz ?z 6) (gaz ?z 6))))
 =>
 (foobar ?x ?y ?z))
8 of 20

#11=FORWARD_CHAINING_RULE('fcr2','rule2',
'test rule',#100,(),#101,(),$,#12,#50);
#12=COMPLEX_DISJUNCTIVE_CLAUSE((#13,#14,#15));
#13=LITERAL_CONJUNCTION((#31,#33));
#14=LITERAL_CONJUNCTION((#35,#37));
#15=COMPLEX_CONJUNCTIVE_CLAUSE((#16,#17,#18));
#16=LITERAL_CONJUNCTION((#38));
#17=LITERAL_DISJUNCTION((#40,#41));
#18=LITERAL_DISJUNCTION((#42,#43));
#31=RULE_CONDITION('foo',(#32,7),.T.);
#32=RULE_VARIABLE('?x',.F.);
#33=RULE_CONDITION('bar',(#32,#34),.T.);
#34=RULE_VARIABLE('?y',.F.);
#35=RULE_CONDITION('baz',(#36),.T.);
#36=RULE_VARIABLE('?z',.F.);
#37=RULE_CONDITION('foo',(#32,7),.F.);
#38=RULE_CONDITION('taz',(#36,2),.T.);
#40=RULE_CONDITION('taz',(#36,3),.T.);
#41=RULE_CONDITION('gaz',(#36,3),.T.);
#42=RULE_CONDITION('taz',(#36,6),.T.);
#43=RULE_CONDITION('gaz',(#36,6),.T.);
#50=RULE_CONDITION('foobar',(#32,#34,#36),.T.);

3.3 Mapping EXPRESS-based Data to Rule System Objects

3.3.1 Enumeration values

Enumeration values are mapped to symbols, where the suffix of the name of the symbol
is identical with the name of the enumeration item, and the prefix of the name of the sym-
bol are the characters specified by the prefix attribute of an instance of
Enum_reference_prefix, if such an instance exists in the population. If there is no such
instance, the prefix is the empty string, that is, no characters are prefixed to the name.
ENTITY Enum_reference_prefix;
 prefix : STRING;
END_ENTITY;

RULE max_one_entity_prefix FOR (Enum_reference_prefix);
 WHERE
 SIZEOF(QUERY(x <* Enum_reference_prefix | TRUE)) <= 1;
END_RULE;

EXAMPLE: If an instance of Enum_reference_prefix is present in the population, and
the value of its prefix attribute is ':', then an EXPRESS enumeration value GREEN is
encoded as:GREEN
9 of 20

3.3.2 Aggregates

EXPRESS aggregate values, where the base data type is not itself an aggregate, are
mapped using Row_value. This report contains no provisions for mapping EXPRESS
aggregates where the base data type is itself an aggregate.

3.3.3 Selection from an EXPRESS-based population

A population mapping is expressed through provisions that (1) identify instances
involved in the mapping (described in this clause) and (2) identify what ground facts
about those instances are to be asserted to working memory (described in Clause 3.3.4).
Population mapping occurs before the execution of rules commences.

Instances involved in the mapping are identified as though a query were applied to a
specified entity extent. The entity data type Extent provides for the expression of this.
ENTITY Extent;
 source : STRING;
 variable_id : OPTIONAL STRING;
 query_expression : STRING;
 syntax : OPTIONAL Expression_syntax;
END_ENTITY;

The attribute Extent.syntax indicates the syntax in which the query is specified. If the
value of this attribute is EXPRESS, then instances are identified as though the EXPRESS
query expression (10303-11v2 clause 12.6.7) [1] were applied to an aggregate contain-
ing a specified entity extent. The details of the mapping of the query expression to the
attributes of the Extent entity type are described below.

The syntax of the EXPRESS query expression is:

QUERY ’(’ variable_id ’<*’ aggregate_source ’|’ logical_expression ’)’

Though this syntax is not used in the mapping, it correlates with the attributes of the
Extent entity:

(1) The value of Extent.variable_id performs the role of variable_id above. The value
shall be a string conforming to the syntax of an EXPRESS identifier.

(2) The value of Extent.query_expression performs the role of logical_expression
above. The value shall be a string conforming to the syntax of an EXPRESS expression.
The expression shall either be the EXPRESS boolean value TRUE, or it shall refer to the
variable identifier supplied by Extent.variable_id.
10 of 20

(3) The value of Extent.source performs the role of aggregate_source above. The
value shall be the string 'GENERIC_ENTITY' or of the form 'SCHEMA.TYPE' (in upper
case) where TYPE names an entity type and SCHEMA is the name of the schema that con-
tains the definition of the type.

(4) A value shall be supplied for Extent.variable_id unless the value of
Extent.query_expression is TRUE.

Under this mapping, evaluation of the query expression identifies a subset of the entity
population that may be referenced as Entity_assertion.source or
Attribute_assertion.source for assertion of ground facts as described in
Clause 3.3.4. Elements taken one by one from the source aggregate provide a substitu-
tion for variable_id in the logical_expression. The logical_expression is then evaluated. If
logical_expression evaluates to true, the element is added to the result; otherwise, it is
not.

 Example 1: If syntax is EXPRESS, an Extent instance with source 'GENERIC_ENTITY'
and query_expression 'TRUE' represents an aggregate consisting of all instances in
the population.

Example 2: If syntax is EXPRESS, an Extent instance with source
'my_schema.component_2d_location', variable 'p' and query_expression '(p.x
= 0) AND (p.y = 0)' represents an aggregate of all instances of type
component_2d_location that are located at the origin.

Example 3: If syntax is XPATH, then query_expression might contain a W3C XPath
path expression [7] that identifies a node sequence representing the intended instances.

3.3.4 Assertion of ground facts

Extent instances are referenced by instances of type Fact_type to represent the rela-
tionship between each element of the aggregate represented by the Extent instance
and a ground fact.
ENTITY Fact_type;
 ABSTRACT SUPERTYPE OF (ONEOF (Entity_assertion, Attribute_assertion));
 source : Extent;
 predicate_symbol : STRING;
END_ENTITY;

ENTITY Entity_assertion
 SUBTYPE OF (Fact_type);
END_ENTITY;

ENTITY Attribute_assertion
11 of 20

 SUBTYPE OF (Fact_type);
 group_qualifier : OPTIONAL STRING;
 attribute : STRING;
END_ENTITY;

Entity_assertion represents an instruction to add one unary ground fact to working
memory for each element of the aggregate represented by source. The predicate sym-
bol of the facts asserted is that specified in attribute predicate_symbol. A ground fact is
asserted for each element of the aggregate represented by source. The argument to the
ground fact is a Symbol instance representing the subject element.

Attribute_assertion represents an instruction to add one binary ground fact to work-
ing memory for each element of the aggregate represented by source. The predicate
symbol of the facts asserted is that specified in attribute predicate_symbol. A ground
fact is asserted for each element of the aggregate represented by source. The argument
to the ground fact is an ordered tuple consisting of a Symbol instance representing sub-
ject element and the value of the attribute of the instance specified by attribute, an
upper case string. The value of group_qualifier shall be an upper case string naming
the entity data type containing the attribute. It shall be supplied if the source of the
named attribute would otherwise be ambiguous (because the complex entity instance
contains multiple attributes with the name specified by attribute).

4.0 Built-in Functions

The Function_symbol ATTR_VAL refers a function of two arguments. The first argument
shall be an entity instance and the second a string of form ENTITY.ATTRIBUTE (upper
case) naming an attribute of the argument entity instance. The value of the function is the
value of the named attribute of the argument instance.

EXAMPLE: Though the kind attribute of an entity Representation_context may not
have been asserted as a ground fact (such as might be assumed from the example in
Clause 3.2.8), a predicate may still be expressed for such a fact:
#3=RULE_CONDITION('rep_context.kind’,(#4,#5),.T.);
#4=RULE_VARIABLE('?x',.F.);
#5=FUNC(.ATTR_VAL.,(#4,'REPRESENTATION_CONTEXT.KIND'));

5.0 Appendix -- EXPRESS Short Form

SCHEMA PRODUCTION_RULE;

USE FROM Specification_document_arm;
12 of 20

USE FROM Software_arm;
USE FROM Activity_arm;
USE FROM Product_identification_arm;
USE FROM Date_time_assignment_arm;
TYPE PR_NUMBER = NUMBER; END_TYPE;
TYPE PR_STRING = STRING; END_TYPE;
TYPE PR_LOGICAL = LOGICAL; END_TYPE;
TYPE PR_BINARY = BINARY; END_TYPE;

TYPE Constants = SELECT (PR_NUMBER, PR_STRING, PR_LOGICAL, PR_BINARY);
END_TYPE;

TYPE Function_symbol = SELECT (PR_STRING, Built_in_functions);
END_TYPE;

TYPE Built_in_functions = EXTENSIBLE ENUMERATION OF (ATTR_VAL);
END_TYPE;

TYPE Expression_syntax = EXTENSIBLE ENUMERATION OF (EXPRESS);
END_TYPE;

TYPE Predicate_symbol = STRING;
END_TYPE;

TYPE Scope_select = SELECT (Rule_definition, Rule_set, Rule_set_group);
END_TYPE;

TYPE Term_select = SELECT (Symbol, Constants, Func, Scalar_variable,
Row_value, Row_variable);
END_TYPE;

ENTITY Enum_reference_prefix;
 prefix : STRING;
END_ENTITY;

RULE max_one_entity_prefix FOR (Enum_reference_prefix);
 WHERE
 SIZEOF(QUERY(x <* Enum_reference_prefix | TRUE)) <= 1;
END_RULE;

ENTITY Rule_definition
 ABSTRACT SUPERTYPE OF (ONEOF (Forward_chaining_rule, Back_chaining_rule))
 SUBTYPE OF (Rule_software_definition);
END_ENTITY;

ENTITY Forward_chaining_rule
 SUBTYPE OF (Rule_definition);
 premise : Clause_Select;
 conclusion : Literal_conjunction;
 WHERE
13 of 20

 WR1: local_vars_of(SELF.conclusion) <= local_vars_of(SELF.premise);
END_ENTITY;

ENTITY Back_chaining_rule
 SUBTYPE OF (Rule_definition);
 head : Rule_condition;
 body : LIST OF Rule_condition;
 WHERE
 WR1: SELF.head.positive = TRUE;
 WR2: local_vars_of(SELF.head) <= local_vars_of(SELF.body);
END_ENTITY;

ENTITY Simple_clause;
 formulas : LIST [1:?] OF Rule_condition;
END_ENTITY;

SUBTYPE_CONSTRAINT Simple_clause_sc FOR Simple_Clause;
 ABSTRACT SUPERTYPE;
 ONEOF (Literal_conjunction, Literal_disjunction);
END_SUBTYPE_CONSTRAINT;

ENTITY Literal_conjunction
 SUBTYPE OF (Simple_clause);
END_ENTITY;

ENTITY Literal_disjunction
 SUBTYPE OF (Simple_clause);
END_ENTITY;

ENTITY Atomic_formula;
 pred_sym : Predicate_Symbol;
 terms : LIST OF Term_select;
END_ENTITY;

SUBTYPE_CONSTRAINT Atomic_formula_sc FOR Atomic_formula;
 ABSTRACT SUPERTYPE;
 ONEOF (Rule_condition, Ground_fact);
END_SUBTYPE_CONSTRAINT;

ENTITY Rule_condition
 SUBTYPE OF (Atomic_formula);
 positive : BOOLEAN;
END_ENTITY;

ENTITY Ground_fact
 SUBTYPE OF (Atomic_formula);
 WHERE
 WR1: SIZEOF(QUERY(r <* SELF\Atomic_formula.terms | contains_variable(r))) =
0;
END_ENTITY;
14 of 20

SUBTYPE_CONSTRAINT Complex_clause_sc FOR Complex_Clause;
 ABSTRACT SUPERTYPE;
 ONEOF (Complex_conjunctive_clause, Complex_disjunctive_clause);
END_SUBTYPE_CONSTRAINT;

ENTITY Complex_Clause;
 clauses : LIST [2:?] OF Clause_select;
END_ENTITY;

ENTITY Complex_conjunctive_clause
 SUBTYPE OF (Complex_Clause);
END_ENTITY;

ENTITY Complex_disjunctive_clause
 SUBTYPE OF (Complex_Clause);
END_ENTITY;

ENTITY Symbol;
 name : STRING;
END_ENTITY;

ENTITY Abstract_variable
 ABSTRACT SUPERTYPE OF (ONEOF (Scalar_variable, Row_variable));
 name : STRING;
 scope : Scope_select;
 UNIQUE
 UR1 : name, scope;
END_ENTITY;

ENTITY Scalar_variable
 SUBTYPE OF (Abstract_variable);
END_ENTITY;

ENTITY Row_variable
 SUBTYPE OF (Abstract_variable);
END_ENTITY;

ENTITY Row_value;
 values : LIST OF Term_select;
 WHERE
 WR1: SIZEOF(QUERY(v <* SELF.values | contains_variable(v))) = 0;
 WR2: SIZEOF(QUERY(v <* SELF.values | 'PRODUCTION_RULE_ARM.ROW_VALUE' IN
TYPEOF(v))) = 0;
END_ENTITY;

ENTITY Func;
 func_sym : Function_Symbol;
 terms : LIST OF Term_select;
END_ENTITY;
15 of 20

ENTITY Extent;
 source : STRING;
 variable_id : OPTIONAL STRING;
 query_expression : STRING;
 syntax : OPTIONAL Expression_syntax;
END_ENTITY;

ENTITY Fact_type
 ABSTRACT SUPERTYPE OF (ONEOF (Entity_assertion, Attribute_assertion));
 source : Extent;
 predicate_symbol : STRING;
END_ENTITY;

ENTITY Entity_assertion
 SUBTYPE OF (Fact_type);
END_ENTITY;

ENTITY Attribute_assertion
 SUBTYPE OF (Fact_type);
 entity_type : STRING;
 attribute : STRING;
END_ENTITY;

ENTITY Global_assignment;
 variable : Abstract_variable;
 val : Term_select;
 WHERE
 WR1: NOT(contains_variable(SELF.val));
END_ENTITY;

ENTITY Rule_software_definition
 SUPERTYPE OF (ONEOF (Rule_definition,
 Rule_set_group,
 Rule_set))
 SUBTYPE OF (Software_definition);
 SELF\Product_view_definition.defined_version : Rule_version;
END_ENTITY;

ENTITY Rule_set
 SUBTYPE OF (Rule_software_definition);
 engine : Language_reference_manual;
 conflict_resolution_strategy : OPTIONAL STRING;
 rule_member : SET[1:?] OF Rule_priority;

END_ENTITY;

ENTITY Rule_set_group
 SUBTYPE OF (Rule_software_definition);
 elements : SET[2:?] OF Rule_set;
16 of 20

END_ENTITY;

FUNCTION contains_variable (x : Term_select) : BOOLEAN;
 IF ('PRODUCTION_RULE_ARM.ABSTRACT_VARIABLE' IN TYPEOF(x)) THEN RETURN
(TRUE);
 ELSE IF (('PRODUCTION_RULE_ARM.FUNC' IN TYPEOF(X)) AND
 (SIZEOF(QUERY(y <* x.terms | contains_variable(y))) > 0))
 THEN RETURN (TRUE);
 ELSE RETURN (FALSE);
 END_IF;
 END_IF;
END_FUNCTION;

FUNCTION local_vars_of (thing : GENERIC) : SET [0:?] OF Scalar_variable;
 LOCAL
 accum : SET [0:?] OF Scalar_variable := [];
 END_LOCAL;
 RETURN (local_vars_aux(thing, accum));
END_FUNCTION;

FUNCTION local_vars_aux (thing : GENERIC; accum : SET [0:?] OF Scalar_variable)
 : SET [0:?] OF Scalar_variable;
 LOCAL i,j,k : INTEGER; END_LOCAL;
 IF (('PRODUCTION_RULE_ARM.ABSTRACT_VARIABLE' IN TYPEOF(thing)) AND
 ('PRODUCTION_RULE_ARM.RULE_DEFINITION' IN (TYPEOF(thing.scope))))
 THEN accum := accum + thing;
 ELSE IF ('PRODUCTION_RULE_ARM.RULE_CONDITION' IN TYPEOF(thing))
 THEN REPEAT i := 1 TO HIINDEX(thing\Atomic_formula.terms);
 accum := local_vars_aux(thing\Atomic_formula.terms[i],accum);
 END_REPEAT;
 ELSE IF ('PRODUCTION_RULE_ARM.SIMPLE_CLAUSE' IN TYPEOF(thing))
 THEN REPEAT j := 1 TO HIINDEX(thing.formulas);
 accum := local_vars_aux(thing.formulas[j],accum);
 END_REPEAT;
 ELSE IF ('PRODUCTION_RULE_ARM.COMPLEX_CLAUSE' IN TYPEOF(thing))
 THEN REPEAT k := 1 TO HIINDEX(thing.clauses);
 accum := local_vars_aux(thing.clauses[k],accum);
 END_REPEAT;
 END_IF;
 END_IF;
 END_IF;
 END_IF;
 RETURN(accum);
END_FUNCTION;

-- ===
-- Rule management
-- ===

ENTITY Rule_action
17 of 20

 ABSTRACT SUPERTYPE OF (ONEOF (Rule_submission,
 Rule_adoption,
 Rule_rejection,
 Rule_supersedence,
 Rule_creation,
 Rule_expiration,
 Rule_change_request,
 Rule_request,
 Rule_modification));
 subject_rule : Rule_version;
DERIVE
 subject_action_assignment : SET[0:?] OF
Organization_or_person_in_organization_assignment :=
 QUERY(temp <* USEDIN (SELF , 'PERSON_ORGANIZATION_ASSIGNMENT_ARM.'
+
'ORGANIZATION_OR_PERSON_IN_ORGANIZATION_ASSIGNMENT.ITEMS')

 | (temp.role = 'subject action assignment'));
 UNIQUE
 UR1: SELF\Rule_action.subject_rule,
SELF\Rule_action.subject_action_assignment;
 WHERE
 WR1: EXISTS (subject_action_assignment) AND
(SIZEOF(subject_action_assignment) = 1);
END_ENTITY;

ENTITY Rule_justification
 SUBTYPE OF (Rule_action);
 justified_action : Rule_action;
 justification_rationale : STRING;
WHERE
 WR1: SELF <> justified_action ;
END_ENTITY;

ENTITY Rule_adoption
 SUBTYPE OF (Rule_action);
END_ENTITY;

ENTITY Rule_change_request
 SUBTYPE OF (Rule_action);
 change_reason : STRING;
END_ENTITY;

ENTITY Rule_expiration
 SUBTYPE OF (Rule_action);
 expiration_rationale : STRING;
END_ENTITY;

ENTITY Rule_modification
 SUBTYPE OF (Rule_action);
18 of 20

 modification_rationale : Rule_change_request;
END_ENTITY;

ENTITY Rule_priority;
 priority : INTEGER;
 prioritized_rule : Rule_definition;
WHERE
 WR1: priority >= 0 ;
END_ENTITY;

ENTITY Rule_product
 SUBTYPE OF (Software);
WHERE
 WR1: SIZEOF (['rule'] * types_of_product (SELF)) = 1 ;
END_ENTITY;

ENTITY Rule_rejection
 SUBTYPE OF (Rule_action);
 rejection_reason : STRING;
END_ENTITY;

ENTITY Rule_request
 SUBTYPE OF (Rule_action);
END_ENTITY;

ENTITY Rule_submission
 SUBTYPE OF (Rule_action);
 submission_rationale : STRING;
END_ENTITY;

ENTITY Rule_supersedence
 SUBTYPE OF (Rule_action);
 superseded_rule : Rule_version;
END_ENTITY;

ENTITY Rule_version
 SUBTYPE OF (Software_version);
 SELF\Product_version.of_product : Rule_product;
INVERSE
 management_action : SET[1:?] OF Rule_action FOR subject_rule;
 product_definition : SET[1:?] OF Rule_software_definition FOR
defined_version;
END_ENTITY;

RULE rule_software_definition_constraint FOR (Product_view_definition);
WHERE
 WR1: SIZEOF (QUERY (pvd <* Product_view_definition | (
NOT('PRODUCT_RULE_ARM.' + 'RULE_SOFTWARE_DEFINITION'
 IN TYPEOF(pvd)))
 AND ('PRODUCT_RULE_ARM.' + 'RULE_VERSION' IN TYPEOF (pvd
19 of 20

. defined_version)))) = 0 ;
END_RULE;

RULE rule_version_constraint FOR (Product_version);
WHERE
 WR1: SIZEOF (QUERY(pv <* Product_version | (NOT('PRODUCT_RULE_ARM.' +
'RULE_VERSION' IN TYPEOF(pv)))
 AND ('PRODUCT_RULE_ARM.' + 'RULE_PRODUCT' IN
TYPEOF(pv.of_product)))) = 0 ;
END_RULE;

END_SCHEMA;

6.0 References

[1] International Organization for Standards, (ISO) Industrial Automation Systems and
Integration – Product Data Representation and Exchange – Part 11: description methods: The
EXPRESS Language Reference Manual. ISO 10303-11:2004, 2004.

[2] Robinson, J., A., and Voronkov, A., (editors) Handbook of Automated Reasoning, MIT Press,
Cambridge, Massachusetts 2001.

[3] Church, A., Introduction to Mathematical Logic, Princeton University Press, Princeton, New
Jersey, 1944.

[4] Doorenbos, R., B., Production Matching for Large Learning Systems, Ph.D. Dissertation,
Carnegie Mellon University, 1995.

[5] unspecified authorship, CLIPS Reference Manual, Vol 1: Basic Programming Guide, Version
6.23, June 1, 2003.

[6] International Organization for Standards, (ISO) Industrial Automation Systems and
Integration – Product Data Representation and Exchange – Part 21: implementation methods:
Clear text encoding of the exchange structure. ISO 10303-11;1994.

[7] World Wide Web Consortium (W3C), XML Path Language (XPath), http://www.w3.org/
TR/xpath, November 16, 1999.
20 of 20

	1.0 Scope
	2.0 Definitions
	3.0 Fundamental Concepts
	3.1 Two Targets of the Mapping
	3.2 Mapping Rule System Objects to EXPRESS-based Data
	3.2.1 Primitive Types
	3.2.2 Symbols
	3.2.3 Row values
	3.2.4 Functions
	3.2.5 Variables
	3.2.6 Atomic Formulas and Conditions
	3.2.7 Ground Facts
	3.2.8 Rules
	3.2.9 Common Syntactic Features of Rules

	3.3 Mapping EXPRESS-based Data to Rule System Objects
	3.3.1 Enumeration values
	3.3.2 Aggregates
	3.3.3 Selection from an EXPRESS-based population
	3.3.4 Assertion of ground facts

	4.0 Built-in Functions
	5.0 Appendix -- EXPRESS Short Form
	6.0 References

