
 
 

 

  
Abstract— A general-purpose hierarchical planning 

framework that allows for cost-optimal, logic-constrained 
plans will be presented. This framework will be applied to 
planning an on-road path for an autonomous vehicle traveling 
amongst moving and stationary objects. Through this 
application, the ability to implement both hard and soft 
constraints, as well as cope with dynamic environments and 
user objectives will be demonstrated. 

I. INTRODUCTION 
any road-driving planning systems exist in the 
current literature [1-4]. Researchers such as 

Dickmanns have demonstrated the ability to drive at high-
speeds amongst moving objects, while Pomerleau and 
Jochem have driven across the United States in a mostly 
autonomous fashion. Still others have taken advantage of 
specially modified roadways for vehicle guidance [4] or 
created systems with all-terrain mobility [3]. While these 
systems are capable of low-level lane following, and even 
in some cases of changing lanes and navigating exit ramps, 
they lack the ability to plan for when a lane-change or 
passing maneuver should take place. The planning system 
that is described in this paper is designed to work in a 
hierarchical architecture as the supervisor to one of these 
low-level planning/control systems in order to construct 
plans for mixed traffic (autonomous and manual) driving 
on non-instrumented roadways. This system plans out to 
the next 10 seconds of travel and is capable of planning on 
the driving maneuver level (i.e. passing maneuvers, turning 
maneuvers).   

II. THE REFERENCE MODEL ARCHITECTURE 
 In order to guarantee real-time operation and decompose 

the problem into manageable pieces, it was necessary to 
embed the planning framework into a hierarchical 
architecture that was specifically designed to accommodate 
real-time deliberative systems.  The Real-Time Control 
System (RCS) reference model architecture is a 
hierarchical, distributed, real-time control system 
architecture that meets this need while providing clear  
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Figure 1.  Internal structure of a RCS_NODE (from [6] p. 28). 

interfaces and roles for a variety of functional elements 
[6,7]. 

Under RCS, each level of the hierarchy is composed of 
the same basic building blocks illustrated in Fig. 1. These 
building blocks include behavior generation (task 
decomposition and control), sensory processing (filtering, 
detection, recognition, grouping), world modeling 
(knowledge storage, retrieval, and prediction), and value 
judgment (cost/benefit computation, goal priority). 

The planning system presented in this paper is designed 
to fill the roles of behavior generation, world modeling, 
and value judgment for a single level of the hierarchy. The 
system receives a set of intersections that must be traversed 
and a final goal location from its supervising level. The 
system then refines this plan for specific lane locations and 
vehicle velocities while taking into account dynamic and 
static objects as well as user objectives and constraints. The 
results of this plan refinement are then passed to the next 
lower level of the hierarchy for further refinement and 
execution. This process is periodically repeated for systems 
that include uncertainty in the prediction of moving object 
locations and the success of task execution.  

III. PLANNING FRAMEWORK 
The main difference between the incremental graph 

planning framework and traditional graph planning 
approaches is in the way states are mapped to nodes and the 
way that the nodes are connected.  

A. Attributed Graph Nodes 
The left side of Fig. 2 depicts several static objects that 

may be in an planning system’s world model (a high 
density black object (i.e. a brick wall) and a low density 
white object (i.e. an empty can). In addition to knowledge 
about an object’s location, the world model tracks all of the 
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object’s attributes that are necessary for making a 
cost/benefit decision that involves the object. For the above 
case of autonomous driving, this decision is about whether 
to drive over or around the object, and if over, at what 
speed. It should be noted that combinations of attributes are 
necessary for making this determination. Sample attributes 
that appear in the world model include such information as 
the corners of an object’s bounding box, the object density, 
and its intrinsic value. 

Having a varied set of object attributes allows the system 
to make intelligent trade-offs in its plans. For example, the 
system should run over a soda can in order to avoid driving 
over a brick wall. However, the system should be willing to 
incur substantial damage (i.e. hit the wall) rather then 
running over a small child (which would not damage the 
vehicle). 

In order for the planning system to utilize these attributes 
as decision points, a node in the planning space must 
represent their location.  As shown in the right had side of 
Fig. 2, these nodes may be densely or sparsely populated, 
and there are no “wasted” nodes placed in locations that are 
not relevant to planning decisions. In addition, the 
existence of these nodes may depend on the particular 
planning application. For example, if path planning for a 
large all-terrain vehicle, the low density corner nodes 
depicted in Fig. 2 (the white nodes) would not be included 
in the planning graph. Since nodes are only instantiated 
where relevant attributes exist, the set of all nodes available 
for use by the planning system is referred to as the set of 
Relevant Annotated Nodes (RAND). 

Relevant nodes must exist wherever a planning decision 
point exists. In the above example, there is no time 
dimension. The placement of nodes must simply allow the 
system to decide whether to go over or around static 
objects.  

B. Logical Arc Connections 
Once the set of potential graph nodes has been 

established, a technique for creating a specific node’s 
spanning set must be developed. The graph arcs that are 
utilized by the incremental framework build upon concepts 
developed by Blum and Furst in their GraphPlan work [8]. 
Blum and Furst have created a logical planning graph that 
expands levels by examining the results of the execution of 
all valid actions.  

For the purposes of the incremental graph approach, the 
intersection of the result of applying a node’s valid actions 
and the set RAND will be considered as the spanning set of 
the current node. For the static example presented above, 
the only valid action is for the vehicle to drive in a straight 
line (in any direction). By constructing a visibility graph 
from the current node to all other nodes, the node’s 
spanning set may be found. 

 

Figure 2.  Representative objects and resulting nodes. 

In other planning domains, time is an important factor 
and decisions must be made that match a pre-specified 
control cycle. It should be noted that for these cases the 
spanning set of a node is time-dependent, and therefore the 
graph topology may change on a planning-cycle by 
planning-cycle basis. In addition, the spanning set for a 
particular node at time t may not be equal to the spanning 
set for node at time t+1.  

This is true for the case of on-road driving where a 
decision on vehicle velocity and lane control (which lane to 
occupy) must be made every second (for this level of the 
hierarchy). The planning space is now four-dimensional (x, 
y, time, velocity) and graph constraints through the use of 
valid actions and attribute relevance becomes even more 
important.  For the over simplified case shown in Fig. 3 the 
valid actions that may occur are accelerate (A), decelerate 
(D), maintain velocity (M), and change lane. It is also 
possible to simultaneously change lane and velocity. The 
full set of valid actions is shown as the white and gray 
circles in the figure. However, the size of the spanning set 
will be constrained by membership in the set RAND. In 
this case, only the white circles are legal lane positions and 
members of RAND. Therefore, the spanning set will 
consist of the white circles. 

This technique of excluding possible actions from a 
node’s spanning set is used to implement hard constraints 
on the plan. Since no graph nodes exist in the oncoming 
traffic’s lane, it is impossible for the system to plan to enter 
this lane. It should be noted that if a planning failure occurs 
(no path below a certain cost threshold exists), then the 
constraints may be relaxed and the set RAND expanded to 
include all of the circles. The system must then use soft 
constraints in the form of the system cost function in order 
to discourage the vehicle from driving in the oncoming 
traffic’s lane. This may be accomplished in two different 
ways. The first is to assign a high arc cost to the action of 
crossing a double yellow line on the road. This will 
discourage the vehicle from entering the opposing lane. 
The second is to assign a high state cost to occupying a 
state whose direction of travel is opposite of the vehicles. 
This will assure that once in the opposing lane, the stay is 
as short as possible.  



 
 

 

 

Figure 3.  Spanning set for on-road planning system. 

C. Planning Algorithm 
The graph node creation and connection strategies 

outlined above may be used to create a formal algorithm 
that resides in the behavior generation module of RCS and 
is outlined as follows (see [5] for a more detailed analysis): 

1) Insert 
0t,start

rand into open list O. The notation 

0t,start
rand specifies a member of the set RAND with 

state specified by the vector “start” at time t0. 

2) Insert one or more goals 
gt,goal

rand into goal list G. 

3) Graph search selects and removes 
it,k

rand from O. 

4) Evaluate 
it,k

rand . 

a) If 
it,k

rand ∈ G, and re-planning desired goto (1), 

b) else if 
it,k

rand ∈ G finished, 

c) else if 
1it,lα +

r > MaxCost, then no path found, 

d) else continue. 

5) Define the set to be visited TBV = 
it,krandSP r  

6) While TBV ≠ ∅, create arc (
it,k

rand ,
1it,l

rand
+

) and 

evaluate β = pc(prand(
0t,start

rand ,
1it,l

rand
+

)) where 

1it,l
rand

+
∈  TBV. 

a) Remove 
1it,l

rand
+

from the set TBV. 

b) If 
1it,l

rand
+

VISITED and β < 
1it,lα +

r , or 

1it,l
rand

+
NOT VISITED, set 

1it,lα +

r = β, set 

1it,l
rand

+
backpointer to 

it,k
rand , add 

1it,l
rand

+
to O. 

c) Remove arc(
it,k

rand ,
1it,l

rand
+

). 

d) End while. 

7) Go to 3. 

Step 1 and 2 of the algorithm begin the search process by 
placing the node that contains the current system state into 
the list O of open nodes and one or more goal states into 
the goal set G. The algorithm will terminate when a 
minimum cost path has been found to any of the nodes in 
the set G or some maximum cost has been exceeded. It 
should be noted that the feature of being a start or goal 
node is a relevant attribute and therefore the start and goal 
nodes are always relevant and elements of RAND. This 
assures that the graph will contain the start and goal states 
even if these states have no other relevant attributes 
associated with them. 

In step 3, it is assumed that a search technique that 
utilizes an open list is used. Many such techniques exist in 
the current literature including searches such as breadth 
first [9], depth first [9], and A* [10]. A search methodology 
dependent criterion is used to select the node from the list 
O that should be expanded.  If the list O is empty, then a 
plan failure has occurred. At this point, the system may 
either return a failed status indicating that no plan was 
found, or may relax the selection criteria for relevant 
attributes (i.e. increase the size of NRAND) and attempt to 
find a new plan. Through this technique, a hierarchy of 
hard constraints may be established that are gradually 
relaxed as a result of plan failures. 

Step 4 performs a test to determine if the current node is 
a member of the goal set G or if its cost exceeds the 
maximum allowable cost. The goal set is defined as the set 
of nodes in RAND that will satisfy the objectives of the 
system. This set may contain more then one node (e.g. a 
mobile robot should arrive at a certain location as soon as 
possible, with no specific time information given), but 
should never be empty.  

One integral feature of this algorithm is dynamic 
replanning. By returning to step 1 after a successful plan 
has been generated, dynamics in the hard constraints, soft 
constraints, and environment are easily handled.  

Steps 5 and 6 incrementally expand and evaluate the 
graph structure. The spanning set of the node being 
expanded is constructed, and the cost of achieving these 
nodes from the current node is examined. During the 
spanning set construction, possible actions and relevant 
attributes are examined, and nodes that correspond to these 
attributes are either located (they have been previously 
created) or are created. Created nodes always begin with a 
status of NOT VISITED. This indicates that no path from 
the graph origin to the node has been explored and 
evaluated.  



 
 

 

Arcs are temporarily created to link the current node to 
all of its successors, and the path cost function pc evaluates 
the new potential path to the successor node. Step 6b 
assures that the least expensive path from a given node to 
the start of the search may be found by following a series 
of backpointers, and the least expensive cost from a node to 
the start of the search is maintained in the variable 

it,lαr . 

Since only a single path from each node back to the start is 
maintained, the acyclic property of the graph is guaranteed. 
An error flag is returned if step 4 finds that the value of 

it,lαr for the node being expanded exceeds a maximum cost. 

This flag may be used by different search techniques in 
different ways. For example, an iterative deepening search 
may use this transition to a new graph branch while an A* 
search would need to relax constraints on the generation of 
relevant attributes and replan. 

IV. KNOWLEDGE LAYERS 
The heart of the algorithm presented above lies in the 

determination of a node’s spanning set and the evaluation 
of the node and arc costs. For the case of on-road driving, a 
mini-expert system has been developed for the 
determination of spanning sets and a rule base is used for 
cost evaluation. 

A. Spanning Set Generation – Road Nodes 
The spanning set mini-expert system is referred to as the 

Node Generator (NG).  The NG is part of the RCS world 
model and facilitates the simulation and prediction of 
possible spatial transitions along a road network that a 
vehicle may take from its current state. The NG consists of 
a knowledge engine that creates and maintains the data 
structure, a Knowledge Database (KD) known as the On-
Road Driving Database [11] that contains both a priori and 
sensed road feature data, a constraint system that limits the 
graphs branching factor, and a simulation system that is 
used to predict node locations.   

The knowledge engine creates a polymorphic internal 
data structure that is used to handle the various elements 
contained in the task decomposition hierarchy of the On-
Road Driving Database. From this internal data structure, 
the knowledge engine is able to construct reachability 
graphs. Each branch of the graph represents a separate 
vehicle trajectory that models the distance traveled and 
vehicle action performed (i.e. turn, change lane, maintain 
lane) per graph expansion cycle.  A trajectory is 
represented by the NG as a set of road states that are 
connected to a given root node to form the reachability 
graph. The leaf nodes of the graph represent the set of 
obtainable road states for a given cycle.  These leaf nodes 
are used in step 5 of the planning algorithm to expand the 
incrementally created graph.  

The internal knowledge representation of the NG is 
based on the road data hierarchy described by Schlenoff et. 
al in [11]. In this hierarchy, the lowest level of knowledge 
is a lane segment that represents a constant curvature 
section of a lane.  The NG must map these real-world lane 
segments into a finite set of discrete uniformly spaced 
attributed nodes. These nodes are uniquely identified by a 
tuple that includes the lane segment information and a node 
id that may be seen as an offset from the beginning of the 
lane segment. Due to the nature of the nodes, an inherent 
error is introduced between the two last nodes in every lane 
segment that is defined by the max node displacement. The 
reason for this is the uniform nature of the node 
displacement. 

The NG utilizes system constraints when creating the 
reachability graph to limit the vehicle’s possible actions. 
For example, on a first planning pass the NG may be 
constrained from returning any road states that violate a 
driving law or would produce uncomfortable vehicle 
movement. However, if no plan is found that satisfies the 
planner’s maximum cost value, replanning could take place 
with a reduced set of constraints. The constraints could 
now allow for emergency maneuvers by altering the angle 
in which lane changes are performed or allow nodes 
deemed illegal by the set of road rules.   

The simulator is called in step 5 of the planning 
algorithm to determine the direction and distance that the 
vehicle will travel from a given state in one graph 
expansion cycle.  The simulator relies on three equation-
governed algorithms to create a reachability graph per 
cycle. First simulating a trajectory in the current lane and 
then searching for possible trajectories in adjacent lanes 
creates this graph.  As shown in Fig. 5 the search for 
additional trajectories always move away from the root 
node. 

In creating the reachability graph, the NG uses state 
information about the vehicle’s direction of travel, velocity, 
and the node generation constraints.  The current base set 
of functions used in the knowledge engine allow for the 
vehicle to move along the lane segment or to change lanes.  
The function that moves along a lane, depicted by a UML 
flow-chart in Fig. 6, is a recursive function that moves 
along a lane a given distance to find the leaf node. The 
function maintains an ordered set of road states that 
consists of a given start node, a leaf node, and the first node 
of every lane segment traversed during the process.   

The change lane function models a lane change while 
adhering to the lane change angle required for the 
maneuver. Equation 1 shows how this function calculates 
the forward component that is required to model the lane 
change angle α given the lane change width w.  Equation 2 
shows the means in which the function ascertains the 
corresponding node index i in the adjacent lane segment. 



 
 

 

 

Figure 4.   Trajectory generation. 
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The knowledge engine attempts to find additional arms 
of the reachability graph (representing multiple lane 
changes) by recursively searching adjacent lanes using the 
two base equations mentioned above. This is accomplished 
by first performing a lane change maneuver to the adjacent 
lanes of the root node.  If an adjacent lane segment exists, 
and a node in this lane segment is obtainable at the given 
vehicles speed, then the function forms a trajectory to this 
adjacent lane. This trajectory is created by connecting the 
root node of the reachability graph to the node found 
during the lane change maneuver with nodes that model the 
vehicles traversal to this lane as intermediate nodes in the 
trajectory. 

B. Cost Evaluation 
The results from the node generator formulate a set of 

next possible states that the system may achieve. They do 
not however, tell the system which state it should achieve. 
This job is performed by RCS’s value judgment through 
the use of a cost function. As previously mentioned, the 
cost function may be broken down into the two evaluations 
of node occupancy cost and arc traversal cost.  

The node occupancy cost may be determined by a 
weighted sum of a logical combination of individual node 
attributes. For example, if the cost of occupying the 
rightmost lane of a multi-lane roadway is said to have unit 
cost, then the cost of occupying the leftmost lane of the 
roadway (in the proper direction of travel) may have a cost 
that is slightly above unit cost while occupying a lane in the 
opposing direction of traffic would have a cost significantly 
above unit cost. The combination of opposing traffic 
direction AND no passing zone could be made to have an 
even greater cost. This cost assignment would encourage 
the vehicle to travel in the rightmost lane except to pass. 
Currently, these weights are hand tuned. Automatic 
determination of the planning weights is an area of future 
research. 
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Figure 5.  Activity diagram for lane traversal. 

The arc traversal cost assigns a cost to performing a 
particular action. Applying a cost to acceleration and 
deceleration may be used to encourage consistent velocity 
control. Additionally, the starting and ending states may be 
examined in the context of the action to assign additional 
penalties. For example, changing lanes when the current 
state is a no-passing zone would be penalized. 

C. Object Collision Determination 
In addition to determining a path that does not violate 

any rules-of-the-road, it is desired to control which objects 
the vehicle is allowed to run over. As static objects are 
detected, their location and properties are stored in the 
world model hashed on the lane segment and nearest node. 
When arc costs are computed, any arc that traverses a node 
tagged with an object causes further evaluation to be 
performed.  

This evaluation takes to form of a query into an external 
ontology that determines the predicted damage to the 
vehicle, vehicle’s payload, and object based on the object 
type, vehicle type, and closing velocity [12]. Moving 
objects are handled in a similar fashion. In this case the 
predicted trajectory of the object is stored in the world 
model, and when a collision or near miss is predicted the 
ontology may be consulted for collision consequence 
information. This collision consequence information is 
combined with the mission objectives (i.e. an collision that 
causes no damage is allowed) to formulate an additional 
component of the final arc cost. 

V. EXPERIMENTAL SETUP AND RESULTS 
The framework described in the preceding sections has 

been coded as a C++ program running in a Linux 



 
 

 

environment. The system is capable of distinguishing 
between two classes of static objects (object class is 
determined by external sensor processing) and a single 
class of moving objects. The detected location of static 
objects is assumed to be accurate, and the class difference 
specifies whether it is possible to run over the object 
without vehicle damage. Fig. 7 displays a sample computed 
path where traversable objects are represented as boxes and 
untraversable objects are represented as cones. For moving 
objects, the exact trajectory of the object is known a priori.  
The traffic vehicles in the figure are typical moving 
objects.  

The framework accepts a goal vector that specifies a 
single spatial location, a range of goal times (may be “any 
time”), and a range of goal velocities (may be “any speed”). 
The output of the planner is a set of road states that defines 
a cost optimal path spaced at one-second intervals in time. 
This is shown in Fig. 7 as the series of spheres that depicts 
the vehicle accelerating, changing lanes and driving 
through traversable objects, changing back to the right-
hand lane and decelerating to a stop. The current planning 
graph contains three separate acceleration and three 
separate deceleration profiles. The road-node generator is 
currently able to generate nodes for any curvature of road 
without intersections. 

One of the major areas that affects the system’s 
performance is the search heuristic utilized by the search in 
step 3 of the framework’s algorithm.  Currently, an A* 
search is being utilized with a heuristic that assumes that 
the remaining distance to the goal is traversed by 
accelerating at the maximum acceleration rate to the speed 
limit and then maintaining that speed until the goal is 
achieved. This heuristic works well for straight road 
segments and shows performance degradation for paths that 
involve curves or turns. The reason for this is that the 
heuristic assumes a straight-line distance from the current 
location to the goal, and this may significantly 
underestimate the true distance. 

VI. CONCLUSIONS AND FUTURE WORK 
An algorithm for on–road planning in a hierarchical 

architecture has been presented. This algorithm has been 

implemented in a general purpose planning framework and 
utilizes a “mini” expert system on graph node placement 
for on-road driving that has also been developed for this 
effort. This system has been shown to work on a variety of 
road-types, and in the presence of several different classes 
of static and dynamic objects. 

This system is under constant development and 
refinement with 3 major areas of concentration. The first 
area of work is the expert system for on-road graph node 
placement. This system is currently being expanded to 
include proper node placement for traversal through 
complex intersections.  

The system’s behavior and abilities are greatly affected 
by the complexity and richness of the system cost function. 
Additional environmental factors need to be encoded in this 
function and additional behaviors need to be examined. 

Finally, additional components of the RCS system are 
being developed to allow for this system to operate in real-
time on a real vehicle. An executor for plan control and 
execution is being developed and real-time constraint 
issues are being investigated. 
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Figure 6.  Actual plan amongst various class of static and 
moving objects. 


