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Abstract – In this paper, we present our recent effort on using a feature technology and ontology for embedded 
systems modeling and design. We present an overview of embedded system design and propose an object-oriented 
UML modeling approach to representing embedded systems, i.e., open embedded system model (OESM). OESM 
supports models of embedded system artifacts, components, features, configuration/assembly, and embedded system 
platform and family, design rationale, etc. Our focus is on modeling of feature semantics in embedded systems. We 
call this open embedded system feature model (OESFM). We also present a semantic web environment for 
modeling and verifying feature models using ontologies, in which the Protégé-OWL is used to precisely capture the 
relationships among features in feature diagrams and configurations. The OESFM models and ontologies provide a 
feature-based component collaborative framework. This allows the designer to develop a virtual embedded system 
prototype through assembling virtual components in which the platform-based hardware/software (HW/SW) co-
design is supported and the design rationale is captured. The collaborative co-design framework can not only 
provide formal precise models of the embedded system prototypes but also offers design variation of prototypes 
whose members are derived by changing certain virtual components with different features. 
        Keywords: Embedded Systems, Feature Model,  Semantic Web, Hardware and Software Co-design, Platform-
based Design, Embedded System Family, Design Rationale, UML, Ontologies, and Protégé-OWL 

1 Introduction 

        Many industries (e.g., automotive, telecommunications, multimedia, consumer electronics, industrial 
automation, and health-care) are witnessing a rapid evolution toward solutions that integrate/embed hardware and 
software or incorporate complete systems on a single chip (SoC). “An embedded system is a combination of 
computer hardware and software, and perhaps additional mechanical or other parts, designed to perform a dedicated 
function. In some cases, embedded systems are part of a larger system or product, as in the case of an antilock 
braking system in a car.”(http://en.wikipedia.org/). An embedded system is a hybrid of hardware and software, which 
combines software’s flexibility and hardware real-time performance. Modern embedded systems have characteristics 
(including ever-increasing complexity and diversity for more functionality, packed into smaller spaces consuming 
less power) that demand new approaches to their specification, design and implementation.  
       An embedded system information model contains information regarding hardware and software components and 
their composition/assembly relationships as well as the information related to design and manufacturing. Hence, the 
modeling approach needs to emphasize the nature and requirements of information for HW/SW components and 
their assembly relationships. Furthermore, the modeling approach needs to address the evolution of corresponding 
information models during the conceptual and detailed design stages of embedded systems. Feature technology 
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(including feature definitions, modeling and representations, constraints, validation, language, and ontology) has 
been recognized as an emerging means for modeling and design of embedded systems. Formally, a feature is defined 
as a portion or aspect of the artifact’s form that has some specific function assigned to it (Shah and Mantyla 1995, 
Fenves et al. 2005). A feature has its own containment hierarchy, so that compound features can be created out of 
other features. Features can be a great help in speeding up design and in guaranteeing manufacturability of individual 
features on individual components. A feature model that gives a hierarchical structure to the features can be used to 
describe the commonalities and differences between the individual hardware/software (HW/SW) systems and 
electro-mechanical systems and integrate them. The features in an embedded system can make it different from any 
other systems. A new way of looking at a system can be represented by adding a new view of the features of the 
system. This provides uniqueness and strength of the feature-based embedded system design method that does not 
exist in other design methods.  
       This paper aims to present our recent effort in use of feature technology and ontology to embedded systems 
modeling and design. The organization of this paper is as follows. Section 2 reviews previous work and current 
research status. Section 3 provides an overview of embedded system design. Section 4 presents an open embedded 
system model (OESM) and its representation. Section 5 presents the feature-based component modeling for 
embedded systems and provides a feature semantic model for embedded systems. Section 6 discusses platform-based 
design by feature. Section 7 summarizes a feature-based approach to HW/SW co-design. Section 8 discusses feature-
based embedded system design rationale. Section 9 proposes a feature-based service-oriented distributed 
collaborative design framework for embedded systems. Section 10 provides a case study. Section 11 concludes the 
paper. 
 

2 Current Research Status  

       There exist a large number of informal or semi-formal models and methodologies for separate 
hardware/software design and several frameworks and tools have been proposed and developed (Eggermont 2002). 
Static and traditional partitions of hardware and software and hardware-based notations and approaches are currently 
used for specification, design, and implementation. There is as yet no unified formal standard representation, 
simulation, and synthesis framework for supporting hardware and software co-design in a distributed collaborative 
environment despite the progress made in several research projects such as Ptolemy (Lee 2003) and Metropolis 
(Balarin et al. 2003, Chen et al. 2002). Table 1 summarizes the current research status in embedded and hybrid 
systems design, including models, methodologies and tools, and standards (Eggermont 2002, Balarin et al. 2003, 
Chen et al. 2002, Esser 1996) 1. Other research activities in this area include: 1) some fundamental work on domain-
specific heterogeneous & embedded systems modeling and representation; 2) limited industrial vendor activities for 
real-time systems design and development; and 3) limited university research on hardware/software co-design and 
platform-based design. 
       At NIST, we have developed a standards-based formal framework for modeling information and knowledge in 
embedded systems design so as to enable semantic interoperability between design software systems in virtual, 
distributed and collaborative environments through the entire lifecycle (Zha, Fenves and Sriram 2005a, 2006). Our 
work includes HW/SW co-design methodologies, an integrated framework for design, modeling and testing, and 
standard representations and protocols for exchanging and reusing system-level information and knowledge. 
Research activities focused on embedded systems modeling and representation and platform-based design. 
Specifically, the activities include: system partition and modularization, feature-based HW/SW component model, 
architectural product platform model, decision (evaluation and selection) of components in the configuration and 
integration of system models, hardware and software co-design, and the distributed collaborative design and 
(re)configuration framework. We developed an object-oriented UML (Unified Modeling Language) representation 
of feature models for embedded systems (OESFM). Our models incorporate component representation, interface, 
interaction, assembly relationships, and embedded system features. All these models are based on the NIST core 
product model (CPM), a knowledge-oriented product information model developed to meet the requirements of next 
generation product development systems (Fenves 2001, Fenves et al. 2005). 
 
 
1http://www.sysml.org/,  
 http://www.aitcnet.org/dodfw/ 
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Table 1: Existing Models, Methodologies, Tools and Standards for Embedded Systems 

Models 
Models for Reactive Systems: finite state machines (FSM), Behavior FSM, Codesign FSM, State Charts, Program State Machines 
(PSM), Communicating Interacting Processes (CIP), Esterel, Specification Description Language (SDL), Synchronized Transitions, etc 

Models for Transformational Systems: Synchronous Data Flow (SDF), etc 
Control/Data Flow Models: Boolean Data Flow, Hierarchical Flow Graphs, Extended Syntax Graphs, Petri nets 
General Purpose Languages: ANSI C, Occam, ADA (Program language), VHDL(Very high speed integrated circuit hardware 
description language), UML/SysML (Unified Modeling Language/System Modeling Language) 
Methodologies 
Heterogeneous System Design Methodologies: Mostly based on methodologies for ASIC design, such as, COSYMA (ANSI C), 
Olympus (Hardware C), Ptolemy (Stars, Galaxies), MOOSE (Model-based Object Oriented Systems Engineering), MDAF (model-
driven architecture and framework), etc. 
General Purpose Methodologies: Structured Analysis (Data Flow Diagram), Structured Development for Real-Time Systems, etc. 

General Purpose OO Methodologies: Booch Method, ROOM (Real-time OO Modeling)  

Tools 

Generic Modeling Environment, Giotto, HyTech, Metropolis, Mocha, 
POLIS, Ptolemy II, etc. 
Standards 
STEP 10303-AP 233, SysML (System Modeling Language), DoDAF (DoD Architecture Framework) 

 

3 Overview of Embedded System Design  

      Generally, the object-oriented system engineering method  includes the following development activities:1) 
analyze needs, 2) define system requirements, 3) define logical architecture, 4) synthesize candidate allocated 
architectures, 5) optimize and evaluate alternatives, and 6) validate and verify the system. In this section, we provide 
an overview of embedded system design. 

3.1  Component-based Design   

       As defined earlier, an embedded system is a specialized computer system that is part of a larger system or 
machine. Typically, an embedded system is housed on a single microprocessor board with the software (programs) 
stored in some form of read-only memory (e.g., ROM, EPROM) or flash memory. Embedded systems do not use 
conventional I/O devices such as a keyboard, a mouse, and a display. Instead, they interact with the outside world 
(environment) through their sensors and actuators. Sensors feed the input data to the system and actuators deliver the 
output to the external environment. Embedded system software can generally be classified into the following three 
categories according to the problem solving methods used (Hassani 2000): 1) numerical or data processing, 2) user 
interface, and 3) decision making. 

 
Figure 1: Four-level modeling for the life-cycle development of an embedded system 



 4 

        The modeling principle we adopted in this research identifies four abstraction levels for the design of an 
embedded system (Zha, Fenves and Sriram 2005a): 1) enterprise level; 2) system level; 3) component level; and 4) 
feature level. Fig.1 shows four-level modeling for the lifecycle development of an embedded system. Details are 
described as follows: 
1) The enterprise level provides a unified view of the system and its environment by capturing enterprise-related 

concepts, including business process information.  
2) The system level determines the system being developed, distinguishing it from its environment. The environment 

of a system consists of information systems or human users that make use of the services provided by the system 
itself, as well as other systems that provide some service.  

3) The component level represents the system in terms of a set of composed components. A HW/SW component 
may be further decomposed into sub-components. A composite component is an aggregation of sub-components 
that, from an external point of view, is similar to a single component. If a composite component is part of a 
component composition, the design process of this component corresponds to the design process of an isolated 
system, and the environment of this system contains the other components in the composition.  

4) The feature level defines the internal structure of simple HW/SW components. A component is structured using a 
set of related features, implemented in a feature description or a programming language. Thus, the design process 
of a component at the feature level corresponds to the feature-oriented design process similar to the traditional 
object-oriented process.  

   The basic concepts in the component-based modeling approach are systems, components, connectors, where a 
system is a configuration/assembly. Both components and connectors have connection points called ports for 
components and roles for connectors (Fig.2). Thus, design elements include components, connectors, ports, and 
roles. Components are connected to connectors by defining an attachment between the port of a component and the 
role of a connector. Connectors can be viewed as special communication components. One connector may connect 
multiple components. Components may be nested but cannot be connected directly to each other and neither can a 
connector to another connector. Components and connectors have attributes or properties. Properties are un-
interpreted values, i.e., they do not have any semantics defined.  
       UML 2.0 includes a set of constructs about components and their assembly. The component description in UML 
2.0 now can include a set of ports, a set of parts, a set of connectors and behaviors. Thus, in UML 2.0, major 
improvements have been added to support component-based modeling. 

Component 2Component 1

Feature 1 Feature 2

Component 2Component 1 Component 2Component 1

ConnectorsFeatures Component

HW 
Component

SW 
Component

 
Figure 2: Embedded system component-connector model 

3.2 Hardware and Software Co-Design 

       The co-design of hardware and software is the most critical but difficult issue in embedded system design. The 
hardware/software co-design decisions can profoundly impact the quality and cost of embedded systems and 
products. The co-design process of HW/SW starts with an architecture independent description of the system 
functionality, the analysis of constraints and requirements on the system, and the statement of objectives. This 
description is independent of HW and SW, and several system representations may be utilized, e.g., finite state 
machines (FSM). The system is then described by means of a programming language, which is next compiled into an 
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internal representation such as a data control flow description. This description serves as a unified system 
representation that can represent HW or SW. HW/SW functional partitioning is performed on this unified 
representation. After this step has been completed, HW, SW, and related interfaces are synthesized. Evaluation is 
then performed.  The partitioning process is iterative, and if the evaluation does not meet required objectives, 
another HW/SW partition is generated and evaluated. Note that the partitioning stage and the integration phases are 
common to all codesign methodologies.  Codesign is still a relatively new, changing approach, so there is not one set 
standard for how it must be done.  Many variations exist.  

3.3 Platform-based Design 

        Product family is a group of related products that share common features, components, and subsystems, and 
satisfy a variety of market niches. Product platform is a set of parts, subsystems, interfaces, and manufacturing 
processes that are shared among a set of products. A product family comprises a set of variables, features, or 
components that remain constant in a product platform and from product to product. Developing a family of systems 
instead of a series of separate systems offers many economic advantages. Gathering information about common 
features/properties of the systems enables the development of common, reusable core assets of the family. 
Information about differences between the family members can be used for the development of an extensible 
architecture of the common core assets. Here, two processes may be involved: 1) platform/ family construction; and 
2) platform/family evolution.   Platform-based design (PBD) aims to reduce the complexity of design task and 
design reuse. In practice, a set of components, which is used to build a system, is strongly related to its application 
domain. Thus, by establishing a well-defined set of components, a platform, and by validating it in a particular 
application type, it could be reused in future designs within such domain. By relying on already developed and 
validated platforms, the partitioning step can be done more easily, by mapping automatically the system functionality 
to the platform modules. PBD requires a “standard” architecture, to which components are interfaced, and to which a 
wrapper can be generated and PBD often uses interfaces. Generally, a PBD provides a generalized structure 
(product/system family architecture, PFA/SFA) to pure component-based design by providing architectural 
constraints on embedded system implementations. Today, platform-based product/system family design has been 
recognized as an efficient and effective means to realize sufficient product/system variety to satisfy a range of 
customer demands in support for mass customization.  
 

4 UML Representation for Embedded System Model 

4.1 Overview  

       An Open Embedded System Model (OESM) is developed to provide a standard representation and exchange 
protocol for embedded systems and system-level design, simulation, and testing information. In this section, we 
discuss in detail the various components of OESM, related to models of embedded system artifacts, embedded 
system components, embedded system features, embedded system configuration/assembly, embedded system family, 
and design rationale. Representations of a set of features may be entity relationship, dataflow, object communication, 
assembly, classification, stimulus-response, and state transition diagrams. The purpose of the multiple 
representations or views is to add flexibility in responding to evolving design paradigms, life cycle models, etc. We 
use UML notation and diagrams to explain the embedded system models.  
        The NIST Core Product Model (CPM) provides the basic foundations within function-behavior-structure (form) 
framework for the next generation CAD systems. However, CPM currently focuses mainly on mechanical products 
or assemblies. There is a need to make some modifications/extensions for it to be used for an informational artifact 
(e.g., software, organizations, business processes, plans and schedules). In this research, CPM is extended for 
modeling embedded systems. Specifically, a complete information model is defined, which consists of customer 
requirements, design specifications, HW/SW components (artifacts, functions-behaviors, geometry and material for 
HW, architecture, and code for SW), HW/SW interfaces, ports, etc., as follows: 
Embedded System Model { 
        Requirements;  
        Specifications; 
        ES (HW/SW) Artifacts; 
        ES (HW/SW) Features; 
        ES (HW/SW) Functions-Behaviors-Forms; 
        ES (HW/SW) Performance Objectives and Constraints; 
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        Relationships; 
        Platform/Family;  
        Design rationale; } 

4.2 Main Schema  

      Fig.3 shows the main schema of OESM. The schema model incorporates information about design specification, 
partitioning, embedded system specification, and HW/SW component composition (part-of); and 
configuration/assembly relationships, embedded system platform/family, and design rationale.  
        An embedded system represented by the EmbeddedSystem class is decomposed into hardware/software 
(HW/SW) subsystems and components, and connectors connecting theses subsystems and components. Each 
embedded system component represented as ESComponent class in the ESComponent package, whether a 
HW/SW sub-system or component, is made up of one or more HW/SW features, represented in the model by 
ESFeature class in the ESFeature package. The EmbeddedSystem and ESComponent classes are subclasses of 
the ESArtifact class (extended from NIST-CPM Artifact class). ESFeature is a subclass extended from the NIST-
CPM Feature class. The composition (configuration/assembly) relationship is represented by a class named 
CompositionAssociation. Components or subsystems in the embedded system are connected by connectors 
represented by ESConnector class in the ESConnector package. Connectors may be either features or components 
or subsystems composed by features or components. Each feature may have a list of tradeoffs and rationale 
associated with it. In the feature-based design method (below), a feature is any distinctive or unusual aspect of a 
system, or a manifestation of a key engineering decision. 
        Specifically, ESArtifact refers to an embedded system or one of its hardware/software (HW/SW) components. 
ESArtifact is specialized into two classes: HWArtifact and SWArtifact. HWArtifact refers to a hardware 
system/component in an embedded system, which is an aggregation of HWFunction, HWForm and HWBehavior. 
HWFunction represents what the artifact is supposed to do; HWForm represents the proposed design solution for 
the design problem specified by the hardware function; and HWBehavior represents how the hardware artifact 
realizes its function. HWForm itself is the aggregation of Geometry, the spatial description of the artifact, and 
Material, the internal composition of the hardware artifact. HWFeature represents any information in the 
HWArtifact that is an aggregation of HWFunction and HWForm. SWArtifact refers to a software system in the 
embedded system or one of its software components, i.e., which is an aggregation of SWFunction, SWForm and 
SWBehavior. SWFunction represents what the software artifact is supposed to do; SWForm represents the 
proposed solution for the design problem specified by the software function; SWBehavior represents how the 
software artifact implements its function. SWForm itself is the aggregation of Architecture, the structural 
description of the software artifact, and Code, the internal composition of the software artifact. The class Code is 
also specialized into two subclasses: SourceCode and BinaryCode. SWFeature represents any information in the 
SWArtifact that is an aggregation of SWFunction and SWForm. All the above entities have their own independent 
containment (“part-of”) hierarchies.  
      For more details of all other related packages (system specification, requirement, system partitioning, view, 
embedded system component, embedded system connector, composition association, design rationale, embedded 
system platform/family, etc.), the reader can refer to (Zha, Fenves and Sriram 2005a, 2006). 
 
 

5 Feature Semantic Models for Embedded Systems 

       As mentioned above, assembly/composition relations of an embedded system can be extracted based on the 
connecting HW/SW features (e.g., mating and joining features for HW) after specifying connecting relationships and 
methods between HW/SW components. In this section, we discuss in detail the semantic feature models for 
embedded systems, i.e., the open embedded system feature model (OESFM), related to models of embedded system 
artifacts, embedded system components, embedded system features, embedded system configuration/assembly, 
platform/family, and design rationale. In nature, OESFM can be considered as a feature view (like functional view, 
structural view, technology view, behavioral view) of OESM as shown in Fig.3, the main schema of the OESFM. In 
addition, feature models are widely used to capture common and variant concepts among systems in a particular 
domain. However, the lack of a formal semantics of feature models has hindered the development of this area. We 
further develop a semantic web environment for modeling and verifying feature models using ontologies. 
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Figure 3: Main schema of the Open Embedded System Model 

 

5.1 Feature Semantic Modeling  

5.1.1 Feature Definitions  

     A feature is any distinctive or unusual aspect of a system, or a manifestation of a key engineering decision. There 
are four categories of features (Riebisch 2003, Riebisch et al. 2004) as defined in (Zha, Fenves and Sriram 2005a):  
(1) Functional/behavioral features express the behavior or the way users may interact with a system. They describe 

both static and dynamic aspects of functionality, and may be expressed through use cases, scenarios or structures. 
(2) Structural features including form features and interface features express the overall form/structure of an 

embedded system or its HW/SW components and their relationships. Interface features express the system's 
conformance to a standard or a subsystem. They describe connectivity and conformance aspects as well as 
contained components.  

(3) Parameter features express enumerable, environmental or nonfunctional properties. They cover all features with 
properties demanding quantification by value or assignment of quality, e.g., color.  

(4) Concept features represent an additional category for structuring a feature model. They encapsulate abstract 
features within a hierarchical feature structure. The root of the hierarchy always represents a concept feature. 
Features in this category have no concrete implementation, but each of their sub-features provides one. The 
feature “electronic current protection” represents an example for such a feature. 

5.1.2 Feature Diagrams and Feature Relations 

      A feature diagram provides a graphical notation that shows the hierarchical organization of features. The root of 
the tree represents a concept (artifact, component) node. All other nodes represent different features. Features can 
also be decomposed in AND-(EX)OR decomposition trees. An AND decomposition of a node in the feature space 
means that all its constituents must be available; an OR requires an arbitrary (>=0) number of constituents, and an 
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EXOR requires precisely one constituent. Assume that the concept C be selected, the following definitions can be 
derived on its child features (Czarnecki and Eisenecker 2000): 1) mandatory – The feature must be included into the 
description of a concept instance, 2) optional – The feature may or may not be included into the description of a 
concept instance; 3) alternative – Exactly one feature from a set of features can be included into the description of a 
concept instance;  and 4) OR – One or more features from a set of features can be included into the description of a 
concept instance. In addition, a feature diagram itself cannot capture all the inter-dependencies among features, for 
example, two relations among features (Wang et al. 2005, Sun et al. 2005): 1) requires: The presence of some 
features in a configuration requires the presence of some other features; 2) excludes: The presence of some features 
excludes the presence of some other features. These relations are usually presented as additional constraints in a 
textual description.  
     Here, we extend the above definitions of feature relations. The extended assembly/composition relations are 
shown in Fig.4: 1) belong-to or inclusion relations (lines with arrowheads), 2) inter-feature relations (green line with 
solid roundheads), and 3) assembly/joining relations (ports) (red line with solid roundheads). In other words, each 
component has been or is to be completely designed with its associated features, and functional relationships are 
built between those component features by attaching some linkages/connections (relations). Therefore, a generic 
assembly liaison graph (GALG) can be formed and used to represent the relations on the entire composite structure 
(embedded system). Specifically, a GALG is designated to represent graphically the linkages between features and 
features to components. It can also represent assembly hierarchy and the connectivity of the whole system 
(components to components), based on these inter-feature relations and assembly/joining relations.  
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    Figure 4: Assembly/composition relations among HW/SW components 

5.2 Feature-Based Component Modeling for Embedded Systems 

5.2.1 Embedded System Component Features 

       Hardware and software features compose hardware and software components, respectively. This means that 
feature configurations determine the underlying SW and HW components. As discussed above, features are 
classified into four categories: concept feature, function (behavioral) feature, parameter feature and structural feature 
(interface feature, or port). Thus, these four categories of features compose both hardware features and software 
features, that is, the hardware feature may be specialized into HW concept feature, HW function (behavioral) feature, 
HW parameter feature and HW interface feature; similarly, the software feature generalizes SW concept feature, SW 
function (behavioral) feature, SW parameter feature and SW interface feature. Normally, interface features are also 
called ports, thus, we may have a SW port and a HW port, accordingly in the software and hardware features. A SW 
port is specialized into Input Port (Requested Port), Output Port (Provided Port), In-Out Port (Resource Port, and 
Configuration Constants); A HW Port is specialized into Input Port (Source Port Requested Port), Output Port 
(Destination Port, Provided Port), etc.  
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5.2.2 Embedded System Feature Interactions 

       Embedded system connectors realize the connections between HW/SW components or subsystems in the 
embedded system. Connectors may be either HW/SW features or HW/SW components or HW/SW subsystems 
composed of HW/SW features. Embedded system connectors can be specialized into subclasses: hardware 
connectors, software connectors and hardware-software connectors. Hardware connectors realize connections 
between hardware components or subsystems in the embedded system. Software connectors realize connections 
between software components or subsystems in the embedded system. Hardware-software connectors realize 
connections between hardware and software components or subsystems in the embedded system. Differing from 
interface features of HW/SW components, interface features of connectors are sometimes called roles.  
        The scenario of feature interactions in an embedded system can be described as: HW-HW, SW-SW, and HW-
SW (Zha, Fenves and Sriram 2005a). We propose an approach for modeling feature (port/role) interactions to 
comply with the component-connector model based on UML 2.0. We also model feature interactions with a feature-
solution graph. This graph serves two purposes. First, it can be used to pinpoint feature interactions. Second, it can 
guide as an iterative architecture development and evaluation process. Feature space consisting of feature models 
describes the desired properties of the system as expressed by the user. Solution space contains the internal system 
decomposition in the form of a reference architecture composed of components. In addition, the solution space may 
also contain general applicable solutions that can be selected to meet certain non-functional requirements. 

5.2.3 Embedded System Feature Model Representation 

        Feature modeling is an activity of creating features and their interdependencies and organizing them into a 
feature model. It provides a model of end-user-visible features that are present in a given domain by providing a 
description for each feature and for each relationship among these features. Feature modeling is usually based on a 
two-level structure: 1) a meta-modeling level, which defines the types of features that can be used, their properties, 
and their mutual relationships; and 2) an entity modeling level where the feature model for the entities of interest is 
constructed in terms of the meta-model. Feature models require the definition of a concrete syntax and language to 
express them. The application feature model is seen as an instance of a feature meta-model (Beuche 2003).  
      We use the UML-based formalisms to represent the feature meta-model (Zha and Sriram 2004). The basic ideas 
can be summarized as follows. A feature can have sub-features, but a group mediates the connections between a 
feature and its sub-features. A group gathers together a set of features that are children features of some other 
features. Thus, a group represents a cluster of features that are children of the same feature and that obey some 
constraints on their legal combination. Groups are also used to enforce local restrictions (constraints). The same 
feature can belong to several groups.  Both features and groups have cardinalities. The cardinality of a feature 
defines the number of instances of the feature that can appear in an application. The cardinality of a group defines 
the number of features chosen from within the group that can be instantiated in an application. Cardinalities can be 
expressed either as fixed values or as ranges of values.  

5.3 Embedded System Feature Semantic Model with Protégé-OWL 

      We use Protégé-OWL to precisely capture the relationships among features in feature diagrams and 
configurations (Fig.5). OWL reasoning engines such as RACER are used to check for the inconsistencies of feature 
configurations automatically. As part of the environment, we also integrate a feature-modeling tool (e.g., 
CaptureFeature) to facilitate the visual development, interchange and reasoning of feature diagrams represented as 
ontologies.  
 

6 Platform-based Design by Feature 

       Product family/line members share common features and also differ in certain features. Therefore, a platform 
could be generated based on features and reused in future designs. A set of components/features used to build a 
system is strongly related to its application domain. Platform-based design by feature (PBDF) aims to reduce the 
complexity of design task and design reuse based on features.   For instance, to effectively implement platform-based 
SoC design, designers could use standard architectures such as the interface unit as the CoreConnect bus or some 
other industry standard bus like an AMBA bus. Channels are used as connectors, and the channel refinement is used 
to attach properties to the connector in order to pick an interface implementation from a library, which is compatible 
with the standard bus. Generally, the bus interfacing or the wrapper generation is more complicated in general 
component frameworks than in platform frameworks due to the absence of interface standards and connectors.  
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Figure 5:  Embedded System Feature Semantic Model with Protégé-OWL 

 

 
Figure 6: Car Feature model 

 
        A feature model- a hierarchical structure to the features can be used to describe the commonalities and 
variability/differences between the individual hardware/software systems. Commonalities can be modeled by 
common features (mandatory features whose ancestors are also mandatory), and variablities can be modeled by 
variant features, such as optional, alternative, and or-features. For instance, in the typical Car feature model (Fig.6), 
we can see that (Car, CarBody, Transmission, Manual, Engine, Gasline) and (Car, CarBody, Transmission, 
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Automatic, Engine, Electric, Gasline, PullsTrailer) are possible family configurations derived from the Car feature 
model. However, not all combinations of features are valid. For example, the configuration (Car, CarBody, 
Transmission, Automatic, Manual, Engine, Gasline) is invalid since the features Automatic and Manual are exclusive 
to each other.   
        Based on the feature-based component model above, we define an embedded system platform artifact (Fig.7) 
represented by ESPlatformArtifact class in the ESPlatform package (hardware platform, software platform, system 
platform). ESPlatformArtifact is subclass of Artifact class in the NIST CPM package. ESFCMArtifact (in the 
embedded system platform/family construction package ESFCM) and ESFEMArtifact (in the embedded system 
platform/family evolution package ESFEM) are subclasses of ESPlatformArtifact and ESArtifact, representing 
embedded system platform (family) to be constructed and evolved. These packages can support family-based design 
for mass customization, including the embedded system family construction model (ESFCM) and the embedded 
system family evolution model (ESFEM). 
      

ESFEMArtifact
(from ESFEM)

ESFCMArtifact
(from ESFCM)

ESAPlatformArtifact

ESArtifact
(from ESArtifact)

Artifact
(from NIST Core Model+)

 

 
Figure 7: Class diagram and package of embedded system platform/family and customization 

 
7 Feature-Based Hardware/Software Co-Design 

        We propose a novel feature-based approach to the co-design of hardware (HW) and software (SW) in 
embedded systems. The feature-based model serves as the basis for developing reusable and adaptable 
components/artifacts. The underlying SW and HW components are determined through feature configuration, and 
thus HW/SW co-design is implemented by using feature-component mapping and component generation, which may 
be associated with feature creation, configuration, analysis and reuse. Details are described in (Zha, Fenves and 
Sriram 2005a). 

7.1 Feature-Component Mapping 

        During the form design activity, features are allocated to architectural components and the dependencies 
between them are specified. The functional architecture, constituting the architectural components, is refined into 
process and deployment architectures, which are used during the component design process. The implementation of 
the technique described here is based on the design and execution traces generated by a profile for different usage 
scenarios (Eisenbarth 2001). One scenario represents the invocation of one single feature or a set of features and 
yields all artifacts/sub-artifacts (e.g., sub-programs as sub-software artifacts) executed for these features. These 
artifacts/sub-artifacts (sub-programs) identify the components (or are themselves considered components) required 
for certain features. The required components for all scenarios and the set of features are then subject to concept 
analysis. Concept analysis gives information on relationships between features and required components. The feature 
configuration determines the underlying SW and HW component configuration. 
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7.2 Component Generation  

       We developed an approach to generating system components from functional as well as non-functional 
requirements. The generation approach is based on two processes: 1) Feature-form (FrFm) graphs, 2) Top-down 
component composition. The FrFm-graph captures architectural knowledge in the form of desired features (e.g., 
functional and non-functional requirements) and forms representing solutions that realize these features (e.g., 
architectural and design patterns). The steps in this process are:  i) derivation of a reference architecture that meets 
the set of functional requirements; ii) application of known design solutions/forms focusing on non-functional 
requirements as codified in the FrFm-graph. Typically, the generation technique requires several iterations. These 
iterations might also involve backtracking steps because we usually have to deal with conflicting requirements.  
Basically, there are two spaces, namely the feature space and the form/solution space, recognized in the FrFm-graph. 
The Feature (Fr) space contains the requirements, whereas the Form (Fm) space contains forms/solutions addressing 
these requirements. As described in Section 5.1, features as well as forms are decomposed in AND-(EX)OR 
decomposition trees. An AND decomposition of a node in either the feature or the form space means that all its 
constituents must be available, an OR requires an arbitrary (>=0) number of constituents, and an EXOR requires 
precisely one constituent. Here, the key idea is that a feature in the Feature Space may select a form in the Form 
space as defined by directed selection links between nodes. It is also possible to explicitly rule out a particular form, 
which is done by connecting a feature to a form with a negative selection link.   

8 Feature-based Embedded System Design Rationale   

       Rationale is an explanation of the fundamental reasons, in particular an explanation for the working principles of 
some device in terms of laws of nature. “Design Rationales include not only the reasons behind a design decision but 
also the justification for it, the other alternatives considered the tradeoffs evaluated and the argumentation that lead 
to the decision.” This model and approach were successfully used in the NIST Design Repository Project (Szykman 
et al. 1999). Although design rationale model and its capture approach have been investigated for a decade, there is 
still no effective definition and capture approach. Design Rationale can be classified into static design rationale and 
evolutionary design rationale (Wang et al. 2003). The evolutionary design rationale can be retrieved from the static 
design rationale if using an appropriate approach/algorithm. Elements of design rationale are: a) Issues (what to 
decide?), b) Criteria (what is the basis for the evaluation?), c) Alternatives (what are the possibilities?), d) 
Justification (what reason?), e) Evaluation (how well the alternatives match the criteria?), f) Decision (which 
alternative do we select?), and g) Respondent (who’s responsible for the decision?). 
       Here, we extend NIST Design Rationale Models (Szykman et al. 1999, Wang et al. 2003) for feature-based 
embedded system design. Embedded system design rationale could be generated at any stage in the embedded 
system (HW/SW) development process: requirement, analysis, design, implementation, and maintenance. Here, we 
propose a feature-based design rationale modeling method to provide mechanisms for capturing and tracking each 
feature of the embedded system. In the feature-based design rationale capture method, a feature is any distinctive or 
unusual aspect of a system, or a reflection of a key engineering decision. The features in an embedded system can 
differentiate other systems in the application domain. Each feature can have a list of tradeoffs and rationale 
associated with it. Therefore, a new way of looking at a system can be represented by adding a new view of features 
of the system. The feature-based design rationale modeling method is advantageous over other methods. This 
approach makes the embedded system design and development process become a process of answering questions 
about the features of a system rather than a cookbook-like procedure defined by a particular development method 
(Bailin 1990). 
       Fig.8 shows a partial feature-based design rationale model. The classes FeatureDesignRationale and 
FeatureEvolutionRationale are subclasses of Rationale. Design justification is the principal attribute of Rationale, 
defined by FeatureDesignJustification. The feature design justification may be domain feature technology (e.g., 
domain-specific methods, recommendation, standard, law.) or implementation/development specification (e.g., 
design decisions, requirements or regulations, implementation decisions, architecture style, process coordination 
method, implementation method, communication protocol, computational algorithm, implementation method), 
represented by Technology and DevelopmentSpecification, respectively. There are two kinds of evolution 
rationales (Wang et al. 2003): family derivation rationale and design evolution rationale, represented by 
FeatureFamilyDerivationRationale and FeatureDesign EvolutionRationale, respectively. FeatureDesign 
EvolutionRationale records the reasons for design changes between a series or version and its predecessor(s). 
FeatureFamilyDerivationRationale captures the driving features/factors for these changes. The features/factors 
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driving evolution are defined by FeatureEvolutionJustification, two kinds of which are the domain technology 
feature evolution and development specification evolution, defined by TechnologyEvolution and 
DevelopmentSpecification Evolution, respectively.  

FeatureEvolutionRationale
(from Rationale)

FeatureDesignJustification
(from Rationale) FeatureEvolutionJustification

(from Rationale)

FeatureFamilyDerivation
Rationale

(from ESFEM)

FeatureDesignEvolution
Rationale

(from ESFEM)

SpecificationEvolution
(from Rationale)

Technology Evolution
(from Rationale)

Rule-based
(from Rationale)

Feature-based
(from Rationale)

Function-based
(from Rationale)

Designer
(from Rationale)

FeatureDesignRationale
(from Rationale)

Trade-off
(from Rationale)

Justification
(from Rationale)

Rationale
(from Rationale)

DecisionStatus
(from Rationale)

DecisionType
(from Rationale)

DecisionProblem
(from Rationale)

Regulation Evolution
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Figure 8: Feature-based design rationale model (partial) 

9 Feature-based Collaborative Embedded Systems Design Framework   

       This section explains how the developed feature semantic model above provides a feature-based HW/SW 
component co-design framework allowing the designer to develop collaboratively a virtual embedded system 
prototype through assembling virtual components. Based on the component-based approach, a unified design-with-
modules scheme is adopted to model the embedded system design process and a web-based knowledge-intensive 
distributed module modeling and evaluation (KS-DMME) framework is developed as a collaborative cyber-
infrastructure to support CORBA-based distributed network-centric embedded system design (Zha and Sriram 
2005b). The framework intends to link distributed, heterogeneous HW/SW (design) modules and tools and assist 
designers in evaluating design alternatives, visualizing trade-offs, finding optimal solutions, and making decisions on 
the web. It also enables designers to build integrated design models using both the local and distributed resources 
(e.g., local and distributed HW/SW modules) and to cooperate by exchanging services. The client (browser) / 
knowledge server architecture allows embedded system design modules to be published and connected over the web 
to form an integrated intelligent models/modules network.  
        Currently, we are working on a service–oriented architecture (SOA) and framework for collaborative embedded 
system design. Consider a typical scenario, where a system designer/integrator, such as an auto manufacturer, 
outsources the design and manufacturing of (HW/SW) sub-systems such as car antilock braking systems (ABS) from 
different vendors. If the auto manufacturer wants to design a complete ABS with subsystems (traction detector, brake 
modulator, hydraulic systems, microcomputer controller, etc.) designed by different vendors, the vendors provide an 
XML/OWL(Extensible Markup Language/Web Ontology Language)  formatted OESFM and CAD model, of the 
subsystems to the auto manufacturer instead of sending the entire CAD model. The system designer/integrator can 
easily generate GALGs (generic assembly liaison graph) from the OESFM model. The GALGs are linked to the 
corresponding design models of subsystems or components. These design models in certain proprietary CAD formats 
are translated into CAD kernel formats, as soon as the vendors send the OESFM model to the system 
designer/integrator. The system designer/integrator can obtain the design models in the CAD kernel format when 
he/she sends a request for viewing a specific component from the GALG tool. The auto-manufacturer therefore can 
decide the assembly HW/SW components to be connected or joined. The determined assembly components are 
loaded into the configuration engine (configurator) and the system designer/integrator can specify a 
connecting/joining method between HW/SW components. The new OESFM model and its corresponding GALG are 
generated automatically based upon the OESFM formalism. During the collaborative embedded systems design, 
design participants typically use different HW/SW CAD systems. To generate a complete assembly, each design 
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model needs to be translated into a single CAD format, which can be accomplished by using specialized translators 
(Kim et al. 2004). Our solution for this is to use an XML/OWL-based modeler (an OWL compatible modeler is 
being developed) that has the ability to process assembly or embedded system ontologies to improve interoperability.  
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Ontology 
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System Designer
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(SW) System Integrator

Analysis
Service

Configuration
Engine

OESFM XML/OWLGALG 3D Model

 
       Figure 9: Service-oriented collaborative embedded system design 

 
      Fig.9 shows how collaborators (system designer/integrator, vendors, manufacturer, etc.) can share OESFM 
models interacting with different CAD systems in a service-oriented collaborative embedded system design 
environment. Consider a system designer/integrator who wants to assemble/configure two HW/SW components 
designed by vendor 1 and vendor 2. Through the SOA, the system designer/integrator can obtain OESFM models of 
HW/SW components remotely and generate an assembly (embedded system) without receiving the entire CAD 
model. Detailed processes are described in the steps below.  
1. A system designer/integrator analyzes design requirements, specifications, and system partitions and 

defines/synthesizes allocated architectures.   
2. The system designer/integrator requests OESFM models of sub-systems/ (HW/SW) components interested. 
3. Vendors provide the requested OESFM models in XML/OWL formats to the system designer or integrator. The 

corresponding HW/SW CAD models are translated to the CAD kernel model and stored in the local database of 
each vendor. A third-party multi-kernel agent can be employed if the vendor doesn’t have the capability to 
translate the CAD model to the kernel model.  

4. The system designer/integrator reviews sub-systems/components with the aid of the GALG tool and a 
product/system viewer. Based on the system design’ needs, he/she can then use the GALG tool to retrieve 
necessary HW/SW components in the kernel format from the vendors’ database.  

5. Once HW/SW sub-systems/components are selected, the system designer/integrator can load kernel models of the 
elected individual HW/SW components into the design engine and specify connecting/joining methods between 
the HW/SW components. 

6. An OESFM model for the new embedded system is generated based upon the OESFM formalism. The new 
OESFM model can be sent to the vendors to share the assembly (embedded system) information. 

7. When additional OESFM information is needed, such as the physical effects or behaviors of connectors, the 
system designer/integrator can request relevant service using the OESFM models through the SOA. 

 

10. Case Study 

       In this section, a hydraulic measurement and control system (HMCS) (Fig.10), which aims to be a 
testing/diagnosing station for car antilock braking systems (ABS), is used as a case study to illustrate the application 
of feature technology and ontologies in embedded system design. This example is inspired by a weather station 
system described in (Grades 2003). The system is based on a small experimental microcontroller (e.g., ATMEL 
ATMEGA103). The microcontroller board is equipped with several sensors (pressure, temperature, speed) and has 
an LCD display, a serial controller, a USB controller, and Modem/Internet controller for output and input purposes. 
A list of the components and component features of HMCS, i.e., the instances of embedded system components and 
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features is provided in (Zha, Fenves and Sriram 2005a). Fig.11 shows a feature model (diagram) of HMCS, its UML 
representation and configuration, and the feature-based HW/SW co-design process. Several input and output options 
have to be implemented in HMCS. Each of the sensors is optional; the output options are formatted or unformatted 
output for the LCD display and for the serial output. Another output option is the use of the predefined SLIP (Serial 
Line Internet Protocol), UDP (User Datagram Protocol) packets. The model is completely independent from the 
implementation platform (see below) and could be reused without any changes on top of any other operating 
systems. Only the mapping functionality has to be exchanged. Each of the different output devices (USB, Serial, 
Modem/Internet and LCD) has almost identical sub-features. This is because all devices can be used for the same 
functionality. All devices would have to support all output options. The output formatting has to be set separately for 
each output device. 
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Figure 10: The hydraulic measure and control system (HMCS) 
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Figure 11: Components and feature diagram of HMCS and its feature-based HW/SW co-design process (Zha, 
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Figure 12: Platform configuration scenario for RS232 driver 
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Figure 13: HMCS design rationale ontology   

 
        More specifically, for the feature model of the RS232 software component, RS232driver, it realizes device 
driver support for 3 different serial controller chips: UART, SCI, and SCC. This is based on the work in (Beuche 
2001). The implementation consists of 3 sets of classes realizing the 3 different chip drivers and an optional abstract 
class which allows providing a common interface for all drivers. All together, there are at least 68 component 
implementations: 3 drivers with each having 4 different implementations and 4 different sets for the common base of 
drivers with a common interface: UART+SCI, UART+SCC, SCC+SCI, and UART+SCC+SCI. The feature model is 
quite simple and only allows specifying the required drivers and if changeable parameters (changePar) and/or 
interrupt based operation (interruptOps) are required. The feature model allows only 28 different feature selections. 
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If only one or all of the three chips are required to support the same feature selection out of changePar and 
interruptOps an optimal implementation component can be generated. Thus, the optimal component implementation 
could be generated only from the given feature model or a subset of the potential usage scenarios. Fig.12 gives a 
platform configuration scenario for RS232 driver. Fig.13 provides a screenshot of HMCS design rationale. The 
description of the feature design and evolution decision for HMCS includes: 1) the summary of the tradeoffs that 
were considered in making decision such as development and deployment cost, prototyping time, adaptability, 
scalability, etc. 2) the ultimate rationale for the decision.  
       The application case study tested and demonstrated that the feature technology and ontology could be used 
effectively for HMCS modeling and design, including the HMCS feature model, feature configuration, HW/SW co-
design, platform/family and design rationale, etc. Note that the resulting models and ontologies and their applications 
are not fully illustrated here due to space limits.  
      

11. Conclusions 

        This paper summarized a feature technology and ontology for embedded systems modeling and design. The 
approach defined an object-oriented representation for the embedded system model (OESM/OESFM), in particular 
the feature semantic models, including models of embedded system artifacts, components, features, and HW/SW 
configuration/assembly, platform/family, design rationale, etc. Feature semantic models and ontologies are 
developed with Protégé-OWL for platform-based design, HW/SW co-design, design rationale, and collaborative 
design. The feature model is used to provide a formal description of embedded systems and to formalize knowledge 
about its instantiation process and design rationale. Details of the feature semantic modeling and representation are 
discussed. The models can provide a feature-based HW/SW co-design framework and allow the designer to develop 
a virtual embedded system prototype through assembling virtual components on the platform. Thus, this work 
contributes to the framework modeling and feature modeling and ontology for the design of embedded systems.  
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