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Abstract: 
Given two algorithms that perform the same task, 
one may ask which is better. One simple answer is 
that the algorithm that delivers the “best” answer 
is the better algorithm. But what if both 
algorithms deliver results of similar quality? In 
this case, a common metric that is utilized to 
differentiate between the two algorithms is the 
time to find a solution. Measurements, however, 
must be performed using an implementation of an 
algorithm (not an abstract algorithm) and must be 
taken using specific test data. Because the effects 
of implementation quality and test data selection 
may be large, the measured time metric is an 
insufficient measure of algorithm performance 
and quality.  

In this paper we present the specific case 
of several different implementations of the same 
Dijkstra graph search algorithm applied to graphs 
with various branching factors. Our experimental 
results show that quality rankings based on time 
may be heavily influenced by the choice of 
operational scenario and code quality. In addition, 
we explore possible alternative ranking schemes 
for the specific case of Dijkstra graph search 
algorithms. 
 
Keywords: algorithm performance, performance metric, 
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1 Introduction 
Researchers constantly strive to develop new 
algorithms that can be shown to improve upon the 
performance of existing techniques. In many 
fields, optimal algorithms exist, so comparisons 
must be based on a metric other than result 

quality. When this is the case, many researchers 
have turned to algorithm run-time and memory 
usage as the primary evaluation metrics [3-6]. In 
fact, entire competitions have been held that have 
used execution time as one of the primary metrics 
[1]. 

In this paper, we will perform a case study 
evaluating the performance of three different 
implementations of the same algorithm. This 
study will demonstrate that computation time and 
memory usage are insufficient metrics for 
algorithm evaluation. In fact, variations in these 
metrics are possible even when ranking different 
implementations of the same algorithm. It will be 
shown that this variation is not due solely to code 
efficiency, but is due in part to basic 
implementation decisions that must be made by 
anyone who implements an algorithm on real 
computer hardware. In addition, computation time 
will be shown to be an inconsistent metric with 
one implementation receiving the shortest run-
time in certain environments and a different 
implementation receiving the shortest run-time in 
others. 

 

2 Case Study 
As mentioned in the introduction, implementation 
performance depends on both algorithm quality 
and implementation quality. It was decided that 
the best way to determine the validity of run-time 
as an algorithm performance metric was to 
implement a single algorithm in multiple ways 
and to collect both run-time data and data 
supporting other metrics. If algorithm quality 
were the predominant factor, the run-times of the 
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different implementations should be roughly the 
same. If implementation quality is a major factor, 
the run-times should be significantly different. If 
the run-times differ, the other metrics should 
reveal the causes of the difference.  

The algorithm that was chosen for this 
case study is Dijkstra’s graph search algorithm 
[2]. This algorithm was chosen for the following 
reasons: 

1) The algorithm is provably optimal. Since 
the algorithm provides optimal results, all 
implementations should return either the 
same answer or different but equally 
optimal answers. 

2) The algorithm is relatively easy to 
understand and implement. This is only 
important in that it allows us to focus more 
attention on studying the metrics than on 
describing and implementing the 
algorithm. 

3) The authors have access to three different 
implementations of the algorithm, two of 
which have actually been used in deployed 
systems. All of these were developed 
before this paper was envisioned, so there 
would be no need to be concerned with 
intentionally or unintentionally tailoring 
the implementations to prove a point. 

 
Dijkstra’s shortest path algorithm, also 

known as uniform cost search, is an uninformed 
graph search algorithm that first appeared in 1959 
[2]. Graph search algorithms are used in many 
planning applications and strive to find the 
cheapest path through a graph that is composed of 
nodes (representing system states) connected by 
edges (representing system actions). The cost of a 
path through the graph is defined as the sum of 
the action costs (the edges) plus the costs of 
having occupied the traversed states (the nodes). 
The fact that no information about the number of 
steps in the final path, or the cost from the current 
state to the goal is utilized makes this an 
uninformed search. In fact, the uninformed search 
is only able to differentiate between a goal state 
and a non-goal state. For these reasons, 

uninformed searches are sometimes called “blind 
searches”. 

Dijkstra’s algorithm [2] finds an optimal 
path as follows: 

1) Create an empty set of open nodes. An 
open node is a node that the search has 
reached, but has not evaluated. Initialize 
the cost of reaching all nodes to be 
infinity.  

2) Place the goal node into the open set and 
set its cost of being achieved to zero. 

3) Find the least expensive member of the 
open set (denote this node by ncheap) and 
remove it from the open set. 

4) Compare the node ncheap to the start node. 
The search proceeds from goal to start, so 
if the two are equal, then the search is 
finished! 

5) Expand ncheap. During this step, the cost of 
reaching each of ncheap's predecessors must 
be determined. The following steps occur 
for each predecessor: 

a) Determine the cost of the edge that 
connects ncheap to the predecessor 
and the cost of occupying the 
predecessor. 

b) If the sum of these two costs plus 
the cost of ncheap is less then the 
current cost of the predecessor, the 
edge is maintained as a forward 
pointing edge (set to bold in the 
figure), any previous forward 
pointing edge is removed, and the 
predecessor is added to the open 
set if it is not already there. Since 
the initial cost of each node is 
infinite, every node is added to the 
open set the first time it is reached. 

6) Go to step (3). 
 
It should be noted that in some 

implementations of the Dijkstra algorithm, the 
search would proceed from ns to ng.  The above 
algorithm description is valid for these approaches 
as well with the appropriate notation change (ng 
replaced with ns and ns replace with ng). 
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This search technique will produce a path 
that is both complete and optimal provided that 
the cost of traversing an edge and occupying the 
node at the end is never negative. In addition, 
with non-negative costs, an evaluated node can 
never be encountered a second time more cheaply 
than it was reached the first time, so evaluated 
nodes can be dismissed whenever they are found. 
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Figure 1: Example of uniform cost search graph 
expansion. 

 
Figure 1 shows an example of Dijkstra’s 

algorithm applied to a simple graph. In this figure, 
the circles represent nodes, with the bold circles 
representing nodes that have been expanded and 
evaluated. The bold numbers next to the nodes 
represent the optimal path cost from the goal to 
that node. The lines represent edges, and the 
numbers next to the lines represent the edge cost. 
The bold edges are edges that have been 
determined to be part of an optimal path, while 
the thin edges are not part of any optimal path. 
The optimal path from any expanded node to ng 
lies along the decreasing cost path of bold edges 
in the direction of the arrows. For this example, 
the search proceeds from the node labeled ng to 
the node labeled ns. The search terminates at the 
optimal answer when the node ns is examined for 
expansion. The optimal path found may be seen to 
be ns – n5 – n4 – n2 – ng. 

2.1 Implementation Variants 
Timing tests and internal data collection were 
performed on three implementations of the 
Dijkstra search algorithm (DijkA, DijkB, and 
DijkC). While the algorithm as described above is 
quite simple, there are several implementation 
decisions that must be made when creating a 
running version of this algorithm. As will be 
shown, these implementation decisions can 
significantly affect the algorithm run-time 
performance.  

One of the main requirements of the 
algorithm is the maintenance of the open set. 
Nodes must be added and removed from this set, 
and the cheapest member of this set must be 
available for step (3) of the algorithm. As may be 
seen from the above algorithm description, the 
functions of this set are described, but how to 
implement these functions is left to the discretion 
of the implementer. Our three implementations 
implement this set as a list. However, this list is 
implemented by employing three different 
techniques:  

• DijkA uses a pseudo-list. This is an array 
made to behave like a singly linked list. 

• DijkB uses a doubly linked list overlaid on 
an array. Each list cell contains the index 
in the array of its predecessor and its 
successor on the list. 

• DijkC uses a singly linked list of nodes. 
Each node has a pointer to its predecessor 
on the list. 
 
The other main difference in the open set 

implementation is that DijkB maintains the set as 
an ordered set (ordered by increasing cost), 
whereas DijkA and DijkC do not. This has the 
following effects: 

• It is trivial for DijkA and DijkC to add a 
node to the list (just place it in the first 
place available), while DijkB must 
compare a node that is being added to the 
nodes already on the list in order to make 
the insertion at the correct point. 

• It is trivial for DijkB to find the cheapest 
node (it is the first one on the list), while 
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DijkA and DijkC have to examine every 
node on the list to find the cheapest one. 

• When the branching factor of a graph is 
small, DijkB will require fewer cost 
comparisons than DijkA and DijkC to 
keep the open list in order and find the 
cheapest member of the list, while when 
the branching factor is large, DijkB will 
require more cost comparisons in 
performing these functions. 
 

2.2 Timing Tests Performed 
Timing tests were conducted using the “time” 
command on a Unix system. The “time” 
command prints out the elapsed time from when a 
process starts until it finishes and prints out the 
percent of CPU time used by the process. Higher 
CPU usage gives faster times. Timing tests were 
repeated until at least three tests used at least 98% 
of the CPU time. Times were constant within 2 
percent across the tests that passed that threshold. 
Only the test with the highest CPU usage is 
shown in Figure 2. 

An abstract graph generator automatically 
generated the graphs that were searched for this 
project. The user of the generator specifies the 
number of nodes in the graph, the number of 
successors (also known as children) of each node, 
and the maximum cost of an edge. The number of 
successors is an environmentally dependent 
parameter. For example, a simple mobility 
planning system may use a four connected graph 
with four successors per node (the vehicle can 
move North, South, East, or West), while a more 
complex system may use a more highly connected 
graph with many successors per node. The 
generator writes the graph, assigning the children 
randomly and assigning integer-valued edge costs 
randomly from zero to the maximum specified by 
the user. For the graphs used in these tests, the 
maximum cost to traverse an edge and occupy the 
node at the end was set to 50. 

As expected, the paths found during all 
trials by DijkA, DijkB, and DijkC had the same 
cost. Surprisingly, the paths found were also 
identical. This is surprising since it seemed likely 

that there would be several paths of equal minimal 
cost. Since the algorithm is optimal, finding one 
of these paths was expected. However, the three 
executables consider nodes in a different order 
from each other, so finding the same one of these 
paths was not expected as different paths of the 
same cost may have been found. 
 
2.3 Results 
Figure 2 depicts the timing results for the three 
variations run in two different environments. As 
shown in the figure, DijkB and DijkC consistently 
outperform DijkA. However, the relative speed of 
DijkB and DijkC vary with respect to the chosen 
environment. When the graph being searched has 
two successors per node, DijkB is about twice as 
fast as DijkC. When the graph has sixteen 
successors per node, DijkC is about twice as fast. 

How should these results be interpreted? Is 
the algorithm instantiated in DijkB and DijkC 
better then the algorithm instantiated in DijkA? 
Which implementation, DijkB or DijkC is the 
better implementation? As sharing code becomes 
a more and more common practice, this timing 
performance trap may become more and more 
common. It is very easy to download someone 
else’s source code for a particular algorithm and 
then run it without modification against an 
algorithm that is under development. However, 
without fully understanding the particular 
implementation, there is no way to determine how 
efficient the code is. There may also be no way of 
knowing if the code has been optimized for a 
particular environment, perhaps at the cost of 
lower efficiency in other environments. We 
therefore contend that pure timing statistics are 
rather meaningless when comparing different 
algorithms. 

 
Unfortunately, it would seem that more 

complex performance metrics must be developed 
to truly differentiate algorithm performance from 
implementation performance. In order to explore 
this further, the three implementations were 
rebuilt with added internal instrumentation to 
capture other performance metrics.
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(b) 
Figure 2: Time comparison of various implementations for two sample environments. 
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The internal instrumentation that was 
added captured six types of data, most 
importantly: (1) the number of nodes that the 
search opened, (2) the number of cost 
comparisons required either to keep the open set 
in order (for DijkB) or to find the cheapest of the 
open nodes (for DijkA and DijkC) and (3) the 
number of cycles (as described above) made 
before the answer was determined. The rationale 
for measuring the number of nodes opened is that 
at the core of any search algorithm, the search is 
examining various nodes to determine the 
“cheapest” path from the start to the goal. A 
perfect algorithm would only consider the nodes 
and edges that actually make up the correct path. 
Therefore, it would seem that a viable measure of 
algorithm performance would be the number of 
extra nodes and edges examined. Since each 
graph used in our tests had a fixed number of 
edges leading away from each node, the number 
of edges examined was proportional to the 
number of nodes examined. 

As expected, DijkA and DijkC opened the 
same number of nodes; in fact exactly the same 
nodes, but not always in the same order. DijkB 
opened either the same number of nodes as DijkA 
and DijkC or slightly more (a fraction of a percent 
more in all but one case, where it opened ten 
percent more). This shows that the algorithm 
performance is nearly identical for all three 
variants. Also as expected, DijkB displayed the 
lowest set overhead for small branching factors, 
while DijkA and DijkC tied for lowest set 
overhead for large branching factors. 

The large time difference experienced by 
DijkA is explained by a factor that was not 
measured in these experiments but is known from 
examining the code to be inefficient list handling. 
This could be measured readily. 

 

3 Summary and future work 
The case study presented in this paper shows that 
algorithm run-time is not an adequate “catch-all” 
performance metric. Indeed, it is possible for 
different implementations of the same algorithm 

to display vastly different environment dependent 
run-time performance and vastly different 
implementation quality dependent performance. 
This shows the need to fully understand the 
algorithms being evaluated and to meaningfully 
instrument the algorithms in order to gain true 
performance information. 

In the future, additional search algorithms 
will be instrumented in a similar manner and 
added to this evaluation. It is hoped that this will 
display the number of nodes and edges evaluated 
as a truly relevant performance metric for graph 
search algorithms. 
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