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Abstract:  Recent years have seen rapid progress in the development of ontologies as 
semantic models intended to capture and represent aspects of the real world. 
There is, however, great variation in the quality of ontologies. If ontologies are 
to become progressively better in the future, more rigorously developed, and 
more appropriately compared, then a systematic discipline of ontology 
evaluation must be created to ensure quality of content and methodology. 
Systematic methods for ontology evaluation will take into account 
representation of individual ontologies, performance and accuracy on tasks for 
which the ontology is designed and used, degree of alignment with other 
ontologies and their compatibility with automated reasoning. A sound and 
systematic approach to ontology evaluation is required to transform ontology 
engineering into a true scientific and engineering discipline. This chapter 
discusses issues and problems in ontology evaluation, describes some current 
strategies, and suggests some approaches that might be useful in the future.   
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1. INTRODUCTION 

Recent years have seen rapid progress in the development of ontologies 
intended to capture and represent aspects of the real world. Because 
ontologies explicitly represent domains – constituted by the entities, 
properties, and relationships that exist in the real world – they can be used to 
provide heterogeneously structured databases and multiple systems with 
comparable semantics. Ontologies thus support semantic interoperability and 
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integration in organizations in many domains, with notable successes thus 
far in the life sciences. 

There is, however, great variation in the quality of ontologies. 
Prospective users of these ontologies typically have no insight as to their 
coverage, their intelligibility to human users and curators, their validity and 
soundness, their consistency, the sort of inferences for which they can be 
used, or their ability to be adapted and reused for wider purposes.  

In addition, there are systems such as controlled vocabularies, thesauri 
and terminologies that in the best case exhibit some ontological features or 
that are developed using ontology tools, but that are not ontologies in their 
own right. The pervasive use of the term ‘ontology’ for such resources is 
unfortunate. 

Users are unsure whether particular ontologies can help them solve their 
particular data, application, or service problems. Enterprises and 
communities are not confident that large ontologies formed from the 
merging or mapping together of smaller ontologies will enable wider 
semantic operability for their aggregated data and complex applications, or 
merely result in greater conceptual confusion.  

If ontologies are to become progressively better in the future, more 
rigorously developed, and more appropriately compared, then a systematic 
discipline of ontology evaluation must be created to ensure quality of content 
and methodology. Ideally it will ensure also that an evolutionary path 
towards improvement in ontologies is created, analogous to the paths to 
improvement with which we are familiar in the traditional domains of 
science and engineering.  

2. ONTOLOGY EVALUATION ISSUES AND 
PROBLEMS 

An ontology can be evaluated against many criteria: its coverage of a 
particular domain and the richness, complexity and granularity of that 
coverage; the specific use cases, scenarios, requirements, applications, and 
data sources it was developed to address; and formal properties such as the 
consistency and completeness of the ontology and the representation 
language in which it is modeled. Ontologies can also be evaluated per 
questions such as the following: Is the ontology mappable to some specific 
upper ontology, so that its evaluation will be at least partially dependent on 
the evaluation of the latter also? What is the ontology’s underlying 
philosophical theory about reality (idealist, realist; 3-dimensionalist, 4-
dimensionalist; etc.)? Finally, what kinds of reasoning methods can be 
invoked on the ontology, i.e., by the inference engine that uses it? The latter 
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question highlights the importance also of the evaluation of ontology tools, 
though this chapter will not directly address that topic. 

Ontology evaluation includes aspects of ontology validation and 
verification, i.e., structural, functional, and usability issues. [28, 29] develop 
a theoretical framework and a formal model for evaluating ontologies, 
including a meta-ontology of semiotics called O2 and an ontology of 
ontology evaluation and validation called oQual [29, p. 2]. The latter uses 
the evaluation matrix of [36] to answer general evaluation questions on the 
goals, functions, use cases, stage of development, methodology, usability of 
the ontology. 

One issue in evaluating ontologies is whether to perform glass box 
(component-based) vs. black box (task-based) evaluation, the latter usually 
applied to ontologies that are tightly integrated with an application 
performing specific tasks [36]. An example of such an application might be a 
semantic search engine that uses a domain specific ontology to search over a 
collection of documents. 

2.1 Expressivity and Other Formal Properties of the 
Ontology’s Knowledge Representation Language  

Of importance in evaluating an ontology is the expressivity of the KR 
language the ontology is represented in, in light of the trade-off between the 
value of high expressivity and the cost of computation. Emphasis on high 
expressivity is manifested by First-Order Logic (FOL)-based languages such 
as Common Logic (CL) [18], the Interoperable Knowledge Representation 
for Intelligence Support (IKRIS) language [38], and the Semantic Web 
ontology language OWL’s most expressive dialect OWL FULL [1, 19]. 
Emphasis on minimizing the cost of computation is currently manifested by 
OWL-Lite, OWL-DL (description logic) and other description logics.  

Two ontologies, both covering the same domain, one expressed in OWL-
Lite and one expressed in CL, necessarily will be evaluated differently, say, 
for a given domain application that requires fine model precision, e.g., fully 
automated selling and purchasing as envisioned for a range of semantic Web 
services. For a less precise task, say, for classifying documents in a loose 
topic hierarchy, either one may be sufficient.  

The KR language defines the syntax and the semantics for the ontology 
models expressed in that KR language. Figure 1 [54] displays the three 
levels that are involved: the meta-language, i.e., the KR language, the 
ontology concept or type level, and the instance level. The lowest level 
instantiates as particulars the generic properties described by the middle 
level.  
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Level Example Constructs 
Knowledge 
Representation (KR) 
Language (Ontology 
Language) Level: 

Meta Level to the 
Ontology Concept           
Level 

Class, Relation, Instance, 
Function, Attribute, 
Property, Constraint, Axiom, 
Rule 

Ontology 
Concept/Type (OC) 
Level:  

Object Level to the KR 
Language Level, 
Meta Level to the 
Instance Level 

Person, Location, Event, Frog,  
non-
SaccharomycesFungusPolarize
dGrowth, etc. 

Instance (OI) Level: 
Object Level to the 
Ontology Concept 
Level 

Harry X. Landsford III, 
Person560234, Frog23, non-
SaccharomycesFungusPolarize
dGrowth822, 

 

Meta-Level to 
Object-Level 

Meta-Level to 
Object-Level 

Language 

Ontology 
(General) 

Knowledge 
Base  

(Particular) 

 

Figure -1. Ontology Representation Levels 

Constructs defined in the KR language can be arbitrarily different. For 
example, description logics such as OWL are quite different from FOL 
languages such as CL. Some first-order languages such as IKRIS have non-
standard extensions, e.g., quotations and contexts. OWL Full allows classes 
to also be individuals (instances). Finally, OWL also has been extended with 
the Semantic Web Rule Language SWRL, which combines description logic 
constructs with a Horn rule-like capability. 

Any evaluation of an ontology has to account for the expressivity of the 
KR language in which it is modeled. One way to level the playing field for 
evaluation therefore is to translate the ontology to be evaluated to a 
canonical KR language, typically a very expressive language such as CL, 
which can be problematic. 

The ontology to be evaluated may also be mapped to an upper ontology 
that defines constructs that are not in the KR language. For example, an 
upper ontology may define class, relation, property, attribute, facet, quality, 
or trope. More commonly, an upper ontology will define notions of space 
and time (3-D), or spacetime (4-D) [63], and endurants, perdurants, or both 
[34], and parts, wholes which lower ontologies use [65, 75]. The given 
ontology thereby can use these object-level assertions. Thus, ontology 
evaluation must also consider the mapping to an upper ontology.  

Finally, the formal properties of the KR language will be significant for 
evaluating ontologies and reasoning methods on those ontologies. Formal 
properties include soundness (any expression that can be derived from the 
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knowledge base (KB) of the ontology and its instances is logically implied 
by that KB), completeness (any expression that is logically implied by the 
KB can be derived), and decidability (being both sound and complete). All 
of these will correlate with the formal complexity (time of execution, space 
of memory needed to compute an answer). One can consider undecidability 
as meaning that a query may never terminate, since an inference engine will 
be searching an infinite space. A very expressive language such as FOL is 
semi-decidable: it is decidable in that if a theorem is logically entailed by a 
FOL theory, a proof will eventually be found, but undecidable in that if a 
theorem is not logically entailed, a proof of that may never be found. 
Decidability of a language or logic does not mean tractability of the 
automated reasoning on that language, but there is a relationship. 
Expressivity and complexity are typically inversely proportional to the 
tractability of reasoning.  

A related property having to do with the ontology represented in the KR 
language is consistency (if contradictions can be proven from a given 
proposition, then the theory is inconsistent).  Inconsistent theories have no 
formal models (interpretations of those theories, the semantics). 
Inconsistency may manifest itself by circularity, disjoint partition errors, and 
other semantic inconsistencies, e.g., incorrect classifications. Similarly, there 
are other ontology-level correlates of the formal properties. Ontology 
incompleteness is indicated by imprecisely defined or missing concepts, 
partially defined disjointness properties, redundancy of class, instance, or 
relation [61].  

2.2 Use Cases and Domain Requirements of Ontologies 

In early ontology engineering, methodological considerations were 
introduced that remain significant today. One is the use of competency 
questions to drive out requirements [33]. Competency questions are those an 
ontologist frames prior to the development of the ontology. These consist of 
bottom-up questions one would like answered concerning the data sources 
the ontology would encompass and also top-down questions one would like 
answered considering the nature of the domain. Such questions tend to push 
the ontologist to construct specific use cases and modeling requirements – 
sound software engineering practices – to drive and constrain the ontology 
development. Once an inference engine can give reasonably complete and 
coherent answers (consider them queries or theorems) to the competency 
questions, as gauged by a domain expert, the development effort is 
completed. These competency questions thus also act as a test suite, 
providing value during both analysis and validation.  
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The domain requirements driven out by competency questions and use 
cases are ontology evaluation criteria. The requirements can focus on aspects 
such as physical vs. functional properties (the latter is more important for 
human artifacts), which will vary for the same entities depending on the 
intent of the model. Consider, for example, a supply chain ontology of 
chemicals. Raw manufacturers may focus on physical chemical properties 
such as valency, Ph factor, volatility, human toxicity, purity level, etc., while 
down-stream supply chain vendors such as paint manufacturers may focus 
on properties such as drying time, light reflectability, heat resistance , etc. 

2.3 Semantic Agreement and Consensus Building 

Measurement of human agreement on classification tasks has been well-
studied. Similar measurement can be applied to the problem of classifying 
instances in terms of an ontology or mapping a concept to candidate classes 
in one or more ontologies. Researchers developing linguistic classification 
schemes for annotating corpora have measured inter-annotator agreement 
using the Kappa statistic [64, 9].  Such measurements have played a crucial 
role in the evolution of such annotation schemes, some of which have 
resulted in successful solutions to problems in computational linguistics. 
Such metrics are appropriate when the categories involved are already 
defined and where annotators are required to choose between possible 
categories.  

Inter-annotator agreement studies have been carried out in the course of 
Gene Ontology annotation of terms in documents [7], in the context of the 
BioCreative information extraction task. It was found here that expert 
annotators (EBI GOA project curators) [23] were generally correct in their 
annotations, but missed a few, and that the specificity of the annotation 
varied depending on their biological knowledge. 

Semantic agreement is highly influenced by the degree to which humans 
are trained in a set of guidelines for how to label examples in terms of 
categories, and the richness of these guidelines. For certain problems, 
guidelines may have to be refined to arrive at more agreement; where there 
is eventual disagreement, adjudication may have to be used. The process of 
arriving at the right categories involves a variety of factors that include 
aspects of group collaboration. Delphi methods [50] have a role here, but 
have been relatively underexplored for use in ontology evaluation. 

2.4 Semantic Similarity and Semantic Distance 

The majority of ontologies exist, or can be represented in, a graph-based 
form. Semantic distance and semantic similarity are two measures used in 
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graph representations to capture to what extent two nodes in a graph are 
related. Whereas semantic distance measures how closely two nodes are 
topologically related in a graph, semantic similarity captures to what extent 
two nodes might represent the same entity in reality. Obviously, the two 
notions are closely related, but there are some important differences. In a 
fracture ontology, for example, a node representing a “fractured arm” should 
have a very short semantic distance from one referring to an “arm fracture”; 
yet the semantic similarity would still be low: a fracture cannot be an arm. It 
is now a measure of a high-quality ontology that it should be possible to 
compute the semantic distance of post-coordinated terms such as “patient-
WITH-arm fracture” and “patient-WITH-fractured arm” as being minimal, 
and the semantic similarity as being maximal. 

Various approaches to the calculation of these values have been 
proposed. They tend to fall into two categories. Edge-based methods exploit 
mainly the idea of path-length in a network (with or without additional 
weights according to the type of link traversed); node-based methods also 
take into account contextual factors, such as the degree to which cognate 
terms are to be found in a large corpus [58] (the idea being that the 
information content associated with nodes related to terms that occur often in 
a corpus is lower than of nodes that occur rarely, and that information-low 
nodes tend to appear higher in an ontology hierarchy). Still more 
sophisticated edge-based methods are described in [80] which is based 
entirely on the hierarchical is_a-relationship, and in [74], where this idea is 
expanded to take account also of other sorts of relationships between nodes. 

2.5 Alignment with Other Ontologies 

Ontology alignment (mapping, articulation) attempts to compare two 
ontologies, where one ontology is the ‘reference’ ontology against which a 
candidate ontology should be compared. Arriving at a suitable reference 
ontology can be challenging; preferably, it should be one that was created 
under similar conditions, with similar goals, to the candidate ontology. This 
issue is less a problem when, say, comparing different versions of the same 
ontology. 

Ontology alignment can provide some information about the relative 
quality of the ontologies aligned. It falls short of providing full evaluation 
metrics, however, since we do not as yet have gold standard reference 
ontologies. In [15] an attempt is made to base such a metric on using reality 
as the gold standard. 

Alignment is usually described as an activity that, given two arbitrary 
ontologies O1 and O2, aims to find for each ‘concept’ in ontology O1 a 
corresponding ‘concept’ in ontology O2 that has the same intended meaning 
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[43, 22, 40]. To say that two concepts have similar semantics, on this 
account, means roughly that they occupy similar places in their lattices. A 
problem with the above is, however, clear: ontology alignment is defined in 
terms of the correspondence (equivalence, sameness, similarity) of concepts. 
But how, precisely, do we gain access to concepts in order to determine 
whether they stand in a relation of correspondence?  

One option is via definitions, but then these definitions themselves, 
supplied by the ontologies to be matched, will likely employ different terms 
(or ‘concepts’), so that the problem of matching has merely been shifted to 
another place. Another option, as suggested in [22], is to establish 
correspondence by looking at the positions of given concepts in their 
surrounding concept lattices. But how, unless we have already matched 
some single concepts, can we compare ‘places’ in distinct lattices (these 
‘lattices’ may have very different mathematical forms)? This leaves only 
some statistically-based algorithms involving lexical term-matching, the 
results of whose application have thus far proved uneven, to say the least.  

When [24] surveyed ontology alignment methods, they found that the 
majority are based on analyzing either the vocabulary used to label concepts 
or the structure in terms of which the latter are organized. Term-based 
comparison is, as mentioned above, problematic because of term synonymy 
(multiple terms may have very similar meanings) and term ambiguity (a 
given term may refer to multiple similar or different concepts).  In addition, 
term comparisons require a degree of morphological normalization, and 
complex multi-word terms need to be handled. The use of structure-based 
comparison is, however, applicable in the restricted case where the 
ontologies being aligned are very similar, as in version comparison [20] 

One can use coarse-grained methods for comparing ontologies in terms 
of distance, while paying lip-service to the term-matching problem. Research 
on ontology induction for biology has followed such an approach in 
comparing system-generated ontologies with human ones. For example, [52] 
limited the terms to those in the reference ontology, comparing relations 
closed among those terms in each of the ontologies. Their relation precision 
measures the proportion of relations a distance D1 apart in one ontology that 
are at most a distance D2 apart in the other, subject to a variety of constraints 
(e.g., the direction and type of the links being the same, similar, different, 
etc.). The disadvantage of such distance-based measures is their over-
sensitivity to small changes in node ordering; also, the ‘conceptual’ salience 
of particular nodes is not taken into account. In related work, [41] measures 
the percentage of times terms in a parent-child relationship appear in an 
immediate or transitive parent-child relationship in the other. 
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3. ONTOLOGIES FOR THE LIFE SCIENCES: 

EVALUATION TECHNIQUES 

In the life sciences, widely-used ontologies such as the Gene Ontology, 
UMLS, BioPAX, etc. are being used primarily to perform ‘associative’ 
query expansion during search or to reconcile annotations, rather than for 
deep reasoning. A number of ontologies used in biology have been 
developed or enhanced with description logic representations to permit 
richer inferential use, including the Gene Ontology Next Generation Project 
(GONG) [77], SNOMED-Clinical Terms [73], The Unified Medical 
Language System (UMLS) [57,  42, 17], GALEN [59], the Foundational 
Model of Anatomy (FMA) [79], and the National Cancer Institute (NCI) 
Thesaurus [30]. The use of description logics here provides a degree of 
evaluation in terms of error-checking. 

The deeper reasoning tasks that ontologies have been used for include: 
classification, e.g., finding the most specific protein family for an entity in a 
protein database [76], answering queries related to process models of a 
vaccinia virus life cycle [37], and reasoning about part-whole models of 
anatomy [35]. However, there are a number of problems with such 
ontologies, of the sorts described in [10, 11] which demonstrate that the 
error-checking mechanisms provided by description logic tools do not 
suffice to find all errors. 

Many techniques are being used for ontology evaluation in the life 
sciences and more generally. For fairly exhaustive summaries of current 
practice, see [4, 5]. In this section, we look at a number of the techniques: 
evaluation with respect to the use of an ontology in an application, with 
respect to domain data sources, assessment by humans against a set of 
criteria, natural language evaluation techniques, and the use of reality itself 
as a benchmark. The section concludes with a discussion of prospects for the 
future: accrediting and certifying ontologies that have passed some 
evaluation criteria, and the notion of an ontology maturity model. 

3.1 Evaluate Use Of Ontology In An Application 

Task-based evaluations offer a useful framework for measuring practical 
aspects of ontology deployment, such as the human ability to formulate 
queries using the query language provided by the ontology, the accuracy of 
responses provided by the system’s inferential component, the degree of 
explanation capability offered by the system, the coverage of the ontology in 
terms of the degree of reuse across domains, the scalability of the knowledge 
base, and the ease of use of the query component.  Such task-based 
evaluations can leverage use-cases or scenarios to characterize the target 
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knowledge requirements. In the DARPA High-Performance Knowledge 
Bases project [16], the evaluation included a crisis management scenario, 
where evaluators formulated parameterized test questions and answer keys, 
and subjectively graded question formulation, answers, and system 
explanations regarding inferential steps. In the case of the qualitative 
assessment of CYC [48] for use by the Internal Revenue Service [60], the 
use-cases were drawn from FAQs and topics at the IRS web site. The 
questions could include statements, and were selected to be complex enough 
to require ontology-based inference. Another assessment of CYC [51] was 
focused on its use for word-sense disambiguation and coreference in natural 
language processing. Here the queries chosen were taxonomic queries as 
well as queries that examined distances between pairs of concepts. 

Another task-based evaluation scheme involves using textbooks and 
other found material to guide task-specific knowledge capture requirements. 
In  the Rapid Knowledge Formation (RKF) project [37], subject-matter 
experts added knowledge about DNA transcription to two ontological 
systems, Cycorp’s CYC and SRI’s SHAKEN, based on ten pages from a 
standard textbook. Independent judges carried out subjective grading of the 
accuracy of the answers obtained to test questions as well as the degree of 
reuse (old vs. new axioms used). Further, comparisons of performance of 
subject-matter experts were carried out against knowledge engineers from 
the developer institutions. A particularly interesting feature of RKF was the 
use of challenging ‘explanation’ questions, e.g., ‘Can transcription be 
performed on either strand of a given DNA gene segment with equivalent 
effects? Explain.’ A similar approach was taken in the HALO pilot project 
[27], which used a chemistry domain and involved CYC, SHAKEN, and 
Ontoprise’s Ontonova.  In HALO, both the test questions and the assessment 
were modeled on Advanced Placement chemistry tests. 

Task-based evaluations, however, can be expensive to carry out and the 
results cannot be used to test systems whenever the need arises. Further, 
measurements of reuse face the problem of counting concepts or axioms, 
which depends on what sorts of concepts are reified in a particular ontology. 

3.2 Comparison of Ontology Against a Source of 
Domain Data 

Coverage of the ontology can be evaluated with respect to other 
ontologies and databases representing a particular domain. For example, the 
Gene Ontology has been automatically mapped to a number of other 
classifications as well as to databases. However, such coverage estimates are 
subject to noise in the mapping, of the sort discussed earlier for term-
matching methods. In addition, entity normalization (mapping from attested 
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names to database ids) is non-trivial in biological domains, as shown in [2], 
where increased length of the names and ambiguity in the vocabulary was 
tied to substantially poorer performance for mouse genes compared to yeast 
genes. 

Ontologies can also be mapped automatically to a corpus of documents 
representative of a particular domain, and this mapping can be used to assess 
or compare ontologies. The approach of [6] compares ontologies by 
examining only the concepts which are common to the ontology and the 
corpus. Each ontology is represented by a feature vector, and the distance 
between the ontologies is represented by the distance between the vectors. 
The approach also provides a method for estimating the probability of the 
ontology given the corpus. The approach ignores relationships between 
concepts, and is subject to the standard problems with term-matching.  

3.3 Assessment by Humans Against a Set of Criteria 

Assessment by humans against a set of criteria had been used extensively 
by Ceusters and Smith in a series of studies of ontologies and terminologies 
in biomedicine:  
• The Gene Ontology  [69, 72, 68] 
• Systematized Nomenclature of Medicine (SNOMED) Clinical Terms 

(CT) [31, 10, 11, 3] 
• The National Cancer Institute Thesaurus [13,  46] 
• The Unified Medical Language System [71, 45] 
• ICF (International Classification of Functioning, Disability and Health) 

[49] 
• HL7-RIM [67] and ISO terminology and data integration standards [66, 

70].  
 The principles in question are derived largely from common sense: 
provide clear documentation, use terms in a consistent (and consistently non-
ambiguous) way, provide updating and versioning procedures, and 
procedures for users to propose corrections and additions to the ontology. 
Some are derived from basic (philosophical) logic, including the theory of 
definitions – for example: avoid circular definitions; do not give a new 
meaning to a term with an already established use in the domain in which the 
ontology is intended to be used; define the principal relations in the ontology 
(for example is_a and part_of ) and used them in consistent ways. Yet others 
are derived from the tradition of philosophical realism: see section [Using 
Reality as Benchmark] below. For a general overview see [44, 12], which 
describe also how the application of some of these principles to the 
evaluation of ontologies can be implemented in automated reasoning 
systems. 
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3.4 Natural Language Evaluation Techniques 

Natural language processing tasks such as information extraction, 
question-answering, and abstracting are knowledge-hungry tasks. It is 
therefore natural to consider evaluation of ontologies in terms of their impact 
on these tasks. Information extraction in biomedical text has made heavy use 
of the Gene Ontology; it is possible to subtract out or substitute other 
ontologies such as UMLS to see the impact on performance. Further, in the 
BioCreative evaluation [76], one of the tasks was to find evidence in a paper 
for the GO code provided for a given protein. The best systems for this task 
had around 30% accuracy, in part because of the difficulty of the inference 
involved. For example, the text passage “The p21waf/cip1 protein is a 
universal inhibitor of cyclin kinases and plays an important role in inhibiting 
cell proliferation.” is evidence for the GO annotation of that protein as 
having a molecular function of “negative regulation of cell proliferation (GO 
code: 0008285)”, which requires a system to make the difficult inference 
that inhibition is equivalent to negative regulation. The impact of ontologies 
on such an ‘entailment’ task could be measured. 

Question-answering is another technology where ontologies can play a 
useful role in bridging the gap between a natural language question and a 
candidate passage in a document. Current systems use WordNet along with 
ad-hoc taxonomies rather than full-fledged ontologies. Accuracy on 
question-answering tasks can provide a task-based measure of the impact of 
an ontological resource and its components. Such applications also present 
challenging requirements in terms of performance efficiency. Question-
answering systems for the life sciences are still in their infancy, however. 

3.5 Using Reality as Benchmark 

[14] proposes a technique for ontology evaluation based on the 
examination of the changes made in subsequent versions of an ontology 
They build a metric resting on a distinction between three levels which have 
a role to play where ontologies are used as artifacts for annotation and 
automated reasoning as for example in the field of biomedicine: (1) the 
reality on the side of the patient; (2): the cognitive representations of this 
reality embodied in observations and interpretations on the part of clinicians 
and others, and (3) the publicly accessible concretizations in representational 
artifacts of various sorts, of which ontologies are examples. To establish the 
metric it is necessary first of all to specify the features by which an eventual 
gold standard must be marked. Each node in such an ontology would need to 
designate (1) a single portion of reality (POR), which is (2) relevant to the 
purposes of the ontology, and such that (3) the authors of the ontology 
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intended to use this node to designate this POR. Moreover, (4) no PORs 
objectively relevant to these purposes would be missed by the ontology. We 
can now obtain a measure of the quality of an ontology (and of the work, and 
competence, of its developers) by determining the degree to which 
successive versions of the ontology approximate ever more closely to this 
ideal, something which can be quantified by documenting the different kinds 
of changes in an ontology, reflecting for example (1) changes in the 
underlying reality (does the appearance or disappearance of an entry in a 
new version of an ontology relate to the appearance or disappearance of 
entities or of relationships among entities in reality?); (2) changes in our 
scientific understanding; (3) reassessments of what is relevant for inclusion 
in an ontology, or (4) encoding errors introduced during ontology curation 
(for example through erroneous introduction of duplicate entries reflecting 
lack of attention to differences in spelling). We can measure the degree of 
improvement along each of these dimensions in each successive version of 
the ontology by tracking the history of revisions. The metric can be used also 
with measures of the performance of an ontology in applications; a 
divergence between the two is once again a sign that the ontology does not 
line up with the reality it is supposed to represent. 

3.6 Ontology Accreditation, Certification, Maturity 
Model 

Once validation, verification, and evaluation of ontologies become 
standard practice, a further evolution toward more rigor is to issue 
accreditation or certification (to a given ontology or to a team of ontology 
developers or an organization) based on a set of recognized evaluation 
criteria by an accrediting body (top-down) or an accrediting process 
(bottom-up) similar to the trustworthiness, reputation, and feedback 
mechanisms of online services and communities such as E-Bay and Amazon 
[21].  This kind of “Good Ontology-keeping” seal of approval would 
compute and assign a quality rating of the ontology [55, 53]. An alternative 
approach might include ontology repositories that have some entrance 
requirements, e.g., an open-rating system extended with topic-specific trust 
[49, 56]. The emerging Extended Metadata Repositories (XMDR) project  
[78], based on the ISO/IEC 11179 Metadata Registries standard [39], 
represents another repository paradigm that includes ontology registration, 
mapping services, and prospectively certification.  

As discussed throughout this  paper, additional measures associated with 
an ontology accreditation score could be domain, breadth of application or 
coverage within that domain, average taxonomic depth and relational density 
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of nodes, completeness of axiomatic specification, adherence to principled 
methodologies such as Methontology [25, 26] and OntoClean [34], etc.  

Creation of an ontology maturity model may also be useful [55], like the 
Software Engineering Institute’s Capability Maturity Model Integration [8]: 
a process of subprocesses in a full ontology lifecycle model, with gradations 
and decision procedures for maturity of ontologies by which organizations 
and ontologies could be gauged in terms of rigor of the ontology engineering 
process. Levels of maturity in the model could be defined by many of the 
properties discussed in this chapter, including degree of logical 
formalization, axiomatizability and satisfiability measures; strictness and 
properties of the ontology development process; quality of ontology; linkage 
to reference, utility, middle, and upper ontologies; domain of application 
usage; and tool support, including KR language, development, and reasoning 
assistance. 

4. NEXT STEPS AND RECOMMENDATIONS  

The ultimate evaluation of an ontology is in terms of its adoption and 
successful use, rather than its consistency or coverage.  The Gene Ontology, 
while clearly impoverished in many representational aspects, is a 
fundamental success story.  

In the long run, rigorous ontology evaluation must evolve in support of a 
broader engineering discipline of semantics and ontologies, which itself 
would be part of an information engineering discipline. A rigorous 
engineering discipline in semantics and ontologies must therefore include 
certain attributes in common with other engineering disciplines: 
• A formal, verifiable science base 
• Tested theories that allow prediction 
• Defined units of measure 
• Well-defined engineering practices 

If as a society we hope to reliably build complex information systems 
incorporating ontologies, these foundational elements must be available to 
engineering practitioners. This will not be an easy undertaking. A 
measurable science of semantics or ontologies requires some fundamental 
questions to be answered, such as what are meaningful, theoretically 
grounded units of measure in this new science. Beyond the early work 
performed by [62] on information entropy as a measure for uncertainty in a 
message, little progress has been made. And yet, intuitively we deal with 
notions such as ‘semantic proximity’ in our daily lives. In other words, we 
satisfy ourselves, usually through dialogue, that our own conceptualization 
of some notion is ‘close enough’ to that of another to allow meaningful 
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discourse. Just how to characterize the dimension in which ‘close enough’ is 
evaluated, much less what the unit of measure is, remains an unsolved 
problem. 

Therefore, as a community we need to approach ontology evaluation as 
part of a larger endeavor to systematize the construction of information 
systems. In this way, we can realistically hope to succeed in building ever 
more complex systems without drowning in complexity.  

ACKNOWLEDGEMENTS 

This work was supported in part by the National Institutes of Health 
through the NIH Roadmap for Medical Research, Grant 1 U 54  HG004028.  

The views expressed in this paper are those of the authors alone and do 
not reflect the official policy or position of The MITRE Corporation or any 
other organization or individual. 

This publication was prepared by United States Government employees 
as part of their official duties and is, therefore, a work of the U.S. 
Government and not subject to copyright. 

REFERENCES 

1. Bechhofer, Sean; Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. 
McGuinness, Peter F. Patel-Schneider, Lynn Andrea Stein. 2004. OWL Web Ontology 
Language Reference.  W3C Recommendation 10 February 2004. 
http://www.w3.org/TR/owl-ref/. 

2.  Blaschke, C., L. Hirschman, A. Valencia, and  A. Yeh. 2004. A critical assessment of text 
mining methods in molecular biology. BMC Bioinformatics (22-article special issue), 
Volume 6, Supplement 1. http://www.biomedcentral.com/1471-2105/6?issue=S1. 

3.  Bodenreider, Olivier; Barry Smith; Anand Kumar; and Anita Burgun, 2004. Investigating 
subsumption in DL-based terminologies: a case study in SNOMED-CT, in: U. Hahn, S. 
Schulz and R. Cornet (eds.), Proceedings of the First International Workshop on Formal 
Biomedical Knowledge Representation (KR-MED 2004), 12–20. 

4.  Brank, Janez; Marko Grobelnik; Dunja Mladenić. 2005a. Ontology evaluation, deliverable 
D1.6.1, EU-IST Project IST-2003-506826 Semantically Enabled Knowledge Technologies 
(SEKT), Jožef Stefan Institute, Ljubljana, Slovenia, May 8, 2005. 

5.  Brank, Janez; Marko Grobelnik; Dunja Mladenić. 2005b. A survey of ontology evaluation 
techniques. SiKDD05.  

6.  Brewster, C., Alani, H., Dasmahapatra, S. and Wilks, Y. 2004. Data driven ontology 
evaluation. In Proceedings of International Conference on Language Resources and 
Evaluation, Lisbon, Portugal. 

7.  Camon E., Barrell D., Dimmer E., Lee V., Magrane M., Maslen J., Binns D., Apweiler R. 
2005. An evaluation of GO annotation retrieval for BioCreAtIvE and GOA. BMC 
Bioinformatics 6(1): S17 (2005). 



16 Chapter #NN
 
8.  Capability Maturity Model Integration (CMMI). Software Engineering Institute, Carnegie-

Mellon University. http://www.sei.cmu.edu/cmmi.  
9. Carletta, J.1996. Assessing agreement on classification tasks: the kappa statistic. 

Computational Linguistics, 22(2):249–254. 
10. Ceusters, Werner, Barry Smith and Jim Flanagan, 2003, Ontology and medical 

terminology: why description logics are not enough, in Proceedings of the Conference: 
Towards an Electronic Patient Record (TEPR 2003), San Antonio 10-14 May 2003, 
Boston, MA: Medical Records Institute (CD-ROM publication). 

11 Ceusters, Werner, Barry Smith, Anand Kumar, Christoffel Dhaen, 2004a. Ontology-based 
error detection in SNOMED-CT, in M. Fieschi, et al. (eds.), Medinfo 2004, Amsterdam: 
IOS Press, 482–486. 

12. Ceusters W, Smith B, JM Fielding, 2004b. LinkSuite: formally robust ontology-based data 
and information integration. In Rahm E (Ed.): Data Integration in the Life Sciences: DILS 
2004, (Lecture Notes in Computer Science 2994) Springer 2004, p. 124-139. 

13. Ceusters W, Smith B. 2005. A terminological and ontological analysis of the NCI 
thesaurus. Methods of Information in Medicine 2005; 44: 498-507. 

14. Ceusters W, Smith B. 2006a. A realism-based approach to the evolution of biomedical 
ontologies. Forthcoming in Proceedings of the AMIA 2006 Annual Symposium, 
Washington DC, November 11-15, 2006. 

15 Ceusters W, Smith B. 2006b.Towards A realism-based metric for quality assurance in 
ontology matching (forthcoming in Proceedings of FOIS-2006). 

16. Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B., Easter, D., Gunning, D., and 
Burke, M. 1998. The DARPA High Performance Knowledge Bases project. Artificial 
Intelligence Magazine, vol. 19, no. 4, 1998, pp.25-49. 

17. Cornet R, Abu-Hanna A. Usability of expressive description logics--a case study in 
UMLS. Proceedings of AMIA Symp 2002:180-4. 

18. Common Logic Standard. http://cl.tamu.edu/. 
19. Daconta, M., K. Smith, L. Obrst. The Semantic Web: The Future of XML, Web Services, 

and Knowledge Management. John Wiley, Inc., 2003. 
20. Daude, J., Padro, L. and Rigau, G. 2001 A Complete WN1.5 to WN1.6 Mapping. 

NAACL-2001 Workshop on WordNet and Other Lexical Resources: Applications, 
Extension, and Customization, 83-88. 

21. Dellarocas, Chrysanthos. 2006. Reputation mechanisms. Forthcoming in Handbook on 
Economics and Information Systems. (T. Hendershott, ed.), Elsevier Publishing. 
http://www.rhsmith.umd.edu/faculty/cdell/papers/elsevierchapter.pdf. 

22. Ehrig M, Sure Y. 2004. Ontology mapping - an integrated approach. In Proceedings of the 
First European Semantic Web Symposium, ESWS 2004, volume 3053 of Lecture Notes in 
Computer Science, pages 76–91, Heraklion, Greece, May 2004. Springer Verlag. 

23. European Bioinformatics Institute (EBI) Gene Ontology Annotation (GOA) Project. 
http://www.ebi.ac.uk/GOA/. 

24. Euzénat J; Thanh Le Bach;  Jesús Barrasa; Paolo Bouquet; Jan De Bo; Rose Dieng; Marc 
Ehrig; Manfred Hauswirth; Mustafa Jarrar; Ruben Lara; Diana Maynard; Amedeo Napoli; 
Giorgos Stamou; Heiner Stuckenschmidt; Pavel Shvaiko; Sergio Tessaris; Sven Van 
Acker; Ilya Zaihrayeu. 2004. KnowledgeWeb deliverable D2.2.3: State of the art on 
ontology alignment. V1.2, August 2004. http://www.starlab.vub.ac.be/research/projects/ 
knowledgeweb/kweb-223.pdf. 

25. Fernández, M. 1999. Overview of methodologies for building ontologies. Workshop on 
Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends. 
(IJCAI99). August. 1999. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-18/4-fernandez.pdf. 



#NN. The Evaluation of Ontologies 17
 
26. Fernandéz, Mariano; Gómez-Pérez, Asunción; and Juristo, Natalia. 1997. 

METHONTOLOGY: from ontological art to ontological engineering. Workshop on 
Ontological Engineering. Spring Spring Symposium Series. AAAI97, Stanford. 

27. Friedland, N. S., Allen, P. G., Witbrok, M., Matthews, G., Salay, N., Miraglia, P., Angele, 
J., Staab, S., Israel, D., Chaudhri, V., Porter, B., Barker, K., and Clark, P. 2004. Towards a 
quantitative, platform-independent analysis of knowledge systems. Proceedings of 
KR’2004. 

28. Gangemi, A.; Catenacci, C.; Ciaramita, M.; Lehmann, J.  2005. A theoretical framework 
for ontology evaluation and validation. In Proceedings of SWAP2005. 

29. Gangemi, Aldo; Carola Catenacci; Massimiliano Ciaramita; and Jos Lehmann. 2006. 
Modelling ontology evaluation and validation. To appear in Proceedings of ESWC2006, 
Springer.  

30. Golbeck J, Fragoso G, Hartel F, Hendler J, Oberthaler J, Parsia B.  2003. The National 
Cancer Institute's Thesaurus and Ontology. Journal of Web Semantics 2003 1(1). 
http://www.websemanticsjournal.org/ps/pub/2004-6. 

31. Goldberg LJ, Ceusters W, Eisner J, Smith B 2005. The significance of SNODENT, Stud 
Health Technol Inform. 2005;116:737-742. 

32. Grenon, P.  2003. Spatio-temporality in basic formal ontology: SNAP and SPAN, 
upperlevel ontology, and framework of formalization (part I). Technical Report Series 
05/2003, IFOMIS, 2003. 

33. Gruninger, M. and Fox, M.S. 1995.  Methodology for the design and evaluation of 
ontologies. In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge 
Sharing, IJCAI-95, Montreal. 

34. Guarino, N; C. Welty. 2002. Evaluating ontological decisions with OntoClean. 
Communications of the ACM. 45(2):61-65. New York: ACM Press. 
http://portal.acm.org/citation.cfm?doid=503124.503150.  

35. Hahn, U. and Schulz, S. 2003. Towards a broad-coverage biomedical ontology based on 
description logics. Pacific Symposium on Biocomputing 8, 2003, 577-588. 

36. Hartmann, Jens; Peter Spyns; Alain Giboin; Diana Maynard; Roberta Cuel; Mari Carmen 
Suárez-Figueroa. 2005. D1.2.3 Methods for ontology evaluation. EU-IST Network of 
Excellence (NoE) IST-2004-507482 KWEB Deliverable D1.2.3 (WP 1.2).  

37. IET. RKF Y1 evaluation report, October 2001. http://www.iet.com/Projects/RKF/IET-
RKF-Y1-Evaluation.ppt. 

38. Interoperable Knowledge Representation for Intelligence Support (IKRIS).  
http://nrrc.mitre.org/NRRC/ikris.htm. 

39. ISO/IEC 11179 specification. http://metadata-standards.org/. 
40. Kalfoglou Y, Schorlemmer M. 2003. Ontology mapping: the state of the art. Knowledge 

Engineering Review, 18(1):1--31, 2003. 
41. Kashyap, V., Ramakrishnan, C.,  Thomas, C., and Sheth, A. 2005. TaxaMiner; an 

experimental framework for automated taxonomy bootstrapping. International Journal of 
Web and Grid Services, Special Issue on Semantic Web and Mining Reasoning, 
September 2005. 

42. Kashyap V, Borgida A. 2003. Representing the UMLS semantic network using OWL: (Or 
“What's in a Semantic Web link?”). In: Fensel D, Sycara K, Mylopoulos J, editors. The 
SemanticWeb – ISWC 2003. Heidelberg: Springer-Verlag; 2003. p. 1-16 

43. Klein, M. 2001. Combining and relating ontologies: an analysis of problems and solutions. 
In A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, and M. Uschold, editors, 
Workshop on Ontologies and Information Sharing, IJCAI01, Seattle, USA, 2001. 

44. Köhler J, Munn K, Rüegg A, Skusa A, Smith B. 2006. Quality control for terms and 
definitions in ontologies and taxonomies, BMC Bioinform, 2006;7:212-220.  



18 Chapter #NN
 
45. Kumar A, Smith B. 2003. The Unified Medical Language System and the Gene Ontology, 

KI 2003:;135-148. 
46. Kumar A, Smith B. 2005. Oncology ontology in the NCI Thesaurus, Artificial Intelligence 

in Medicine Europe (AIME), (Lecture Notes in Computer Science 3581), 2005;:213-220. 
47. Kumar A, Smith B. 2006. The Ontology of processes and functions: a study of the 

international classification of functioning, disability and health. 
http://ontology.buffalo.edu/medo/ICF.pdf.  

48. Lenat, D. B. 1995.  Cyc: a large-scale investment in knowledge infrastructure. 
Communications of the ACM 38, no. 11.  

49. Lewen, Holger; Kaustubh Supekar; Natalya F. Noy; and Mark A. Musen. 2006. 
TopicSpecific Trust and Open Rating Systems: An approach for ontology evaluation, 
Workshop on Evaluation of Ontologies for the Web EON 2006, WWW2006, May 22–26, 
2006, Edinburgh, UK.  

50. Linstone, H. A. and Turoff, M., Editors  2006. The delphi method: techniques and 
applications. http://www.is.njit.edu/pubs/delphibook/. Electronic reproduction of:  
Linstone,H.&Turoff,M.The Delphi Method: Techniques and Applications. Reading, Ma.: 
Addison-Wesley, 1975. 

51. Mahesh, K., S. Nirenburg and S. Beale. 1996. KR requirements for natural language 
semantics: a critical evaluation of Cyc. Proceedings of KR-96.  

52. Mani, I., Samuel, S., Concepcion, K., and Vogel, D. 2004. Automatically inducing 
ontologies from corpora. Proceedings of CompuTerm 2004: 3rd International Workshop 
on Computational Terminology, COLING'2004, Geneva. 

53. Open Biomedical Ontologies (OBO) Foundry. http://obofoundry.org. 
54. Obrst, L., H. Liu, R. Wray. 2003. Ontologies for corporate web applications. Artificial 

Intelligence Magazine, special issue on Ontologies, American Association for Artificial 
Intelligence, Chris Welty, ed., Fall, 2003, pp. 49-62. 

55. Obrst, Leo; Todd Hughes; Steve Ray. 2006. Prospects and possibilities for ontology 
evaluation: the view from NCOR. Workshop on Evaluation of Ontologies for the Web 
(EON2006), Edinburgh, UK, May 22, 2006. 

56. Patel, C.; K. Supekar, Y. Lee, and E. Park. 2003. Ontokhoj: a semantic web portal for 
ontology searching, ranking and classification. In Proc. of the Fifth ACM Workshop on 
Web Information and Data Management, pages 58–61, New Orleans, Louisiana, USA, 
2003. ACM Press.  

57. Pisanelli D.M., Gangemi A, Steve G. An ontological analysis of the UMLS 
Methathesaurus. Proceedings of AMIA Symp 1998:810-4. 

58. Polcicová, G., and Návrat, P. 2002. Semantic similarity in content-based filtering: In Proc. 
of ADBI2002 Advances in Databases and Information Systems, Manolopoulos, Y. and 
Návrat, P. (Eds.), Springer LNCS 2435, 2002, 80-85. 

59. Rogers, J.E., and Rector, A. L. GALEN's Model of parts and wholes: experience and 
comparisons Annual Fall Symposium of American Medical Informatics Association, Los 
Angeles CA Hanley & Belfus Inc Philadelphia PA;:714-8  

60. Sanguino, R. Evaluation of Cyc. 2001. LEF Grant Report, CSC,  Miami, FL, March 2001, 
http://www2.csc.com/lef/programs/grants/finalpapers/sanguino_eval_cyc.pdf. 

61. Seipel, Dietmar; Joachim Baumeister. Declarative methods for the evaluation of 
ontologies. University of Wurzburg. 2004.  

62. Shannon, C.E. 1948. A mathematical theory of communication, Bell System Technical 
Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948 

63. Sider, T. 2002. Four-Dimensionalism: An Ontology of Persistence and Time. Oxford: 
Oxford University Press. 



#NN. The Evaluation of Ontologies 19
 
64 Siegel, S. and N. J. Castellan, N. J. 1988. Nonparametric Statistics for the Behavioural 

Sciences. McGraw-Hill, 2nd edition, 1988.  
65. Simons, P. 1987. Parts: A Study in Ontology. Clarendon Press, Oxford, 1987. 
66. Smith B, Ceusters W, Temmerman R. 2005. Wüsteria, Stud Health Technol Inform. 

2005;116:647-652. 
67. Smith B, Ceusters W. 2006. HL7 RIM: An incoherent standard, Stud Health Technol 

Inform, 2006, in press. 
68. Smith B, Kumar A. 2004. On controlled vocabularies in bioinformatics: a case study in the 

Gene Ontology, BIOSILICO: Drug Discovery Today, 2004;2:246-252. 
69. Smith B, Williams J, Schulze-Kremer S. 2003. The ontology of the Gene Ontology, Proc 

AMIA Symp. 2003;:609-613.  
70. Smith B. 2006. Against idiosyncracy in ontology develoment, under review. 
71 Smith B. 2006a. From concepts to clinical reality: an essay on the benchmarking of 

biomedical terminologies, J Biomed Inform, 2006; 39(3): 288-298. 
72. Smith, Barry; Jacob Köhler; Anand Kumar. 2004. On the application of formal principles 

to life science data: a case study in the Gene Ontology. Erhard Rahm (Ed.): Data 
Integration in the Life Sciences, First International Workshop, DILS 2004, Leipzig, 
Germany, March 25-26, 2004, Proceedings, pp. 79-94. Lecture Notes in Computer Science 
2994 Springer 2004.  

73. Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (CT). 
http://www.snomed.org/.  

74. Van Buggenhout C, Ceusters W. A novel view on information content of concepts in a 
large ontology and a view on the structure and the quality of the ontology. International 
Journal of Medical Informatics 2005;74(2-4):125-32. 

75. Varzi, A.C.  1998. Basic problems of mereotopology.  In: Guarino, N., ed. Formal 
Ontology in Information Systems, Amsterdam: IOS Press, pp. 29-38. 

76. Wolstencroft, K., R. McEntire, R., Stevens, R., Tabernero, L. and Brass, A. 2005. 
Constructing ontology-driven protein family databases. Bioinformatics 2005 21(8):1685-
1692  

77. Wroe CJ, Stevens R, Goble CA, Ashburner M.  2000. A methodology to migrate the Gene 
Ontology to a description logic environment using DAML+OIL. Pac Symp Biocomput 
2003:624-35. 

78. Extended Metadata Registry (XMDR). http://xmdr.org/. 
79. Zhang, S., Bodenreider, O., Golbreich, C. Experience in reasoning with the Foundational 

Model of Anatomy in OWL DL. Pacific Symposium on Biocomputing 2006: World 
Scientific; 2006. p. 200-211. 

80. Zhong J, Zhu H, Li J, Yu Y. 2005. Conceptual graph matching for semantic search. In 
Priss U, Corbett D, Angelova G (eds.) Conceptual Structures: Integration and Interfaces 
(ICCS2002), 2002, 92-106.  


