
A Model-Driven Approach for Building OWL
DL and OWL Full Ontologies

Saartje Brockmans1, Robert M. Colomb2, Peter Haase1, Elisa F. Kendall3,
Evan K. Wallace4, Chris Welty5, Guo Tong Xie6

1 AIFB, Universität Karlsruhe (TH), Germany
2 School of Information Technology and Electrical Engineering, The University of

Queensland, Australia
3 Sandpiper Software, Inc., Los Altos, California

4 U.S. National Institute of Standards and Technology, Gaithersburg, Maryland
5 IBM Watson Research Center, New York

6 IBM China Research Lab, China

Abstract. This paper presents an approach for visually modeling OWL
DL and OWL Full ontologies based on the well-established modeling
language UML. We discuss a metamodel for OWL based on the Meta-
Object Facility, an associated UML profile, and transformations between
both. The work we present supports model-driven development of OWL
ontologies and is currently undergoing the standardization process of the
Object Management Group. After describing our approach, we present
the implementation of our approach and an example, showing how the
metamodel and UML profile can be used to improve developing Semantic
Web applications.

1 Introduction

The standardization of the Web Ontology Language (OWL, [8]) by the World
Wide Web Consortium (W3C) contributed heavily to the widespread use of on-
tologies. In 2003, the Object Management Group (OMG), a standardization con-
sortium for various aspects of software engineering including the well-established
Unified Modeling Language (UML, [21]), replied to this by issuing a Request for
Proposal for an Ontology Definition Metamodel (ODM, [18]). The intention was
to provide a Meta-Object Facility (MOF, [23]) based metamodel to support the
development of ontologies using UML modeling tools and the two-way transfor-
mation between ontologies written in a specific ontology representation language
and ontologies modeled using a dedicated UML syntax. Since that time, a sub-
mission team has developed a submission (see [7] for a concise overview), which
has undergone several revisions, based on comments solicited not only from the
OMG but also from the W3C, ISO, and Semantic Web communities as well.

The ODM submission supports the knowledge representation languages OWL
[8], RDF [1], Common Logic [15] and Topic Maps [14]. The modular structure
of MOF makes it straightforward for third parties to extend and enhance the
metamodel.

1

This paper focuses on the OWL portions of the ODM submission, which has
been recommended by OMG membership with Adoption pending at the time
of this writing. It supports model-driven development of OWL DL as well as
OWL Full ontologies using UML and two-way transformations between ontolo-
gies modeled in OWL and ontologies modeled using the UML profile. We have
not covered OWL Lite explicitly, but all constructs are provided in the base
OWL and OWL DL packages. The paper starts with an introduction of the
Model Driven Architecture and its Meta-Object Facility, and UML in Section 2.
Then, the metamodel for OWL, the associated UML profile, and the transfor-
mations between the different models are described in Section 3. Section 4 shows
the implementation of our approach and an example. Finally, after discussing
related work in Section 5, we conclude by summarizing our work and addressing
future investigations in Section 6.

2 Background

2.1 Model Driven Architecture and the Meta-Object Facility

Before presenting the model-driven approach to ontology engineering in the next
sections, we summarize the Object Management Group’s Model Driven Archi-
tecture (MDA, [5]) and its Meta-Object Facility (MOF, [23]), which are main
pillars of our approach.

In the history of software engineering, there has been a notable increase in
the use of models and the level of abstraction in the models. The basic idea
of MDA is that the system functionality is defined as a platform-independent
model using an appropriate specification language and then translated to one
or more platform-specific models for the actual implementation. To accomplish
this goal, MDA defines an architecture that provides a set of guidelines for struc-
turing specifications expressed as models. The translation between a platform-
independent model and a platform-specific model is often performed using au-
tomated tools.

MDA comprises a four-layer metamodel architecture: meta-metamodel (M3)
layer, metamodel (M2) layer, model (M1) layer, and instance (M0) layer. At
the top of the MDA architecture is the meta-metamodel, i.e., MOF. It defines
an abstract language and framework for specifying, constructing, and managing
technology- neutral metamodels. It is the foundation for defining any modeling
language such as UML. MOF also defines a framework for implementing repos-
itories that hold metadata (models) described by metamodels. The main objec-
tives of having the four layers with a common meta-metamodel are to support
multiple metamodels and models and to enable their extensibility, integration,
and generic model and metamodel management. Note that the meta-metamodel
layer is hard wired in the sense that it is fixed, while the layer of the metamodels
is flexible and allows expression of various metamodels. All metamodels, stan-
dard or custom, defined by MOF are positioned at the M2 layer. One of them is
UML, a modeling language for specifying, visualizing, and documenting systems
of various kinds. The models of the real world are at the M1 layer, defined using

2

elements at the M2 layer. Finally, at the M0 layer, are objects from the real
world or information objects representing them in an information system.

A MOF-based metamodel has clear advantages being based on a standard
meta-metamodeling system with a well-developed suite of software tools and
integrated transformation possibilities with other MOF-based metamodels.[11]

2.2 UML Profiles

UML methodology, tools, and technology provide a feasible approach for sup-
porting the development and maintenance of ontologies. The UML class diagram
is a rich representation system, widely used and well supported with software
tools. However, an ontology cannot be represented sufficiently in UML [12] and a
dedicated visual ontology modeling language is needed. The two representations
share a set of core functionalities, but despite this overlap, there are many fea-
tures that can only be expressed in OWL, and others that can only be expressed
in UML. Examples for this disjointness are transitive and symmetric properties
in OWL or methods and N-ary Associations in UML.

The UML profile mechanism is an extension mechanism to tailor UML to spe-
cific application areas. UML profiles provide specializations, using stereotypes,
of existing UML constructs. They are grounded in MOF, in that they are defined
in terms of the MOF meta-metamodel. Moreover, they are based on the UML
Kernel package and the Profiles section defined in [24].

3 Approach

In this section, we present a MOF-based metamodel for OWL DL and OWL Full.
Models based on these metamodels are OWL ontologies. OWL constructs have
a direct correspondence with those of the metamodel. Analogously, we define
a MOF-based UML profile, which is instantiated by concrete UML models, to
enable the use of UML notation and tools for ontology modeling. Within the
MOF framework, the UML models are transformed into OWL definitions and
vice versa.

3.1 A Metamodel for OWL DL and OWL Full

Overview and Design Considerations As mentioned in Section 1, although
we focus on OWL in this paper, the ODM submission at OMG provides meta-
models for several knowledge representation languages. All of them are indepen-
dent of each other, except the OWL metamodel, which extends the RDFS meta-
model, as the OWL language itself extends the RDF-S language. The metamodel
for OWL specifically contains three packages. The primary OWLBase package
contains the metamodel constructs common to both OWL DL and OWL Full.
Two additional subpackages, the OWLDL package1 and the OWLFull package,
1 ODM packages are named using a convention which employs a capitalized prefix

where qualification is needed and eliminates all spaces. Thus the language OWL DL
is represented in ODM by the package OWLDL.

3

contain constraints and extensions required to distinguish the two dialects OWL
DL and OWL Full from one another, as explained in more detail later in this
section. Users can elect to support the primary package and either or both of
the subordinate packages in order to have complete coverage of either or both
dialects of OWL. All metamodel packages are provided with constraints with
constraints on instances of the metamodels. These expressions specify invariant
conditions that must hold for the ontologies being modeled. For the constraints
on the metamodels, we refer the user to [13].

We now go through the different parts of the OWLBase metamodel package
and show some of the diagrams. Subsequently, we introduce the OWLDL and
OWLFull packages.

Fig. 1. The Ontology Diagram

OWLBase Package - OWL Ontology The RDF metamodel represents an
RDFStatement as a triple, containing subject, predicate and object whereas an
RDFGraph is a set of triples (RDFStatements). As shown in Figure 1, the OWLGraph
class specifies the subset of RDF graphs that are valid OWL graphs, consist-
ing of all OWL expressions. Similarly, the subset of RDF statements that are
valid OWL statements is reflected by the OWLStatement class. The distinction
between OWLStatement and RDFStatement is required, since in OWL DL not ev-
ery RDFStatement is a valid OWLStatement. An ontology is identified by a URI
reference (inherited from RDFSResource), which allows us to make statements
about that ontology.

OWLBase Package - Class Descriptions The metamodel has a class
OWLClass for simple OWL class definitions defined as a special type of

4

Fig. 2. OWL Class Descriptions

RDFSClass as shown in Figure 2. Moreover, it has subclasses that represent
special types of OWL class descriptions: ComplementClass, EnumeratedClass,
IntersectionClass, OWLRestriction and UnionClass. An EnumeratedClass
is connected to Individuals through an association role OWLoneOf. Associatons
between the classes define the classes in the class descriptions, e.g., the associ-
ation IntersectionClassForIntersection between IntersectionClass and
OWLClass connects the classes of an intersection. Associations EquivalentClass
and DisjointClass represent the OWL class axioms, e.g., EquivalentClass
connects a class to another class with which it is defined to be equivalent.

The class OWLRestriction is defined as a subclass of OWLClass. OWL dis-
tinguishes two kinds of property restrictions: value constraints and cardinality
constraints. All OWL property restriction types are defined as subclasses of
the class OWLRestriction. A restriction class should have exactly one property
OWLonProperty linking the restriction to a particular property. The restriction
class must also have a property that represents the value or cardinality constraint
on the property under consideration.

OWLBase Package - Properties As shown in Figure 3, the OWL meta-
model refines the RDFProperty class to support specific OWL properties. Both
object properties and datatype properties can be declared as ”functional”. For
this purpose, we define the class FunctionalProperty as a special subclass
of the class Property. Property is an abstract class that simplifies repre-

5

sentation of property equivalence and deprecation, simplifies constraints for
OWL DL and OWL Full, and facilitates mappings with other metamodels.
The class InverseFunctionalProperty is a subclass of OWLObjectProperty,
since only object properties can be declared to be inverse functional. A prop-
erty is defined as symmetric or transitive by making it an instance of the class
SymmetricProperty or TransitiveProperty respectively, both defined as sub-
classes of OWLObjectProperty. Equivalent and inverse properties can be speci-
fied with the associations EquivalentProperty and InverseProperty.

Fig. 3. The OWL Properties Diagram

OWLBase Package - Individuals Individuals are represented in a sub-
class Individual of the class RDFSResource. OWL does not make the so-
called unique name assumption. For the statements that two individuals are
different or the same, the ODM has two associations, DifferentIndividual
and SameIndividual, connected to the class Individual. The OWL con-
struct owl:AllDifferent is represented by a subclass of OWLClass, the class
OWLAllDifferent, for which the property DistinctIndividuals is defined to
link an instance of OWLAllDifferent to a list of Individuals.

OWLBase Package - Datatypes OWL makes use of the RDF datatyping
scheme and provides an additional construct, OWLDataRange, for defining a range
of data values, namely an enumerated datatype. It makes use of the owl:oneOf
construct. The subject of OWLoneOf is an anonymous node of class OWLDataRange
and the object is a list of RDFSLiterals.

OWLBase Package - OWL Universe In Figure 4, we provide the part of
the metamodel that facilitates ontology traversal for mapping purposes as well

6

as utility in defining constraints for distinguishing OWL DL and OWL Full. The
class OWLUniverse specifies the set of ontology elements (i.e., classes, individ-
uals, and properties) that together comprise a particular OWL ontology. It is
intended to simplify packaging/mapping requirements for cases where the ability
to determine the set of all elements is required.

Fig. 4. The OWL Universe Diagram

OWLDL and OWLFull Package The OWLBase package we just described
supports the constructs common to both OWL DL and OWL Full. We
provide two additional subpackages to distinguish between the two dialects.
Both consist of either extensions or constraints on the OWLBase package.
Users can use either or both of the subpackages together with the OWL-
Base package, depending on whether they want to work with OWL DL or
OWL Full. For a complete listing of OWLDL and the OWLFull package, we
refer the reader to Sections 11.8 and 11.9 of [13]. An extract of them is given here.

Some of the constraints in the OWLDL package are:

– The set of classes, datatypes, datatype properties, object properties, anno-
tation properties, ontology properties, individuals, data values, and other
built-in vocabulary are pairwise disjoint.

– All classes and properties must be explicitly typed as an appropriate OWL
class or property.

– Axioms about individual equality and difference must be about named indi-
viduals only (a consequence of category separation).

The OWLFull package contains additional extensions to support the lack
of disjointness between classes, properties and individuals. In particular, these

7

extensions provide additional attributes on the OWLBase metamodel classes
as well as definitions of new intersection classes required as a workaround to
implement OWL Full. The need for this workaround results from a limitation
in the MOF2 [23] instances model, which requires that an instance have exactly
one metaclass. This makes it impossible, for example, to have an object as an
instance both of Individual and OWLClass. When a future revision of MOF
relaxes the instances model to permit multiple classifiers, the OWLFull Package
will become superfluous.

3.2 A UML Profile for OWL ontologies

Our UML profile is designed to support modelers developing ontologies in OWL
through reuse of UML notation using tools that support UML 2 [21]extension
mechanisms. The profile reflects the structure of the OWL metamodel (and
the OWL language). We reuse the standard UML 2 notation when the con-
structs have the same intuitive semantics as OWL, or, when this is not pos-
sible, stereotyped UML constructs that are consistent and as close as possible
to OWL semantics. Stereotypes are leveraged extensively and are represented as
the OWL metaclass names enclosed in ‘<<...>>’. In the following, we introduce
our UML2 profile for OWL ontologies. We focus on property representation and
refer the reader to Chapter 14 of [13] for a full account. First, we represent the
constructs for RDF properties, since the OWL profile package imports the RDF
profile package. Then, we show how we refine these RDF property constructs
for OWL. We provide considerable flexibility so that property representation is
truly intuitive for those familiar with UML.

In UML, a UML property can be defined as part of an association or on the
class that defines the domain of the property. The UML type of the property
is the class that defines its range. In RDF and OWL, properties are defined
globally unless a domain or range is specified, that is, they are available to all
classes in all ontologies. For RDF properties that are defined without specifying
a domain or range, the profile uses a global Thing class (Thing for RDF-S,
owl:Thing in OWL ontologies) as default for the missing end class. Properties
that are defined with such a default domain or range may not have multiplicities
(other than [0..*]) or other constraints that correspond to OWL restrictions.
Figure 5 shows an example of a property without a specified domain. From
a UML perspective, RDF or OWL properties are semantically equivalent to
binary associations with unidirectional navigation (one-way associations). Figure
6 shows the alternate representation for RDF or OWL properties that includes
an association. Just like a UML property, there is efficient navigation from an
instance of Thing to an instance of Color through the hasColor end. Moreover,
associations can be classes, as shown in Figure 7. An association class can have
properties, associations, and participate in generalization as any other class.
Notice that the association has a (slightly) different name than the property, by
capitalizing the first letter, to distinguish the association class from the property
itself. A stereotype <<rdfProperty>> is introduced to highlight such binary,
unidirectional association classes, as shown in Figure 7.

8

Fig. 5. RDF Property hasColor with-
out specified domain

Fig. 6. RDF Property hasColor with-
out specified domain - alternate repre-
sentation

Fig. 7. RDF Property hasColor - association class representation

The UML representation of RDF-S and OWL property subtyping (i.e.,
rdfs:subPropertyOf) is dependent on which of the three notations above
is used. In case of the UML property representation (Figure 5), we
add a second property entry in the class and use subsetting by adding
{subsets <super-property-name>} at the end of that property entry. For
the unidirectional association (Figure 6), we add another association for the
subproperty and add {subsets <super-property-name>} to the association.
In case of the association classes (Figure 7), a UML generalization with the
stereotype <<rdfsSubPropertyOf>> is preferred. For specific OWL properties,
we use stereotypes like <<objectProperty>> instead of <<rdfProperty>>. In
these properties, additional characteristics, e.g., a property being functional or
a property being symmetric, are represented as stereotyped UML properties.

If users want to specify an owl:equivalentProperty or owl:inverseOf re-
lation between two properties, the notation is quite straightforward as well. For
instance, Figure 8 shows an owl:inverseOf relation being modeled between two
association classes using an <<inverseOf>> stereotype. An arrowhead is used
opposite from the association class that will have owl:inverseOf in XML syntax.
An even simpler form for describing a pair of properties with an inverseOf rela-
tion is shown in Figure 9. This uses a simple binary association with properties
as ends, i.e., a line between classes with the RDF/OWL properties named on
the ends closest to their ranges.

3.3 Mappings between UML and OWL

This Section introduces mappings to transform models between OWL and UML,
based on the metamodel described in the previous sections. The ODM Request
for Proposals (RFP [19]) called for a normative mapping between the single,
unified Ontology Definition Metamodel, originally envisioned, and UML. If a
such a single, normative mapping was provided, for a given implementation to be

9

childOf

parentOf

Fig. 8. Using owl:inverseOf Between Association Classes

Fig. 9. Simple form for specifying a pair of inverse properties

considered compliant, it would necessarily support that exact mapping. Over the
course of development of the ODM, we determined that restricting our potential
user community to any specific dialect of OWL (Lite, DL, or Full) would not
support the long-term vision we outlined in the usage scenarios given in Chapter
7 of the specification. Any single, normative mapping would necessarily force
adherence to a specific dialect of OWL.

That said, we claim that the mappings given in the specification can be
very informative and are included in the specification for a number of reasons.
First, they demonstrate feasibility of mapping in general and implement one set
of design choices, providing a baseline from which a particular implementation
can vary. Second, they bring the detailed relationships among the metamodels
clearly to the fore. These relationships can help those who understand one of
the target languages to come to an understanding of the others. Finally, for
many applications, particularly lighter weight vocabularies and ontologies, the
mapping provided is sufficient to support transformations between OWL and
equivalent UML models, which remains a primary goal of the ODM.

Table 1 provides a very high-level summary comparison of some features of
UML and the equivalent OWL feature. UML features are grouped in clusters
that translate to a single OWL feature or a cluster of related OWL features.
The mapping itself, as described in Chapter 16 of [13], reflects transformation of
a model represented in the ODM metamodels for RDF and OWL to the corre-
sponding UML metamodel element(s), and is consistent with the profile(s) given
in Chapter 14. The representation given in the specification includes both ex-
planatory text and a formal mapping expressed in the recently adopted MOF
Query/Views/Transformations (QVT) language [19], which provides a standard-
ized MOF-based platform for mapping instances of MOF metamodels from one
metamodel to another. The mapping provided is explicitly between UML 2 and
the DL dialect of OWL. For a full account of the informative mappings and their
formal expressions in QVT, we refer the reader to [13].

10

Table 1. Feasible Mappings between UML and OWL

UML Feature OWL Feature Comment

class, type class

instance individual

ownedAttribute, property,
binary association inverseOf

generalization, subclass,
subproperty subproperty

N-ary association, association class class, property Requires decomposition

enumeration oneOf

disjoint, cover disjointWith, unionOf

multiplicity minCardinality, OWL cardinality
maxCardinality, restrictions declared
FunctionalProperty, only for range
InverseFunctionalProperty

package ontology

4 Implementation and Examples

This section demonstrates two implementations that have been developed in the
context of the ODM submission at OMG: the Visual Ontology Modeler and the
Integrated Ontology Development Toolkit2.

Visual Ontology Modeler Visual Ontology Modeler (VOM), developed at
the company Sandpiper, is currently implemented as an add-in to IBMs Ratio-
nal Rose product. The current release is compatible with our ODM metamodels
and profile for RDFS/OWL. A library of ontology components including on-
tologies representing several metadata and ISO standards are available for use
with the tool. VOM supports forward and reverse engineering of RDFS/OWL
ontologies and import/export of ODM/XMI ([22]) (and thus of any MOF meta-
model or UML model that can be transformed to ODM/XMI). VOM users have
demonstrated measurable productivity gains in ontology development and main-
tenance as well as increased consistency in RDFS/OWL generation for new and
existing ontologies. Figure 10 shows a simple ontology fragment for manage-
ment application integration ([17]) modeled using VOM (for lack of space we do
not show a full screenshot). The second-generation VOM, which is currently in
development, will support IBMs Eclipse ([9]) and Eclipse Modeling Framework

2 Commercial equipment and materials might be identified to adequately specify cer-
tain procedures. In no case does such identification imply recommendation or en-
dorsement by the U.S. National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available
for the purpose.

11

Fig. 10. A diagram modeled with the VOM tool

(EMF, [6]) based modeling environment. An open-source version of the software
that provides basic functionality will be available for EMF users.

Integrated Ontology Development Toolkit The EMF-based IBM Inte-
grated Ontology Development Toolkit (IODT) is a toolkit for ontology-driven
development, including an EMF Ontology Definition Metamodel ([25]) (EODM3,
based on our ODM), an Eclipse-based ontology-engineering environment, and
an OWL ontology repository, which has been evaluated to be highly scalable
and perform better against some benchmark problems than several other well-
known systems [16]. The toolkit supports RDFS/OWL parsing and serialization,
TBox and ABox reasoning, transformation between RDFS/OWL and other data-
modeling languages, and SPARQL4 query. This toolkit has over 1,800 downloads
in alphaWorks and Eclipse.

5 Related Work

In recent years, an increasing range of software systems engage in a variety of
ontology management tasks, including the creation, storage, search, query, reuse,
maintenance, and integration of ontologies. Recently, there have been efforts
to externalize such ontology management functions from individual software
systems and put them together in middleware known as an ontology management
system. However, as far as we know, other proposals based on the visual UML
3 http://www.eclipse.org/emft/projects/eodm/
4 http://www.w3.org/TR/rdf-sparql-query/

12

and MOF ([2], [3], [4], [10]) provide an approach with some similarities and some
different design considerations as well, but no full implementation. [2], [3] and
[4] are currently being merged with our solution.

6 Conclusion and Future Investigations

We presented a MOF-based metamodel and a respective UML profile for OWL
DL and OWL Full. Furthermore, we provided feasible mappings that support the
transformation between OWL ontologies and UML models and vice versa. This
enables ontology engineers to build OWL ontologies based on UML using existing
UML tools. Considering the number of people familiar with UML, our solution
will be a good approach to ontology modeling for ordinary developers. With the
ODM defined in MOF, we can further utilize MDA’s support in modeling tools,
model management and interoperability with other MOF-defined metamodels.
We expect that the interoperability with existing software tools and applications
will ease ontology development and thus contribute to the adoption of semantic
technologies and their success in real-life applications.

We have implemented our approach to validate our ideas in the Visual On-
tology Modeler and the Integrated Ontology Development Toolkit.

In addition to finishing and evaluating the ODM submission in the near
future, we plan to extend the ODM to facilitate the development of rules as
well. Which rule formalisms we will eventually support depends heavily on the
outcome of the Rule Interchange Format working group at W3C ([26]). Some
initial work on a metamodel and UML Profile for rules is presented in [2].

7 Acknowledgements

The ODM authors wish to thank Conrad Bock for his extensive work on the
RDF and OWL Profile; David Frankel and Pete Rivett for their help and advice
on metamodeling; and Pat Hayes, Dave Reynolds, Jeremy Carroll, Lewis Hart,
Patrick Emery, Dan Chang, and Yiming Ye for their contributions to the ODM
specification.

References

1. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C, February 2004. W3C Recommendation.

2. S. Brockmans, P. Haase, P. Hitzler, and R. Studer. A Metamodel and UML Profile
for Rule-extended OWL DL Ontologies. In 3rd Annual European Semantic Web
Conference, Budva, Montenegro, June 2006. Springer.

3. S. Brockmans, P. Haase, and H. Stuckenschmidt. Formalism-Independent Speci-
fication of Ontology Mappings - A Metamodeling Approach. In 5th International
Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE
2006, Montpellier, France, November 2006.

13

4. S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual modeling of OWL DL
ontologies using UML. In Proceedings of the Third International Semantic Web
Conference, pages 198–213, Hiroshima, Japan, November 2004. Springer.

5. A. Brown. An introduction to Model Driven Architecture - Part I: MDA
and today’s systems, February 2004. http://www-106.ibm.com/developerworks/
rational/library/3100.html.

6. F. Budinsky, R. Ellersick, T. J. Grose, E. Merks, and D. Steinberg. Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional, first edition, 2003.

7. R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie, and E. Kendall.
The Object Management Group Ontology Definition Metamodel. In F. Ruiz,
C. Calero, and M. Piattini, editors, Ontologies for Software Engineering and Tech-
nology. Springer, 2006. to appear.

8. M. Dean and G. Schreiber. OWL Web Ontology Language Reference. Technical
report, World Wide Web Consortium (W3C), Feb 2004. W3C Recommendation.

9. J. des Rivieres and W. Beaton. Eclipse Platform Technical Overview. July 2001.
Updated April 2006 for Eclipse 3.1.

10. D. Djuric, D. Gaevic, V. Devedic, and V. Damjanovic. MDA Development of
Ontology Infrastructure. In Proceedings of the IADIS International Conference
Applied Computing, pages II–23–II–26, Lisbon, Portugal, 2004.

11. D. Frankel, P. Hayes, E. Kendall, and D. McGuinness. The Model Driven Se-
mantic Web. In The 1st International Workshop on the Model-Driven Seman-
tic Web (MSDW 2004), Monterey, California, USA, September 2004. http:

//www.sandsoft.com/edoc2004/FHKM-MDSWOverview.pdf.
12. L. Hart, P. Emery, R. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,

E. Kendall, and M. Dutra. OWL Full and UML 2.0 Compared, March 2004.
http://www.itee.uq.edu.au/\simcolomb/Papers/UML-OWLont04.03.01.pdf.

13. IBM and Sandpiper Software. Ontology Definition Metamodel. Sixth Revised Sub-
mission, Object Management Group, June 2006. http://www.omg.org/cgi-bin/

doc?ad/2006-05-01.
14. ISO/IEC. Topic Maps Data Model. Technical Report 13250-2, December 2005.
15. ISO/IEC. Information technology – Common Logic (CL) - A framework for a

family of logic-based languages. Technical Report 24707, April 2006. Official ISO
FCD Draft.

16. L. Ma, Y. Yang, Z. Qiu, G. Xie, and Y. Pan. Towards A Complete OWL On-
tology Benchmark. In 3rd Annual European Semantic Web Conference, Budva,
Montenegro, June 2006. Springer.

17. T. Nitzsche, J. Mukerji, D. Reynolds, and E. Kendall. Using Semantic Web
Technologies for Management Application Integration. In proceedings of the
workshop on Semantic Web Enabled Software Engineering (SWESE), Galway,
Ireland, November 2005. http://www.mel.nist.gov/msid/conferences/SWESE/

accepted_papers.html.
18. Object Management Group. Ontology Definition Metamodel – Request For Pro-

posal, March 2003. http://www.omg.org/docs/ontology/03-03-01.rtf.
19. Object Management Group. Revised submission for MOF 2.0

Query/Views/Transformations RFP. http://www.qvtp.org/downloads/1.

1/qvtpartners1.1.pdf, August 2003.
20. Object Management Group. OCL 2.0 Specification. Technical Report Version 2.0,

June 2005.
21. Object Management Group. Unified Modeling Language: Superstructure. Techni-

cal Report Version 2.0, August 2005.

14

22. Object Management Group. XMI Mapping Specification. Technical Report Version
2.1, September 2005.

23. Object Management Group. Meta Object Facility (MOF) Core Specification. Tech-
nical Report Version 2.0, January 2006. OMG Available Specification.

24. Object Management Group. Unified Modeling Language: Infrastructure. Technical
Report Version 2.0, March 2006.

25. Y. Pan, G. Xie, L. Ma, Y. Yang, Z. Qiu, and J. Lee. Model-Driven Ontology
Engineering. In Journal of Data Semantics VII, 2006. Springer.

26. W3C. Rule interchange format working group charter. http://www.w3.org/2005/
rules/wg/charter, 2005.

15

