
 1

NOT(Faster Implementation ==> Better Algorithm), A Case Study

Stephen Balakirsky and Thomas Kramer

Intelligent Systems Division
National Institute of Standards and Technology

Gaithersburg, MD 20899-8230
Email: {stephen, thomas.kramer}@nist.gov

Abstract:
Given two algorithms that perform the same task,
one may ask which is better. One simple answer is
that the algorithm that delivers the “best” answer
is the better algorithm. But what if both
algorithms deliver results of similar quality? In
this case, a common metric that is utilized to
differentiate between the two algorithms is the
time to find a solution. Measurements, however,
must be performed using an implementation of an
algorithm (not an abstract algorithm) and must be
taken using specific test data. Because the effects
of implementation quality and test data selection
may be large, the measured time metric is an
insufficient measure of algorithm performance
and quality.

In this paper we present the specific case
of several different implementations of the same
Dijkstra graph search algorithm applied to graphs
with various branching factors. Our experimental
results show that quality rankings based on time
may be heavily influenced by the choice of
operational scenario and code quality. In addition,
we explore possible alternative ranking schemes
for the specific case of Dijkstra graph search
algorithms.

Keywords: algorithm performance, performance metric,
planning systems, autonomous systems

1 Introduction
Researchers constantly strive to develop new
algorithms that can be shown to improve upon the
performance of existing techniques. In many
fields, optimal algorithms exist, so comparisons
must be based on a metric other than result

quality. When this is the case, many researchers
have turned to algorithm run-time and memory
usage as the primary evaluation metrics [3-6]. In
fact, entire competitions have been held that have
used execution time as one of the primary metrics
[1].

In this paper, we will perform a case study
evaluating the performance of three different
implementations of the same algorithm. This
study will demonstrate that computation time and
memory usage are insufficient metrics for
algorithm evaluation. In fact, variations in these
metrics are possible even when ranking different
implementations of the same algorithm. It will be
shown that this variation is not due solely to code
efficiency, but is due in part to basic
implementation decisions that must be made by
anyone who implements an algorithm on real
computer hardware. In addition, computation time
will be shown to be an inconsistent metric with
one implementation receiving the shortest run-
time in certain environments and a different
implementation receiving the shortest run-time in
others.

2 Case Study
As mentioned in the introduction, implementation
performance depends on both algorithm quality
and implementation quality. It was decided that
the best way to determine the validity of run-time
as an algorithm performance metric was to
implement a single algorithm in multiple ways
and to collect both run-time data and data
supporting other metrics. If algorithm quality
were the predominant factor, the run-times of the

drussell
Proceedings of the 2003 Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD, August 16 - 18, 2003.

 2

different implementations should be roughly the
same. If implementation quality is a major factor,
the run-times should be significantly different. If
the run-times differ, the other metrics should
reveal the causes of the difference.

The algorithm that was chosen for this
case study is Dijkstra’s graph search algorithm
[2]. This algorithm was chosen for the following
reasons:

1) The algorithm is provably optimal. Since
the algorithm provides optimal results, all
implementations should return either the
same answer or different but equally
optimal answers.

2) The algorithm is relatively easy to
understand and implement. This is only
important in that it allows us to focus more
attention on studying the metrics than on
describing and implementing the
algorithm.

3) The authors have access to three different
implementations of the algorithm, two of
which have actually been used in deployed
systems. All of these were developed
before this paper was envisioned, so there
would be no need to be concerned with
intentionally or unintentionally tailoring
the implementations to prove a point.

Dijkstra’s shortest path algorithm, also

known as uniform cost search, is an uninformed
graph search algorithm that first appeared in 1959
[2]. Graph search algorithms are used in many
planning applications and strive to find the
cheapest path through a graph that is composed of
nodes (representing system states) connected by
edges (representing system actions). The cost of a
path through the graph is defined as the sum of
the action costs (the edges) plus the costs of
having occupied the traversed states (the nodes).
The fact that no information about the number of
steps in the final path, or the cost from the current
state to the goal is utilized makes this an
uninformed search. In fact, the uninformed search
is only able to differentiate between a goal state
and a non-goal state. For these reasons,

uninformed searches are sometimes called “blind
searches”.

Dijkstra’s algorithm [2] finds an optimal
path as follows:

1) Create an empty set of open nodes. An
open node is a node that the search has
reached, but has not evaluated. Initialize
the cost of reaching all nodes to be
infinity.

2) Place the goal node into the open set and
set its cost of being achieved to zero.

3) Find the least expensive member of the
open set (denote this node by ncheap) and
remove it from the open set.

4) Compare the node ncheap to the start node.
The search proceeds from goal to start, so
if the two are equal, then the search is
finished!

5) Expand ncheap. During this step, the cost of
reaching each of ncheap's predecessors must
be determined. The following steps occur
for each predecessor:

a) Determine the cost of the edge that
connects ncheap to the predecessor
and the cost of occupying the
predecessor.

b) If the sum of these two costs plus
the cost of ncheap is less then the
current cost of the predecessor, the
edge is maintained as a forward
pointing edge (set to bold in the
figure), any previous forward
pointing edge is removed, and the
predecessor is added to the open
set if it is not already there. Since
the initial cost of each node is
infinite, every node is added to the
open set the first time it is reached.

6) Go to step (3).

It should be noted that in some

implementations of the Dijkstra algorithm, the
search would proceed from ns to ng. The above
algorithm description is valid for these approaches
as well with the appropriate notation change (ng
replaced with ns and ns replace with ng).

 3

This search technique will produce a path
that is both complete and optimal provided that
the cost of traversing an edge and occupying the
node at the end is never negative. In addition,
with non-negative costs, an evaluated node can
never be encountered a second time more cheaply
than it was reached the first time, so evaluated
nodes can be dismissed whenever they are found.

8.5
2

3

2

n2

n3

n8

n6

n4

n7

ng

n5

ns

0

2

2
2

3.5

5.5
2

7.5

10.5
3.5

6

11.5

13.5
2 2

4 15.5

Figure 1: Example of uniform cost search graph
expansion.

Figure 1 shows an example of Dijkstra’s

algorithm applied to a simple graph. In this figure,
the circles represent nodes, with the bold circles
representing nodes that have been expanded and
evaluated. The bold numbers next to the nodes
represent the optimal path cost from the goal to
that node. The lines represent edges, and the
numbers next to the lines represent the edge cost.
The bold edges are edges that have been
determined to be part of an optimal path, while
the thin edges are not part of any optimal path.
The optimal path from any expanded node to ng
lies along the decreasing cost path of bold edges
in the direction of the arrows. For this example,
the search proceeds from the node labeled ng to
the node labeled ns. The search terminates at the
optimal answer when the node ns is examined for
expansion. The optimal path found may be seen to
be ns – n5 – n4 – n2 – ng.

2.1 Implementation Variants
Timing tests and internal data collection were
performed on three implementations of the
Dijkstra search algorithm (DijkA, DijkB, and
DijkC). While the algorithm as described above is
quite simple, there are several implementation
decisions that must be made when creating a
running version of this algorithm. As will be
shown, these implementation decisions can
significantly affect the algorithm run-time
performance.

One of the main requirements of the
algorithm is the maintenance of the open set.
Nodes must be added and removed from this set,
and the cheapest member of this set must be
available for step (3) of the algorithm. As may be
seen from the above algorithm description, the
functions of this set are described, but how to
implement these functions is left to the discretion
of the implementer. Our three implementations
implement this set as a list. However, this list is
implemented by employing three different
techniques:

• DijkA uses a pseudo-list. This is an array
made to behave like a singly linked list.

• DijkB uses a doubly linked list overlaid on
an array. Each list cell contains the index
in the array of its predecessor and its
successor on the list.

• DijkC uses a singly linked list of nodes.
Each node has a pointer to its predecessor
on the list.

The other main difference in the open set

implementation is that DijkB maintains the set as
an ordered set (ordered by increasing cost),
whereas DijkA and DijkC do not. This has the
following effects:

• It is trivial for DijkA and DijkC to add a
node to the list (just place it in the first
place available), while DijkB must
compare a node that is being added to the
nodes already on the list in order to make
the insertion at the correct point.

• It is trivial for DijkB to find the cheapest
node (it is the first one on the list), while

 4

DijkA and DijkC have to examine every
node on the list to find the cheapest one.

• When the branching factor of a graph is
small, DijkB will require fewer cost
comparisons than DijkA and DijkC to
keep the open list in order and find the
cheapest member of the list, while when
the branching factor is large, DijkB will
require more cost comparisons in
performing these functions.

2.2 Timing Tests Performed
Timing tests were conducted using the “time”
command on a Unix system. The “time”
command prints out the elapsed time from when a
process starts until it finishes and prints out the
percent of CPU time used by the process. Higher
CPU usage gives faster times. Timing tests were
repeated until at least three tests used at least 98%
of the CPU time. Times were constant within 2
percent across the tests that passed that threshold.
Only the test with the highest CPU usage is
shown in Figure 2.

An abstract graph generator automatically
generated the graphs that were searched for this
project. The user of the generator specifies the
number of nodes in the graph, the number of
successors (also known as children) of each node,
and the maximum cost of an edge. The number of
successors is an environmentally dependent
parameter. For example, a simple mobility
planning system may use a four connected graph
with four successors per node (the vehicle can
move North, South, East, or West), while a more
complex system may use a more highly connected
graph with many successors per node. The
generator writes the graph, assigning the children
randomly and assigning integer-valued edge costs
randomly from zero to the maximum specified by
the user. For the graphs used in these tests, the
maximum cost to traverse an edge and occupy the
node at the end was set to 50.

As expected, the paths found during all
trials by DijkA, DijkB, and DijkC had the same
cost. Surprisingly, the paths found were also
identical. This is surprising since it seemed likely

that there would be several paths of equal minimal
cost. Since the algorithm is optimal, finding one
of these paths was expected. However, the three
executables consider nodes in a different order
from each other, so finding the same one of these
paths was not expected as different paths of the
same cost may have been found.

2.3 Results
Figure 2 depicts the timing results for the three
variations run in two different environments. As
shown in the figure, DijkB and DijkC consistently
outperform DijkA. However, the relative speed of
DijkB and DijkC vary with respect to the chosen
environment. When the graph being searched has
two successors per node, DijkB is about twice as
fast as DijkC. When the graph has sixteen
successors per node, DijkC is about twice as fast.

How should these results be interpreted? Is
the algorithm instantiated in DijkB and DijkC
better then the algorithm instantiated in DijkA?
Which implementation, DijkB or DijkC is the
better implementation? As sharing code becomes
a more and more common practice, this timing
performance trap may become more and more
common. It is very easy to download someone
else’s source code for a particular algorithm and
then run it without modification against an
algorithm that is under development. However,
without fully understanding the particular
implementation, there is no way to determine how
efficient the code is. There may also be no way of
knowing if the code has been optimized for a
particular environment, perhaps at the cost of
lower efficiency in other environments. We
therefore contend that pure timing statistics are
rather meaningless when comparing different
algorithms.

Unfortunately, it would seem that more

complex performance metrics must be developed
to truly differentiate algorithm performance from
implementation performance. In order to explore
this further, the three implementations were
rebuilt with added internal instrumentation to
capture other performance metrics.

 5

(a)

(b)
Figure 2: Time comparison of various implementations for two sample environments.

 6

The internal instrumentation that was
added captured six types of data, most
importantly: (1) the number of nodes that the
search opened, (2) the number of cost
comparisons required either to keep the open set
in order (for DijkB) or to find the cheapest of the
open nodes (for DijkA and DijkC) and (3) the
number of cycles (as described above) made
before the answer was determined. The rationale
for measuring the number of nodes opened is that
at the core of any search algorithm, the search is
examining various nodes to determine the
“cheapest” path from the start to the goal. A
perfect algorithm would only consider the nodes
and edges that actually make up the correct path.
Therefore, it would seem that a viable measure of
algorithm performance would be the number of
extra nodes and edges examined. Since each
graph used in our tests had a fixed number of
edges leading away from each node, the number
of edges examined was proportional to the
number of nodes examined.

As expected, DijkA and DijkC opened the
same number of nodes; in fact exactly the same
nodes, but not always in the same order. DijkB
opened either the same number of nodes as DijkA
and DijkC or slightly more (a fraction of a percent
more in all but one case, where it opened ten
percent more). This shows that the algorithm
performance is nearly identical for all three
variants. Also as expected, DijkB displayed the
lowest set overhead for small branching factors,
while DijkA and DijkC tied for lowest set
overhead for large branching factors.

The large time difference experienced by
DijkA is explained by a factor that was not
measured in these experiments but is known from
examining the code to be inefficient list handling.
This could be measured readily.

3 Summary and future work
The case study presented in this paper shows that
algorithm run-time is not an adequate “catch-all”
performance metric. Indeed, it is possible for
different implementations of the same algorithm

to display vastly different environment dependent
run-time performance and vastly different
implementation quality dependent performance.
This shows the need to fully understand the
algorithms being evaluated and to meaningfully
instrument the algorithms in order to gain true
performance information.

In the future, additional search algorithms
will be instrumented in a similar manner and
added to this evaluation. It is hoped that this will
display the number of nodes and edges evaluated
as a truly relevant performance metric for graph
search algorithms.

References

 1. Bacchus, F., "The AIPS '00 Planning
Competition," AI Magazine, Vol. 22, No. 3,
2001, pp. 47-56.

 2. Dijkstra, E. W., "A note on two problems in
connexion with graphs," Numerische
Mathematik, Vol. 1, 1959, pp. 269-271.

 3. Manzini, G., "BIDA*: An Improved
Perimeter Search Algorithm," Artificial
Intelligence, Vol. 75, No. 2, 1995, pp. 347-
360.

 4. Sen, A. K., "Searching graphs with A*:
applications to job sequencing," Systems,
Man and Cybernetics, Part A, IEEE
Transactions on, Vol. 26, No. 1, 1996, pp.
168-173.

 5. Shekhar, S., "Path computation algorithms
for advanced traveller information system
(ATIS)," 1993, pp. 31-39.

 6. Stentz, A., "Optimal and Efficient Path
Planning For Unknown and Dynamic
Environments," International Journal of
Robotics and Automation, Vol. 10, No. 3,
1995, pp. 89-100.

