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Abstract— Highly imperfect, inconsistent informa-
tion and incomplete a priori knowledge introduce uncer-
tainty in sensor-centric unmanned navigation systems.
Understanding and quantifying uncertainty yields a
measure of useful information that plays a critical role
in several robotic navigation tasks such as sensor fu-
sion, mapping, localization, path planning, and con-
trol. In this paper, within a probabilistic framework, we
demonstrate the utility of estimation- and information-
theoretic concepts towards quantifying uncertainty us-
ing entropy and mutual information metrics in various
contexts of unmanned navigation via experimental re-
sults.
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I. Introduction

THE role of uncertainty in mobile robot naviga-
tion has received considerable attention from re-

searchers in the last decade. This is not surprising
considering the pervasiveness of mobile robots in com-
plex tasks that are hazardous, costly, and difficult for
humans. Several workshops have been dedicated for
studying the effects of and dealing with uncertainty
[1],[2],[3] in mobile robotics. Highly imperfect, in-
consistent sensory information and incomplete a pri-
ori knowledge introduce uncertainty and complicate
achieving autonomy in various application domains.
Understanding and quantifying uncertainty thus plays
a critical role in several unmanned navigation tasks
such as sensor fusion, mapping, localization, path plan-
ning, and control. In this paper, we are interested par-
ticularly in dealing with sensor uncertainty and quan-
tifying it such that autonomous navigation is realizable
in an information-centric fashion. We demonstrate this
idea for a variety of low- and high-level tasks encoun-

†Commercial equipment and materials are identified in this
paper in order to adequately specify certain procedures. Such
identification does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily
the best available for the purpose.

tered in unmanned navigation.
In recent work [15], we showed entropy1 to be an

intuitive measure for evaluating and ultimately utiliz-
ing sensor measurements for several robotic navigation
tasks in accordance with the 4D/RCS hierarchical ar-
chitecture [4],[5]. The application of the concept of
entropic information for unmanned navigation is not
entirely new. Singh and Stewart define an entropic
measure based on a probabilistic 3D occupancy grid
model of the underlying physics of a sonar for opti-
mizing the rate of flow of information in underwater
mapping tasks [24]. Roy et al. model the informa-
tion content of the operating environment for planning
trajectories and constructing maps of an indoor robot
amidst unmodeled, dynamic obstacles [21]. Cassan-
dra et al. use entropy to arrive at a tradeoff between
the actions of an indoor mobile robot to reduce uncer-
tainty and its actions to achieve a goal [8]. Beckerman
[6] presents a Bayes-maximum entropy formalism for
fusing ultrasound and visual data acquired by a mobile
robot to construct a map for navigation. Manyika and
Durrant-Whyte have studied entropy as an informa-
tion metric for data fusion and sensor management in
decentralized architectures [17]. Noonan and Oxford
employ the notion of entropy for multisensor fusion in
aircraft systems [18].

In this paper, within a probabilistic framework,
we show the utility of estimation- and information-
theoretic concepts using entropy and mutual informa-
tion in the following contexts:
• Landmark selection for localization and mapping
• Distributed multirobot exploration
• Information evaluation of sensed images
• Temporal registration of 3D range images

This paper is structured as below: Section II pro-
vides a brief history of entropy and its relationship to
information. Section III describes the landmark se-
lection methodology and its significance in unmanned

1We clearly make a distinction between entropy and informa-
tion in Section II and do not use these terms interchangeably.
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localization and mapping applications. Section III-A
derives an entropic information metric for Gaussian
distributions that enables the selection of a maximal
information landmark from a given pool of landmarks.
Section III-B illustrates the above methodology in an
outdoor environment. Section III-C extends the ba-
sic idea behind the landmark selection to a multirobot
team towards performing cooperative localization and
demonstrates how absolute positioning capability of
one member can be beneficial to all members of the
team. Section IV details a methodology by which
the entropic information of images obtained from var-
ious sensing modalities can be obtained. Section IV-A
shows how the proposed methodology can be employed
in the information evaluation of images for two sets of
mobility sensors. Section V briefly discusses the diffi-
culties we have encountered during registration of 3D
range images and the use of the entropy metric in alle-
viating those problems. Section VI concludes the paper
by summarizing the contributions.

II. Entropy

The concept of entropy was introduced in classical
thermodynamics. Roughly speaking, it represents the
average uncertainty in a random variable. Historically,
the reason for C.E. Shannon [23] naming the uncer-
tainty measure as entropy was that it had the same
mathematical expression as the equivalent thermody-
namics measure. The introduction of Shannon’s mea-
sure laid the foundation for a detailed understanding
of communication theory. For an interesting historical
perspective, see [12].

The entropy of a probability distribution p (x) de-
fined on a random variable x is defined as the expected
value of the negative of the log-likelihood2 [23] and is
given by:

h (x)
�
= E {−�n p (x)}

where E denotes the mathematical expectation opera-
tor.

For continuous valued random variables

h (x) = −
∫ ∞

−∞
p (x) �n p (x) dx

and for discrete random variables

h (x) = −
∑
x∈X

p (x) �n p (x) (1)

The entropy h ( · ) is a measure of the average un-
certainty of a random variable and thus represents the

2In this paper, the log is taken to mean the natural logarithm
to the base e. When natural logarithm to the base e is used, the
units for entropy is nats [9].

compactness of the probability distribution, p (x). Sub-
sequently, it is a measure of the informativeness of the
distribution where information is defined as the nega-
tive of entropy. The entropy is minimum when infor-
mation is maximum. It is conventional to seek minimal
entropy when actually maximal information is sought.

In the following sections, we derive entropic informa-
tion measures for a variety of robotic navigation tasks.

III. Selection of Landmarks for

Localization and Mapping

The Kalman filter (and its variants thereof) has been
extensively employed for autonomous mobile robot lo-
calization and mapping. In such applications, the se-
lection of stable features (landmarks3) using sensor ob-
servations is an important issue. To select features
from a given vehicle location in a reliable and robust
manner, the uncertainty associated with the vehicle
location has to be taken into account, in addition to
the uncertainty of the observations either due to the
physics of the sensors, or as a byproduct of the envi-
ronment.

Selecting landmarks for terrain aided naviga-
tion has been addressed by several authors, cf.
[19],[13],[25],[21],[27]. In [25], Thrun proposes a neural
network Bayesian landmark learning approach to select
landmarks based on localization error. The approach
claims to pick landmarks better than a human and
the claims are supported by experiments conducted on
an indoor mobile robot equipped with a color camera
and sonar sensors. A similar algorithm based on the
idea of minimizing the expected localization error has
been adopted by [11]. Olson [19] estimates the error
in a global map and the expected error in sensing the
terrain from the current vehicle location using stereo
imaging. These errors are then encoded on to a prob-
ability map. The best landmark is arrived at by pre-
dicting the location with the lowest uncertainty in this
map.

In this paper, the proposed method for the selec-
tion of a particular landmark is based on localization
information offered by a particular landmark from a
given vehicle position. This method implicitly takes
into account the uncertainty in the vehicle position es-
timate while computing the information content of the
landmark. We derive the entropy of a Gaussian distri-
bution for illustrating the selection of landmarks with
maximal information for localization and mapping in
autonomous vehicle navigation.

3In the context of this paper, landmarks are taken to mean
localized, stationary, physical features that can be reliably and
efficiently extracted and recognized from sensor observations.
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A. Entropy of a Gaussian Distribution

A mathematical expression for the entropy of a
Gaussian distribution will be developed. Let the
stacked observation vector be denoted by

Zk
�
= [z1, z2, . . . , zk]

where z1, z2, . . . , zk are individual sensor observations.
The posterior p (x | Zk) is sought and can be com-

puted recursively in a straightforward manner using
Bayes Theorem [20]. The posterior distribution that
describes the likelihoods associated with x given the
observation Z is given by:

p (x | Zk) =
p (zk | x) p (x | Zk−1)

p (zk | Zk−1)

Borrowing from information theory [9], by taking
expectations of log-likelihoods, this can be written in
terms of the information content as follows:

E {�n [p (x | Zk)]}︸ ︷︷ ︸ = E {�n [p (x | Zk−1)]}︸ ︷︷ ︸
posterior information prior information

+E
{

�n

[
p (zk | x)

p (zk | Zk−1)

]}
︸ ︷︷ ︸

(2)

observation information

Equation (2) says that the posterior information
conditioned on the observations is equal to the sum
of the prior information and the additional observa-
tion information that has since become available. In-
tuitively and mathematically this makes sense as ad-
ditional observations provide the required information
to compute the posterior.

The probability density function for an n dimen-
sional vector x with a Gaussian distribution is given
by

p (x) = N (x̄,P) = |2πP|−0.5
e−0.5(x−x̄)T P−1(x−x̄)

where x̄ is the mean of the distribution, P is the co-
variance and | · | is the matrix determinant.

For an n-dimensional state vector xk, the posterior
entropy is given by

hk|k
�
= h (p (xk | Zk))
= E {−�n p (xk | Zk)}
=

1
2

E
{(

xk − x̂k|k
)T

P−1
k|k

(
xk − x̂k|k

)}

+
1
2

�n
[
(2π)n ∣∣Pk|k

∣∣]
=

1
2

E
{

Σij

(
xik

− x̂ik|k

)
P−1

ijk|k

(
xjk

− x̂jk|k

)}

+
1
2

�n
[
(2π)n ∣∣Pk|k

∣∣]

=
1
2

ΣijE
{(

xjk
− x̂jk|k

) (
xik

− x̂ik|k

)
P−1

ijk|k

}

+
1
2

�n
[
(2π)n ∣∣Pk|k

∣∣]
=

1
2

[
ΣjΣiPjik|kP

−1
ijk|k

+ �n
[
(2π)n ∣∣Pk|k

∣∣]]

=
1
2

[
Σj

(
PP−1

)
jjk|k

+ �n
[
(2π)n ∣∣Pk|k

∣∣]]

=
1
2

[
ΣjIjjk|k + �n

[
(2π)n ∣∣Pk|k

∣∣]]

=
1
2

[
n �n [e] + �n

[
(2π)n ∣∣Pk|k

∣∣]]
=

1
2

�n
[
(2πe)n ∣∣Pk|k

∣∣]
Thus for a Gaussian (normal) vector distribution all

that is required to compute its entropy is its length, n
and covariance, P. The posterior information metric
which contains all the information in the state, xk, up
to and including time k, can then be defined as:

imk|k
�
= −h (p (xk | Zk))

= −1
2

�n
[
(2πe)n ∣∣Pk|k

∣∣]
Similarly for the prior, the entropy and information

metric are defined as:

hk|k−1
�
=

1
2

�n
[
(2πe)n ∣∣Pk|k−1

∣∣]
imk|k−1

�
= −1

2
�n

[
(2πe)n ∣∣Pk|k−1

∣∣]
The resultant information contribution (also known

as Mutual Information [20]), ic, from observations, is
then given by the relation:

ick|k
�
= imk|k − imk|k−1 (3)

Note that the information contributed by a single ob-
servation can be easily obtained by computing the cor-
responding information metrics by including that ob-
servation only.

B. An Illustrative Example

The process of selecting landmarks for localization
of unmanned ground vehicles is now illustrated for
one scenario along a straight corridor-like environment.
Consider the vehicle at the beginning of the straight
section of the corridor as shown in Figure 1. From
the current vehicle position (denoted by ‘+’), for illus-
trative purposes, it is assumed that a set of potential
landmarks are available. These landmarks are shown
by ‘◦’ in Figure 1.

Now from the current vehicle position, the resultant
information contribution of each landmark is computed
using Equation (3) as the prior and posterior informa-
tion metrics are proportional to the predicted and up-
dated covariances, Pk|k−1 and Pk|k, respectively. This
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Fig. 1. Landmark selection illustration. A corridor-like environ-
ment considered for illustrative purposes is shown. An identified
potential landmark quadruple is denoted by ‘◦’ and the vehicle
position by ‘+’.

is graphically depicted for consecutive time instants in
Figure 2. For a given landmark location, the z axis
represents the information contribution (shown as ic
in the plots) from that landmark. These plots are rep-
resentative of the information contribution from the
landmarks alone.

It is evident that the information contribution of
landmark #3 exceeds that of the other three land-
marks as seen in Figures 2(a) and (b). In Figures
(c) and (d), the landmarks were each associated twice
and again, the contribution of landmark #3 clearly ex-
ceeds that of the others. Accordingly, this landmark is
selected. By efficiently utilizing the information con-
tained in a landmark measurement, the landmark se-
lection method provides a precise and flexible way of
selecting a particular landmark from a pool by incor-
porating the landmarks’ utility for localization. Since
the information metric is a scalar value, it serves as a
suitable representation for decision making.

C. Distributed Heterogeneous Multirobot
Exploration

Terrain-aided exploration of unknown environments
is one of the most important application areas for mul-
tirobot systems as the reliability of such a system is
much higher than single-robot systems, enabling the
team to accomplish the intended mission goals even
if one member of the team fails. To be able to move
safely to avoid navigation hazards, each team member
should possess the competency to localize itself within
the operating environment and to map the terrain suf-
ficiently to enable efficient path planning. Localiza-
tion, the process of determining pose of a robot, is
critical for subsequent high level navigation tasks like

path-planning in realistic outdoor environments and
terrain mapping. Such maps should provide informa-
tion about the location of objects/features in the envi-
ronment and what the elevation gradient is across the
area. Once the pose of the robot and the terrain map
are known, paths may then be planned which are op-
timal in terms of the distance between origin and goal
locations or the amount of energy expended, etc.

In the distributed Extended Kalman Filter-based
localization scheme detailed in [14], heterogeneity of
the available sensors is exploited in the absence or
degradation of absolute sensors aboard the team mem-
bers. When some robots of the team do not have ab-
solute positioning capabilities or when the quality of
the observations from the absolute positioning sensors
deteriorate, another robot in the team with better po-
sitioning capability can assist in the localization of the
robots whose sensors have deteriorated or failed. In
such cases, if relative pose information is obtained, the
EKF-based localization algorithm can be cast in a form
such that the update stage of the EKF utilizes this
relative pose thereby providing reliable pose estimates
for all the members of the team. We obtain relative
pose information using either a scanning laser range
finder or a vision-based cooperative localization ap-
proach. For a detailed exposition, the interested reader
is referred to [14],[10].

To achieve reliable and robust relative localization,
it is desirable to select a sensor observation that pro-
vides the maximum information before that observa-
tion is used for cooperative localization. Whenever
two robots are identified for relative localization, it is
sensible to utilize the observation from a robot that
provides maximal information towards localization. It
is straightforward to adopt the entropic information
metric that was developed in Section III-A within the
relative cooperative localization framework.

The results for the laser-based cooperative local-
ization are shown in Figures 3(a) and (b). Figure
3(a) shows the estimated paths of robots #1 and #2.
The pose standard deviations of robot#2 in Figure
3(b) demonstrate the utility of the relative pose infor-
mation in accomplishing cooperative localization. At
time = 21 seconds, DGPS4 becomes unavailable as
indicated by the rise in the x standard deviation. By
employing the entropic metric, the observation that of-
fers the maximal information (in this example, robot
#1) was chosen. It can be seen that as a result of
the laser-based relative position information, there is
a sharp decrease in the position standard deviations
of robot #2 (marked by arrows). As the motion of
the robot is primarily in the x direction when the cor-

4Differential Global Positioning System (DGPS) uses two in-
dependent GPS receivers: one operating as a base station at
an accurately surveyed location and the other as a rover thus
increasing the accuracy of position computation.
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Fig. 2. 3D plots of information contribution from potential landmarks. The x and y axes denote the landmark location and
the z axis represents the information contribution of the landmark. The ‘�’ depicts the information contribution of the numbered
landmarks. It can be seen that the contribution of landmark #3 clearly exceeds that of the others.

rections are provided, the resulting decrease in the x
standard deviation is noticeable compared to those in
y and φ.

IV. Entropic Information Evaluation

of Sensed Images

Equation (1) can be rewritten as:

h (p1, p2, . . . , pn) = −
n∑

k=1

pk �n pk (4)

where pk is the probability associated with the kth

event.
Entropy can be used to measure the information

gained from the selection of a specific event among

an ensemble of events. It can be seen from Equa-
tion (4) that h (p1, p2, . . . , pn) is a maximum when
pk = 1

n ; k = 1, . . . , n and thus uniform probability
distribution yields the maximum entropy (minimum
information).

The gray-level histogram of the sensed images is used
to define a probability distribution such that:

pi = Npi

N ; i = 1, . . . , Ng (5)

where Npi
is the number if pixels in the image with

gray-level i, N is the total number of pixels in the im-
age, and Ng is the number of gray-levels, respectively.
Using Equation (5) in Equation (4) yields the entropic
information. As noted in the last paragraph, the en-
tropy is maximum for an image in which all pi are
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Fig. 3. The robots perform laser-based cooperative localization when DGPS becomes unavailable or when there are not enough
satellites in view. EKF estimated robot paths are shown in (a). The solid line denotes the estimated path of robot #2 and the
dotted line that of robot #1. (S1,E1) and (S2,E2) denote the start and end positions for robots #1 and #2, respectively. The
standard deviations of the pose (position and orientation) of robot #2 during laser-based cooperative localization are shown in
(b). The external corrections offered by the laser-based localization scheme are marked by arrows. The entropic information metric
enabled the selection of the observation that offers the maximal information (in this example, robot #1). See text for additional
details.

same. Thus, the less uniform the histogram, the lower
the entropy and higher the information content of the
image.

A. Experimental Setup and Results

The eXperimental Unmanned Vehicle (XUV)
shown in Figure 4 is a hydrostatic diesel, 4 wheel
drive, 4 wheel steer vehicle utilizing the NIST de-
veloped Real-Time Control System (RCS) [4] using
NML communications for autonomous navigation in
unstructured and off-road driving conditions. The sen-
sor suite of the XUV consists of a pair of cameras
for stereo vision, a Schwartz Electro-Optics LADAR

(LAser Detection And Ranging), a stereo pair of
Forward Looking Infra-Red (FLIR) cameras, a stereo
pair of monochrome cameras, Global Positioning
System (GPS), Inertial Navigation System (INS), a
force bumper sensor and actuators for steering, braking
and transmission. An integrated Kalman filter naviga-
tion system fuses observations from odometry, inertial
and differential GPS sensors for position estimation.

The primary sensors we are interested in for the pur-
poses of this paper are the camera and the scanning
laser range finder mounted on a pan-tilt platform. The
camera produces images at up to 30 Hz. The LADAR

produces a 32 row × 180 column range image with a
field of view of 20◦× 80◦ at 20 Hz. Field data was
acquired as the vehicle traversed rugged terrain on an
experimental site at Fort IndianTown Gap, PA.

Fig. 4. The Demo III eXperimental Unmanned Vehicle can
drive autonomously at speeds of up to 60 km/h on-road, 35
km/h off-road in daylight, and 15 km/h off-road at night or
under inclement weather conditions.

Figure 5 shows the camera and LADAR images and
their gray-level histograms, respectively. To construct
the histogram of the intensity images, the default value
for the number of bins has been selected to be 256. The
horizontal axes of the histograms in Figure 5 represent
the gray-level values and the vertical axes represent the
number of times the corresponding gray-level occurred
in the image. Peaks in the histogram are indicative of
particular structures (features) that are present in the
scene from which the image was acquired.

Once the histograms are constructed, it is straight-
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Fig. 5. Two sets of similar scenes as seen by camera and LADAR are shown. The corresponding entropy values are marked in the
histogram plots. In the histograms, the horizontal scale is brightness and the vertical scale is the number of pixels in the image
with that brightness value. In the LADAR images, dark pixels are close to the sensor and light pixels are farther away. See text
for further details.

forward to obtain the information content of camera
and LADAR images by using Equations (5) and (4).
In Figure 5, two sets of similar scenes as viewed by both
the camera and LADAR are shown. The left column de-
picts the camera images and their histograms while the
right column shows the same for the LADAR images.
The entropy values for these images are marked in
their corresponding histogram plots. For the particular
scene under consideration, it can be clearly seen that
the LADAR images contain more information (higher
entropy) than their camera counterparts. Even though
for the data sets considered in this paper, the LADAR

images have been found to contain more information,
it is not always the case. In fact, information eval-
uation of other sets of data have shown that camera
images contain more information and thus it should be
emphasized that the underlying information is scene-
specific.

V. Temporal Registration of 3D

Range Images

Recent developments in miniaturization and in-
creased computer processing capabilities have led to

significant improvements in LADAR devices which are
now small enough to operate on aircraft and in ground
vehicles. In the near future, such systems will al-
low military aircraft to identify enemy ground vehicles
accurately in battle zones and permit spacecraft and
robotic vehicles to navigate safely through unfamiliar
terrain. We envisage the results from the registration
to be useful for terrain mapping and in scenarios where
GPS is unreliable or unavailable within required accu-
racy bounds.

Motivated by these considerations, we have devel-
oped robust LADAR registration algorithms for un-
manned vehicles [16]. The iterative temporal regis-
tration algorithm for 3D range images [7] can be sum-
marized as follows: Given an initial motion transfor-
mation between the two 3D point sets, a set of corre-
spondences are developed between data points in one
set and the next. For each point in the first data set,
find the point in the second that is closest to it un-
der the current transformation. It should be noted
that correspondence between the two points sets is ini-
tially unknown and that point correspondences pro-
vided by sets of closest points is a reasonable approx-
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(a)
(b)

Fig. 6. 3D LADAR range images before (a) and after (b) registration. See text for further details.

imation to the true point correspondence (when the
motion between the two frames is small). From the
set of correspondences, an incremental motion can be
computed facilitating further alignment of the data
points in one set to the other. This find correspon-
dence/compute motion process is iterated until a pre-
determined threshold termination condition.

Figure 6 shows the results of the registration algo-
rithm. The LADAR data used for registration was ob-
tained as the XUV traversed vegetated and rugged ter-
rain during the course of the field trials. As it can be
seen from Figures 6(a) and (b), the 3D range images
are well registered after registration. More discussion
of the results can be found in [16].

A. Selection of Control Points for Efficient
Correspondence Determination

The correspondence determination is the most diffi-
cult and computationally expensive step of the itera-
tive registration algorithm. Despite the apparent sim-
plicity of this problem, establishing reliable correspon-
dences is extremely difficult as the vehicle is subjected
to heavy pitching and rolling motion characteristic of
travel over undulating terrain. This is further exacer-
bated by the uncertainty of the location of the sensor
platform relative to the global frame of reference.

One solution to overcome this deficiency is to ex-
tract naturally occurring view-invariant features from

the LADAR scans. As we are interested in autonomous
driving on on-road and off-road conditions, the in-
troduction of the so-called fiducial markers (artificial
landmarks) is infeasible as we do not have the lux-
ury of engineering the operating environment. Such
control points for determining reliable correspondences
can be determined by implicitly accounting for vehi-
cle position uncertainty and thus, in turn, the util-
ity of including a particular feature towards efficient
correspondence determination (similar to the selection
of landmarks in Section III-B). We are currently in-
vestigating this idea for 3D range images and for the
registration of aerial LADAR images acquired from an
aircraft with those from a ground vehicle.

We are also interested in registering LADAR scans to
a priori maps. In RCS, the Vehicle Level world model
includes feature and elevation data from a priori digital
terrain maps such as information about roads, bridges,
streams, woods, and buildings. This information needs
to be registered and merged with data from the Au-
tonomous Mobility level maps that are generated by
sensors. By image segmentation and thresholding, the
objects of interest (features) can be extracted from
the sensed images. During thresholding, although it
is possible that in certain images no histogram peaks
may correspond to unique features in the environment,
there exist image processing techniques by which either
the original intensity values can be transformed to a
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new image such that the pixel brightness in the new
image represents some derived parameter such as the
local brightness gradient or direction [22] or by deriv-
ing measurement parameters of features from images
at many threshold levels [26]. The information metric
can facilitate the process of reducing images to infor-
mation (see Figure 5) so that the sensed images can be
reliably registered to a priori maps.

VI. Conclusions

Sensor-centric navigation of unmanned navigation
operating in rugged and expansive terrains requires
the competency to evaluate the utility of sensor in-
formation such that it results in intelligent behavior
of the vehicles. Highly imperfect, inconsistent sensory
information and incomplete a priori knowledge intro-
duce uncertainty and complicate achieving autonomy
in various application domains. Understanding and
quantifying uncertainty thus plays a critical role in
several unmanned navigation tasks. The quantifica-
tion of sensor uncertainty to achieve navigation in an
information-centric fashion was the main theme of this
article.

Within a probabilistic framework, we showed the
utility of estimation- and information-theoretic con-
cepts using entropy and mutual information for (i) the
selection of landmarks for localization and mapping,
(ii) distributed multirobot exploration, (iii) informa-
tion evaluation of sensed images, and (iv) temporal
registration of 3D range images.

Continuing research efforts will concentrate on for-
mally verifying the concepts developed in this paper.
Sensor data from field trials will be used to refine the
applicability of the proposed metric within RCS. A no-
table area of further research is to extend the ideas
developed in this paper towards information theoretic
descriptions of visual spatial and geometric features of
color images.
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