

Abstract— A general-purpose hierarchical planning

framework that allows for cost-optimal, logic-constrained
plans will be presented. This framework will be applied to
planning an on-road path for an autonomous vehicle traveling
amongst moving and stationary objects. Through this
application, the ability to implement both hard and soft
constraints, as well as cope with dynamic environments and
user objectives will be demonstrated.

I. INTRODUCTION
any road-driving planning systems exist in the
current literature [1-4]. Researchers such as

Dickmanns have demonstrated the ability to drive at high-
speeds amongst moving objects, while Pomerleau and
Jochem have driven across the United States in a mostly
autonomous fashion. Still others have taken advantage of
specially modified roadways for vehicle guidance [4] or
created systems with all-terrain mobility [3]. While these
systems are capable of low-level lane following, and even
in some cases of changing lanes and navigating exit ramps,
they lack the ability to plan for when a lane-change or
passing maneuver should take place. The planning system
that is described in this paper is designed to work in a
hierarchical architecture as the supervisor to one of these
low-level planning/control systems in order to construct
plans for mixed traffic (autonomous and manual) driving
on non-instrumented roadways. This system plans out to
the next 10 seconds of travel and is capable of planning on
the driving maneuver level (i.e. passing maneuvers, turning
maneuvers).

II. THE REFERENCE MODEL ARCHITECTURE
 In order to guarantee real-time operation and decompose

the problem into manageable pieces, it was necessary to
embed the planning framework into a hierarchical
architecture that was specifically designed to accommodate
real-time deliberative systems. The Real-Time Control
System (RCS) reference model architecture is a
hierarchical, distributed, real-time control system
architecture that meets this need while providing clear

This work was supported in part by the Defense Advanced Research

Project Agency’s Mobile Autonomous Robot Software program and the
Army Research Laboratory’s Robotics Demo III program

Both authors are with the National Institute of Standards and
Technology, Gaithersburg, MD 20899 USA (phone:301-975-3418; fax:
301-990-9688; e-mail:{stephen, scrapper}@nist.gov).

KNOWLEDGE
DATABASE

SENSORY
PROCESSING

BEHAVIOR
GENERATION

PLAN

PREDICTED
INPUT

UPDATE

STATE

PL
A

N

R
E

SU
L

T
S

PLAN
SIT

U
A

T
IO

N

E
V

A
L

U
A

T
IO

N

OBSERVED
INPUT

COMMANDED
ACTIONS (SUBGOALS)

PERCEIVED
OBJECTS &
EVENTS

COMMANDED
TASK (GOAL)

OPERATOR
INTERFACE

VALUE
JUDGMENT

WORLD
MODELING

EVALUATION

STATUS

STATUS
SENSORY

INPUT

SENSORY
OUTPUT

PEER INPUT
OUTPUT

RCS Node

To Higher and Lower Level
World Modeling

Figure 1. Internal structure of a RCS_NODE (from [6] p. 28).

interfaces and roles for a variety of functional elements
[6,7].

Under RCS, each level of the hierarchy is composed of
the same basic building blocks illustrated in Fig. 1. These
building blocks include behavior generation (task
decomposition and control), sensory processing (filtering,
detection, recognition, grouping), world modeling
(knowledge storage, retrieval, and prediction), and value
judgment (cost/benefit computation, goal priority).

The planning system presented in this paper is designed
to fill the roles of behavior generation, world modeling,
and value judgment for a single level of the hierarchy. The
system receives a set of intersections that must be traversed
and a final goal location from its supervising level. The
system then refines this plan for specific lane locations and
vehicle velocities while taking into account dynamic and
static objects as well as user objectives and constraints. The
results of this plan refinement are then passed to the next
lower level of the hierarchy for further refinement and
execution. This process is periodically repeated for systems
that include uncertainty in the prediction of moving object
locations and the success of task execution.

III. PLANNING FRAMEWORK
The main difference between the incremental graph

planning framework and traditional graph planning
approaches is in the way states are mapped to nodes and the
way that the nodes are connected.

A. Attributed Graph Nodes
The left side of Fig. 2 depicts several static objects that

may be in an planning system’s world model (a high
density black object (i.e. a brick wall) and a low density
white object (i.e. an empty can). In addition to knowledge
about an object’s location, the world model tracks all of the

Planning for On-Road Driving Through
Incrementally Created Graphs

Stephen Balakirsky, Member, IEEE and Chris Scrapper

M

object’s attributes that are necessary for making a
cost/benefit decision that involves the object. For the above
case of autonomous driving, this decision is about whether
to drive over or around the object, and if over, at what
speed. It should be noted that combinations of attributes are
necessary for making this determination. Sample attributes
that appear in the world model include such information as
the corners of an object’s bounding box, the object density,
and its intrinsic value.

Having a varied set of object attributes allows the system
to make intelligent trade-offs in its plans. For example, the
system should run over a soda can in order to avoid driving
over a brick wall. However, the system should be willing to
incur substantial damage (i.e. hit the wall) rather then
running over a small child (which would not damage the
vehicle).

In order for the planning system to utilize these attributes
as decision points, a node in the planning space must
represent their location. As shown in the right had side of
Fig. 2, these nodes may be densely or sparsely populated,
and there are no “wasted” nodes placed in locations that are
not relevant to planning decisions. In addition, the
existence of these nodes may depend on the particular
planning application. For example, if path planning for a
large all-terrain vehicle, the low density corner nodes
depicted in Fig. 2 (the white nodes) would not be included
in the planning graph. Since nodes are only instantiated
where relevant attributes exist, the set of all nodes available
for use by the planning system is referred to as the set of
Relevant Annotated Nodes (RAND).

Relevant nodes must exist wherever a planning decision
point exists. In the above example, there is no time
dimension. The placement of nodes must simply allow the
system to decide whether to go over or around static
objects.

B. Logical Arc Connections
Once the set of potential graph nodes has been

established, a technique for creating a specific node’s
spanning set must be developed. The graph arcs that are
utilized by the incremental framework build upon concepts
developed by Blum and Furst in their GraphPlan work [8].
Blum and Furst have created a logical planning graph that
expands levels by examining the results of the execution of
all valid actions.

For the purposes of the incremental graph approach, the
intersection of the result of applying a node’s valid actions
and the set RAND will be considered as the spanning set of
the current node. For the static example presented above,
the only valid action is for the vehicle to drive in a straight
line (in any direction). By constructing a visibility graph
from the current node to all other nodes, the node’s
spanning set may be found.

Figure 2. Representative objects and resulting nodes.

In other planning domains, time is an important factor
and decisions must be made that match a pre-specified
control cycle. It should be noted that for these cases the
spanning set of a node is time-dependent, and therefore the
graph topology may change on a planning-cycle by
planning-cycle basis. In addition, the spanning set for a
particular node at time t may not be equal to the spanning
set for node at time t+1.

This is true for the case of on-road driving where a
decision on vehicle velocity and lane control (which lane to
occupy) must be made every second (for this level of the
hierarchy). The planning space is now four-dimensional (x,
y, time, velocity) and graph constraints through the use of
valid actions and attribute relevance becomes even more
important. For the over simplified case shown in Fig. 3 the
valid actions that may occur are accelerate (A), decelerate
(D), maintain velocity (M), and change lane. It is also
possible to simultaneously change lane and velocity. The
full set of valid actions is shown as the white and gray
circles in the figure. However, the size of the spanning set
will be constrained by membership in the set RAND. In
this case, only the white circles are legal lane positions and
members of RAND. Therefore, the spanning set will
consist of the white circles.

This technique of excluding possible actions from a
node’s spanning set is used to implement hard constraints
on the plan. Since no graph nodes exist in the oncoming
traffic’s lane, it is impossible for the system to plan to enter
this lane. It should be noted that if a planning failure occurs
(no path below a certain cost threshold exists), then the
constraints may be relaxed and the set RAND expanded to
include all of the circles. The system must then use soft
constraints in the form of the system cost function in order
to discourage the vehicle from driving in the oncoming
traffic’s lane. This may be accomplished in two different
ways. The first is to assign a high arc cost to the action of
crossing a double yellow line on the road. This will
discourage the vehicle from entering the opposing lane.
The second is to assign a high state cost to occupying a
state whose direction of travel is opposite of the vehicles.
This will assure that once in the opposing lane, the stay is
as short as possible.

Figure 3. Spanning set for on-road planning system.

C. Planning Algorithm
The graph node creation and connection strategies

outlined above may be used to create a formal algorithm
that resides in the behavior generation module of RCS and
is outlined as follows (see [5] for a more detailed analysis):

1) Insert
0t,start

rand into open list O. The notation

0t,start
rand specifies a member of the set RAND with

state specified by the vector “start” at time t0.

2) Insert one or more goals
gt,goal

rand into goal list G.

3) Graph search selects and removes
it,k

rand from O.

4) Evaluate
it,k

rand .

a) If
it,k

rand ∈ G, and re-planning desired goto (1),

b) else if
it,k

rand ∈ G finished,

c) else if
1it,lα +

r > MaxCost, then no path found,

d) else continue.

5) Define the set to be visited TBV =
it,krandSP r

6) While TBV ≠ ∅, create arc (
it,k

rand ,
1it,l

rand
+

) and

evaluate β = pc(prand(
0t,start

rand ,
1it,l

rand
+

)) where

1it,l
rand

+
∈ TBV.

a) Remove
1it,l

rand
+

from the set TBV.

b) If
1it,l

rand
+

VISITED and β <
1it,lα +

r , or

1it,l
rand

+
NOT VISITED, set

1it,lα +

r = β, set

1it,l
rand

+
backpointer to

it,k
rand , add

1it,l
rand

+
to O.

c) Remove arc(
it,k

rand ,
1it,l

rand
+

).

d) End while.

7) Go to 3.

Step 1 and 2 of the algorithm begin the search process by
placing the node that contains the current system state into
the list O of open nodes and one or more goal states into
the goal set G. The algorithm will terminate when a
minimum cost path has been found to any of the nodes in
the set G or some maximum cost has been exceeded. It
should be noted that the feature of being a start or goal
node is a relevant attribute and therefore the start and goal
nodes are always relevant and elements of RAND. This
assures that the graph will contain the start and goal states
even if these states have no other relevant attributes
associated with them.

In step 3, it is assumed that a search technique that
utilizes an open list is used. Many such techniques exist in
the current literature including searches such as breadth
first [9], depth first [9], and A* [10]. A search methodology
dependent criterion is used to select the node from the list
O that should be expanded. If the list O is empty, then a
plan failure has occurred. At this point, the system may
either return a failed status indicating that no plan was
found, or may relax the selection criteria for relevant
attributes (i.e. increase the size of NRAND) and attempt to
find a new plan. Through this technique, a hierarchy of
hard constraints may be established that are gradually
relaxed as a result of plan failures.

Step 4 performs a test to determine if the current node is
a member of the goal set G or if its cost exceeds the
maximum allowable cost. The goal set is defined as the set
of nodes in RAND that will satisfy the objectives of the
system. This set may contain more then one node (e.g. a
mobile robot should arrive at a certain location as soon as
possible, with no specific time information given), but
should never be empty.

One integral feature of this algorithm is dynamic
replanning. By returning to step 1 after a successful plan
has been generated, dynamics in the hard constraints, soft
constraints, and environment are easily handled.

Steps 5 and 6 incrementally expand and evaluate the
graph structure. The spanning set of the node being
expanded is constructed, and the cost of achieving these
nodes from the current node is examined. During the
spanning set construction, possible actions and relevant
attributes are examined, and nodes that correspond to these
attributes are either located (they have been previously
created) or are created. Created nodes always begin with a
status of NOT VISITED. This indicates that no path from
the graph origin to the node has been explored and
evaluated.

Arcs are temporarily created to link the current node to
all of its successors, and the path cost function pc evaluates
the new potential path to the successor node. Step 6b
assures that the least expensive path from a given node to
the start of the search may be found by following a series
of backpointers, and the least expensive cost from a node to
the start of the search is maintained in the variable

it,lαr .

Since only a single path from each node back to the start is
maintained, the acyclic property of the graph is guaranteed.
An error flag is returned if step 4 finds that the value of

it,lαr for the node being expanded exceeds a maximum cost.

This flag may be used by different search techniques in
different ways. For example, an iterative deepening search
may use this transition to a new graph branch while an A*
search would need to relax constraints on the generation of
relevant attributes and replan.

IV. KNOWLEDGE LAYERS
The heart of the algorithm presented above lies in the

determination of a node’s spanning set and the evaluation
of the node and arc costs. For the case of on-road driving, a
mini-expert system has been developed for the
determination of spanning sets and a rule base is used for
cost evaluation.

A. Spanning Set Generation – Road Nodes
The spanning set mini-expert system is referred to as the

Node Generator (NG). The NG is part of the RCS world
model and facilitates the simulation and prediction of
possible spatial transitions along a road network that a
vehicle may take from its current state. The NG consists of
a knowledge engine that creates and maintains the data
structure, a Knowledge Database (KD) known as the On-
Road Driving Database [11] that contains both a priori and
sensed road feature data, a constraint system that limits the
graphs branching factor, and a simulation system that is
used to predict node locations.

The knowledge engine creates a polymorphic internal
data structure that is used to handle the various elements
contained in the task decomposition hierarchy of the On-
Road Driving Database. From this internal data structure,
the knowledge engine is able to construct reachability
graphs. Each branch of the graph represents a separate
vehicle trajectory that models the distance traveled and
vehicle action performed (i.e. turn, change lane, maintain
lane) per graph expansion cycle. A trajectory is
represented by the NG as a set of road states that are
connected to a given root node to form the reachability
graph. The leaf nodes of the graph represent the set of
obtainable road states for a given cycle. These leaf nodes
are used in step 5 of the planning algorithm to expand the
incrementally created graph.

The internal knowledge representation of the NG is
based on the road data hierarchy described by Schlenoff et.
al in [11]. In this hierarchy, the lowest level of knowledge
is a lane segment that represents a constant curvature
section of a lane. The NG must map these real-world lane
segments into a finite set of discrete uniformly spaced
attributed nodes. These nodes are uniquely identified by a
tuple that includes the lane segment information and a node
id that may be seen as an offset from the beginning of the
lane segment. Due to the nature of the nodes, an inherent
error is introduced between the two last nodes in every lane
segment that is defined by the max node displacement. The
reason for this is the uniform nature of the node
displacement.

The NG utilizes system constraints when creating the
reachability graph to limit the vehicle’s possible actions.
For example, on a first planning pass the NG may be
constrained from returning any road states that violate a
driving law or would produce uncomfortable vehicle
movement. However, if no plan is found that satisfies the
planner’s maximum cost value, replanning could take place
with a reduced set of constraints. The constraints could
now allow for emergency maneuvers by altering the angle
in which lane changes are performed or allow nodes
deemed illegal by the set of road rules.

The simulator is called in step 5 of the planning
algorithm to determine the direction and distance that the
vehicle will travel from a given state in one graph
expansion cycle. The simulator relies on three equation-
governed algorithms to create a reachability graph per
cycle. First simulating a trajectory in the current lane and
then searching for possible trajectories in adjacent lanes
creates this graph. As shown in Fig. 5 the search for
additional trajectories always move away from the root
node.

In creating the reachability graph, the NG uses state
information about the vehicle’s direction of travel, velocity,
and the node generation constraints. The current base set
of functions used in the knowledge engine allow for the
vehicle to move along the lane segment or to change lanes.
The function that moves along a lane, depicted by a UML
flow-chart in Fig. 6, is a recursive function that moves
along a lane a given distance to find the leaf node. The
function maintains an ordered set of road states that
consists of a given start node, a leaf node, and the first node
of every lane segment traversed during the process.

The change lane function models a lane change while
adhering to the lane change angle required for the
maneuver. Equation 1 shows how this function calculates
the forward component that is required to model the lane
change angle α given the lane change width w. Equation 2
shows the means in which the function ascertains the
corresponding node index i in the adjacent lane segment.

Figure 4. Trajectory generation.

Equation 1:
()

+= 5.0

tan
wF

α

Equation 2:

+

Θ
∗Θ

= 5.0
i

i
adjacent

currentcurrent
adjacent

The knowledge engine attempts to find additional arms
of the reachability graph (representing multiple lane
changes) by recursively searching adjacent lanes using the
two base equations mentioned above. This is accomplished
by first performing a lane change maneuver to the adjacent
lanes of the root node. If an adjacent lane segment exists,
and a node in this lane segment is obtainable at the given
vehicles speed, then the function forms a trajectory to this
adjacent lane. This trajectory is created by connecting the
root node of the reachability graph to the node found
during the lane change maneuver with nodes that model the
vehicles traversal to this lane as intermediate nodes in the
trajectory.

B. Cost Evaluation
The results from the node generator formulate a set of

next possible states that the system may achieve. They do
not however, tell the system which state it should achieve.
This job is performed by RCS’s value judgment through
the use of a cost function. As previously mentioned, the
cost function may be broken down into the two evaluations
of node occupancy cost and arc traversal cost.

The node occupancy cost may be determined by a
weighted sum of a logical combination of individual node
attributes. For example, if the cost of occupying the
rightmost lane of a multi-lane roadway is said to have unit
cost, then the cost of occupying the leftmost lane of the
roadway (in the proper direction of travel) may have a cost
that is slightly above unit cost while occupying a lane in the
opposing direction of traffic would have a cost significantly
above unit cost. The combination of opposing traffic
direction AND no passing zone could be made to have an
even greater cost. This cost assignment would encourage
the vehicle to travel in the rightmost lane except to pass.
Currently, these weights are hand tuned. Automatic
determination of the planning weights is an area of future
research.

deltaN ode=node.ID+(direction*nodeDist)

rDist = nodeDist - node.ID

newDirection= M O V_E N D_2_S TA RT new Direction=M O V_START_2_EN D

m ovA longL ane(newN ode,rDist,newDirection)

rDist = nodeDist- (nodeC ount-node.ID)

GetEndLinkLaneSegment

GetS tar tLinkL aneS egme nt

newN ode=start node in linking
LaneS egment

newN ode=end node in linking
L aneS egme nt

return ne wN ode

movAlongLane(node,nodeDist,direction)

new Dire ction= dir ec tion

newN ode=node

newN ode=node in current lane
segment indexed by deltaN ode

deltaN ode >= nodeC ount

deltaN ode < 0
0 < deltaN ode < nodeC ount

deltaN ode != nodeC ount deltaN ode == nodeC ount

Link to End of next LaneS egment Link to S tart to next LaneS egment

deltaN ode > nodeC ount

deltaN ode == nodeC ount

Figure 5. Activity diagram for lane traversal.

The arc traversal cost assigns a cost to performing a
particular action. Applying a cost to acceleration and
deceleration may be used to encourage consistent velocity
control. Additionally, the starting and ending states may be
examined in the context of the action to assign additional
penalties. For example, changing lanes when the current
state is a no-passing zone would be penalized.

C. Object Collision Determination
In addition to determining a path that does not violate

any rules-of-the-road, it is desired to control which objects
the vehicle is allowed to run over. As static objects are
detected, their location and properties are stored in the
world model hashed on the lane segment and nearest node.
When arc costs are computed, any arc that traverses a node
tagged with an object causes further evaluation to be
performed.

This evaluation takes to form of a query into an external
ontology that determines the predicted damage to the
vehicle, vehicle’s payload, and object based on the object
type, vehicle type, and closing velocity [12]. Moving
objects are handled in a similar fashion. In this case the
predicted trajectory of the object is stored in the world
model, and when a collision or near miss is predicted the
ontology may be consulted for collision consequence
information. This collision consequence information is
combined with the mission objectives (i.e. an collision that
causes no damage is allowed) to formulate an additional
component of the final arc cost.

V. EXPERIMENTAL SETUP AND RESULTS
The framework described in the preceding sections has

been coded as a C++ program running in a Linux

environment. The system is capable of distinguishing
between two classes of static objects (object class is
determined by external sensor processing) and a single
class of moving objects. The detected location of static
objects is assumed to be accurate, and the class difference
specifies whether it is possible to run over the object
without vehicle damage. Fig. 7 displays a sample computed
path where traversable objects are represented as boxes and
untraversable objects are represented as cones. For moving
objects, the exact trajectory of the object is known a priori.
The traffic vehicles in the figure are typical moving
objects.

The framework accepts a goal vector that specifies a
single spatial location, a range of goal times (may be “any
time”), and a range of goal velocities (may be “any speed”).
The output of the planner is a set of road states that defines
a cost optimal path spaced at one-second intervals in time.
This is shown in Fig. 7 as the series of spheres that depicts
the vehicle accelerating, changing lanes and driving
through traversable objects, changing back to the right-
hand lane and decelerating to a stop. The current planning
graph contains three separate acceleration and three
separate deceleration profiles. The road-node generator is
currently able to generate nodes for any curvature of road
without intersections.

One of the major areas that affects the system’s
performance is the search heuristic utilized by the search in
step 3 of the framework’s algorithm. Currently, an A*
search is being utilized with a heuristic that assumes that
the remaining distance to the goal is traversed by
accelerating at the maximum acceleration rate to the speed
limit and then maintaining that speed until the goal is
achieved. This heuristic works well for straight road
segments and shows performance degradation for paths that
involve curves or turns. The reason for this is that the
heuristic assumes a straight-line distance from the current
location to the goal, and this may significantly
underestimate the true distance.

VI. CONCLUSIONS AND FUTURE WORK
An algorithm for on–road planning in a hierarchical

architecture has been presented. This algorithm has been

implemented in a general purpose planning framework and
utilizes a “mini” expert system on graph node placement
for on-road driving that has also been developed for this
effort. This system has been shown to work on a variety of
road-types, and in the presence of several different classes
of static and dynamic objects.

This system is under constant development and
refinement with 3 major areas of concentration. The first
area of work is the expert system for on-road graph node
placement. This system is currently being expanded to
include proper node placement for traversal through
complex intersections.

The system’s behavior and abilities are greatly affected
by the complexity and richness of the system cost function.
Additional environmental factors need to be encoded in this
function and additional behaviors need to be examined.

Finally, additional components of the RCS system are
being developed to allow for this system to operate in real-
time on a real vehicle. An executor for plan control and
execution is being developed and real-time constraint
issues are being investigated.

REFERENCES

 1. Dickmanns, E., "The seeing Passenger Car VaMoRs-P,"

International Symposium on Intelligent Vehicles, 1994.
 2. Pomerleau, D. and Jochem, T., "Image Processor Drives Across

America," Photonics Spectra, 1996, pp. 80-85.
 3. Shoemaker, C. and Bornstein, J. A., "Overview of the Demo III

UGV Program," Proceedings of the SPIE Robotic and Semi-
Robotic Ground Vehicle Technology Conference, Vol. 3366,
1998, pp. 202-211.

 4. Thorpe, C., Jochem, T., and Pomerleau, D., "The 1997
Automated Highway Free Agent Demonstration," IEEE
Conference on Intelligent Transportation System, Boston, MA,
1997, pp. 496-501.

 5. Balakirsky, S., A Framework for Planning with Incrementally
Created Graphs in Attrributed Problem Spaces, Akademische
Verlagshesellschaft Aka GmbH, Berlin, Germany, 2003.

 6. Albus, J., et. al, "4D/RCS Version 2.0: A Reference Model
Architecture for Unmanned Vehicle Systems," NISTIR 6910,
Gaithersburg, MD, 2002.

 7. Albus, J., "Outline for a Theory of Intelligence," IEEE
Transactions on Systems Man and Cybernetics, Vol. 21, 1991, pp.
473-509.

 8. Blum, A. L. and Furst, M. L., "Fast Planning Through Planning
Graph Analysis," Artificial Intelligence, Vol. 90, No. 1-2, 1997,
pp. 281-300.

 9. Russell, S. and Norvig, P., Artificial Intelligence: A Modern
Approach, Prentice-Hall 1995.

 10. Hart, P. E., Nilsson, N. J., and Raphael, B., "A Formal Basis for
the Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems Science and Cybernetics, Vol. 4, No. 2,
1968, pp. 100-107.

 11. Schlenoff, C., Balakirsky, S., Barbera, A., Scrapper, C., Hui, E.,
Paredes, M., and Ajot, J., "The NIST Road Network Database:
Version 1.0," National Institute of Standards and Technology,
NISTIR, 2003.

 12. Uschold, M., Provine, R., Smith, S., Schlenoff, C., and
Balakirsky, S., "Ontologies for World Modeling in Autonomous
Vehicles," Proceedings of the 18th International Joint Conference
on Artificial Intelligence: Ontologies and Distributed Systems
Workshop, 2003.

Figure 6. Actual plan amongst various class of static and
moving objects.

