
PRIDE: A Framework for Performance Evaluation of
Intelligent Vehicles in Dynamic, On-Road Environments

Craig Schlenoff, Jerome Ajot, and Raj Madhavan

National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT

We are developing a novel framework, PRIDE (PRediction In
Dynamic Environments), to perform moving object prediction for
unmanned ground vehicles. The underlying concept is based upon
a multi-resolutional, hierarchical approach that incorporates
multiple prediction algorithms into a single, unifying framework.
The lower levels of the framework utilize estimation-theoretic
short-term predictions while the upper levels utilize a probabilistic
prediction approach based on situation recognition with an
underlying cost model.
 In addition to predicting the location of moving objects in the
environment, we have extended PRIDE to generate simulated
traffic flow during on-road driving. In this paper, we explore
applying the PRIDE-based traffic control algorithms for the
purpose of performance evaluation of autonomous vehicles.
Through the use of repeatable and realistic traffic flow simulation,
one is able to evaluate the performance of an autonomous vehicle
in an on-road driving scenario without the risk involved with
introducing the vehicle into a potentially dangerous roadway
situation. In addition, by varying a single vehicle’s parameters
(e.g. aggressivity, speed, location) with the traffic flow, we can
show how the entire traffic pattern is affected. We will show the
successes that have been achieved to date in a simulated
environment, as well as enhancements that are currently being
researched and expected in the near future.

KEYWORDS: autonomous vehicle, on-road driving, traffic
simulation, performance metrics, PRIDE

1.0 Introduction/Problem Statement

The field of autonomous systems is continuing to gain
traction both with researchers and practitioners. Funding for
research is this area has continued to grow over the past few
years, and recent high profile funding opportunities have
started to push theoretical research efforts into practical use.
Autonomous systems in this context refer to embodied
intelligent systems that can operate fairly independently
from human supervision.
 Many believe that the DEMO III Experimental
Unmanned Vehicle (XUV) effort represents the state of the
art in autonomous off-road driving [10]. This effort seeks to
develop and demonstrate new and evolving autonomous
vehicle technology, emphasizing perception, navigation,
intelligent system architecture, and planning. It should be
noted the DEMO-III XUV has only been tested in static

environments. It has not been tested in on-road driving
situations, which include pedestrians and oncoming traffic.
 There have been experiments performed with
autonomous vehicles during on-road navigation. Perhaps the
most successful has been that of Dickmanns [4] as part of
the European Prometheus project in which the autonomous
vehicle performed a trip from Munich to Odense (over
1,600 kilometers) at a maximum velocity of 180 km/hr.
Although the vehicle was able to identify and track other
moving vehicles in the environment, it could only make
basic predictions of where those vehicles were expected to
be at points in the future, considering the vehicle’s current
velocity and acceleration.
 What is missing from all of these experiments is a level
of situation awareness of how other vehicles in the
environment are expected to behave considering the
situation in which they find themselves. When humans
drive, we often have expectations of how each object in the
environment is expected to move based upon the situation.
When a vehicle is approaching an object that is stopped in
the road, we expect it to slow down behind the object or try
to pass it. When we see a vehicle with its blinker on, we
expect it to turn or change lanes. When we see a vehicle
traveling behind another vehicle at a constant speed, we
expect it to continue traveling at that speed. The decisions
that we make in our vehicle are largely a function of the
assumptions we make about the behavior of other vehicles.
 To date, the authors are not aware of any autonomous
vehicle efforts that account for this information when
performing path planning. To address this need, we have
developed a framework, called PRIDE (PRediction in
Dynamic Environments) that provides an autonomous
vehicle’s planning system with information that it needs to
perform path planning in the presence of moving objects
[8]. In this paper, we describe how we leveraged the
algorithms in the PRIDE framework to simulate traffic
patterns during on-road driving. We can then use these
simulated traffic patterns to control vehicles in the
environment in an on-road driving arena being developed at
NIST [9] in a way to assess the performance of autonomous
vehicles being tested within these arenas.
 In Section 2, we survey some related work in traffic
simulation. In Section 3, we describe the various
components of the PRIDE framework. In Section 4, we
show how the PRIDE framework can be applied to traffic
simulation for on-road driving. In Section 5, we explain
how this traffic simulation can be used to apply

performance metrics for autonomous vehicles. Section 6
concludes the paper.

2. RELATED WORK

Most of the work in the literature dealing with drivers’
actions and predicted behavior has been performed by
psychologists in an attempt to explain drivers' behaviors and
to identify the reasons of certain dysfunctions.

There have been a few efforts that have tried to simulate
traffic patterns. One of more prominent ones in the literature
is ARCHISM [3,5], but even this effort is based upon
driving psychology studies. These traffic simulations use
laws that can be applied for a specific environment or a
specific situation. Some of those postulates can be expand
to generic situations but still attached to a kind of situation.

3. THE PRIDE FRAMEWORK

We are using the 4D/RCS (Real-Time Control System)
reference model architecture [1] as the basis in which to
apply the representational approaches that are being
developed in this effort. 4D/RCS was chosen due to its
explicit and well-defined world modeling capabilities and
interfaces, as well as its multi-resolution, hierarchical
planning approach. Specifically, 4D/RCS allows for
planning at multiple levels of abstraction, using different
planning approaches as well as utilizing inherently different
world model representation requirements. By applying this
architecture, we can ensure that the representations being
developed for representing moving objects can
accommodate different types of planners that have different
representational requirements.
 The RCS architecture supports multiple behavior
generation (BG) systems working cooperatively to compute
a final plan for the autonomous system. The spatial and
temporal resolution of the individual BG systems along with
the amount of time allowed for each BG system to compute
a solution are specified by the level of the architecture
where it resides. In addition to multiple BG systems,
multiple world models are supported with each world
model’s content being tailored to the systems that it
supports (in this case the BG system). As such, it is
necessary for moving objects to be represented differently at
the different levels of the architecture.
 To support this requirement, NIST has developed the
PRIDE (PRediction In Dynamic Environments) framework.
The underlying concept is based upon a multi-resolutional,
hierarchical approach that incorporates multiple prediction
algorithms into a single, unifying framework. This
framework supports the prediction of the future location of
moving objects at various levels of resolution, thus
providing prediction information at the frequency and level
of abstraction necessary for planners at different levels

within the hierarchy. To date, two prediction approaches
have been applied to this framework.
 At the lowers levels, we utilize estimation theoretic
short-term predictions via an extended Kalman filter-based
algorithm using sensor data to predict the future location of
moving objects with an associated confidence measure.
Estimation-theoretic schemes using Kalman Filters (KFs)
are well established recursive state estimation techniques
where estimates the states of a system are computed using
the process and observation models [6]. The recursive
nature of the algorithm utilizes the system's CPU more
uniformly to provide estimates without the latency resulting
from batch processing techniques. The (linear) KF is simply
a recursive estimation algorithm that provides minimum
mean squared estimates (MMSE) of the states of a linear
system utilizing knowledge about the process and
measurement dynamics, process and measurement noise
statistics subject to Gaussian assumptions and initial
condition information. When these assumptions are
satisfied, the estimates provided by the Kalman filter are
optimal. The extension of the linear Kalman filtering ideas
to a non-linear system is termed extended Kalman filtering.
 The Extended Kalman Filter (EKF) is a linear estimator
for a non-linear system obtained by linearization of the
nonlinear state and observation equations. For any non-
linear system, the EKF is the best linear unbiased estimator
with respect to minimum mean squared error criteria.
Within the on-road driving hierarchy, short-term prediction
of objects moving at variable speeds and at given look-
ahead time instants are predicted using the EKF. More
information about this approach can be found in [7].
 At the higher levels of the framework, moving object
prediction needs to occur at a much lower frequency and a
greater level of inaccuracy is tolerable. At these levels,
moving objects are identified as far as the sensors can
detect, and a determination is made as to which objects
should be classified as “objects of interest”. In this context,
an object of interest is an object that has a possibility of
affecting our path in the time horizon in which we are
planning. At this level, we use a moving object prediction
approach based on situation recognition and probabilistic
prediction algorithms to predict where we expect that object
to be at various time steps into the future. Situation
recognition is performed using spatio-temporal reasoning
and pattern matching with an a priori database of situations
that are expected to be seen in the environment. In these
algorithms, we are typically looking at planning horizons on
the order of tens of seconds into the future with plan steps at
about one second intervals. At this level, we are not looking
to predict the exact location of the moving object. Instead,
we are attempting to characterize the types of actions we
expect the moving object to take and the approximate
location the moving object would be in if it took that action.
More information about this approach is included in the
follow section.

 Active research is exploring the integration of these two
prediction approaches in a way that the predictions from one
can help to enforce or not enforce the predictions of the
other.
 Both of these prediction methods have been
implemented in two different simulation environments. The
EKF approach has been implemented in the OneSaf testbed
(www.onesaf.com). OneSaf is a composable, next
generation computer generated forces (CGF) that represents
a full range of operations, systems, and control process from
individual combatant and platform to battalion level, with a
variable level of fidelity. OneSaf is able to represent moving
objects and provide the object's location and velocity at any
point in time, through custom-developed Application
Programmers’ Interface (API) calls. A user-interface was
built on top of OneSaf to display the predicted locations of
the moving objects.
 In Figure 1, the triangle represents the moving object
whose future location is to be predicted. The large circle in
front of the triangle is the area in which we are 99 %
confident that the object will be in two seconds and the
small shaded circle is the area in which we are 50 %
confident that the object will be in two seconds. For our
implementation, we found that the EKF provided reasonable
predictions within a two second horizon. A horizon greater
than two seconds introduced too much uncertainty to be
useful for our autonomous driving scenarios.
 The situation-based probabilistic prediction approach
has been implemented in the AutoSim simulation package
developed by Advanced Technology Research Corporationi.
AutoSim is a high-fidelity simulation tool which models
details about road networks, including individual lanes, lane
markings, intersections, legal intersection traversibility, etc.
Using this package, we have simulated typical traffic
situations (e.g., multiple cars negotiating around obstacles
in the roadway, bi-directional opposing traffic, etc.) and
have predicted the future location of individual vehicles on
the roadway based upon the prediction of where other
vehicles are expected to be.
 At the point this paper was written, we have simulated
a handful of driving situations and have used approximately
a dozen costs to determine the probabilities of one action

over another. In this context, a cost is a penalty that is
incurred by performing a maneuver or occupying a state.
Current costs are incurred based on: 1) proximity to other
objects in the environment as a function of necessary
stopping distance, 2) exceeding or going below the speed
limit by a given threshold, 3) changing lanes, 4) not being in
the rightmost lane, 5) rapidly accelerating or decelerating,
and 6) changing lanes where double yellow lines in the road
exist, among other costs.
 It should be emphasized that costs are not static
numbers. The cost that a vehicle incurs by taking an action
is heavily a function of the perceived personality and
intention of the moving objects. Using these costs, we are
able to predict up to ten seconds into the future at a rate of
two predictions per second. A snapshot of the
implementation is shown in Figure 2 (a) and (b).

4. APPLYING THE PRIDE FRAMEWORK
TO TRAFFIC SIMULATION

Although the PRIDE framework was originally developed
to inform a planner about the future position of moving

Figure 2: Situation-based probablistic prediction. (a) above and (b)
below show a vehicle performing a passing operation around stationary

obstacles.
Figure 1: Short-term Prediction.

objects for the purpose of path planning and collision
avoidance, we have found that the same set of algorithms
could be applied to simulating traffic patterns during on-
road driving. More specifically, we applied the situation
recognition and probabilistic algorithms to determine the
likely actions that a vehicle in the environment would take
when confronted with a specific situation, and then
command that vehicle to perform that action. By doing this
with multiple vehicles, we are able to simulate fairly
sophisticated traffic situations in which vehicles behave in a
way that is very similar to how a human would behave.
Vehicles will slow down and/or pass when approaching a
stopped or slow object in their lane, they will typically only
change lanes when the next lane is clear and they are going
slower than desired, they will keep a safe follow distance,
etc. By providing realistic simulations of traffic situations,
we are able to test the autonomous vehicle during realistic
on-road driving situations, without having to place the
vehicle on a potentially dangerous city street or highway.

Figure 3: Discretized Vehicle’s Actions.

As shown, at any point in time, the vehicle can have up to
15 possible future actions.

4.2. THE PRIDE ALGORITHMS

 In this section, we will use the following scenario as
shown in Figure 4 to explain the concepts in the algorithms.
This scenario is composed by three vehicles, two (A and B)
on the same lane (L1) and another one (C) on the opposite
lane (L2) and a static obstacle (D) on the lane L1. The vision is that we will use these algorithms

originally in simulated environments (such as the OneSaf
and AutoSim simulation environments discussed above) to
test out the planning algorithms in the presence of moving
objects. Then, when the NIST On-Road Driving Arenas
(which are described in another paper in this conference),
are completed, these algorithms will be used to control
“environmental” vehicles in the arena to simulate on-road
traffic.

Figure 4: Scenario

Figure 5 shows the overall process for the algorithms (a)
graphically and (b) in pseudo-code. The algorithm proceeds
as follows:

 The remainder of this section describes the details of
how the situation recognition and probabilistic algorithms
are used to simulate on-road traffic.

1. For each vehicle on the road (α), the algorithm gets
the current position and velocity from external
programs/sensors (β).

 The basic assumption behind this situation-based
probabilistic prediction approach is a driver’s behavior can
be quantified using costs. In general, a driver will prefer an
action that minimizes its cost. With this assumption, the cost
can be converted to probabilities, where the higher the cost,
the lower the probability that the driver will execute that
action.

2. For each time in the future and for each starting
position (χ), the algorithm creates a set of next
possible positions in the future and assigns a cost
to each of them corresponding to the action
performed and the state occupied. At the end of the
first prediction, each ending position is set at the
starting positions at time t are used as “starting
position” to build the next set of future position for
time t+1. This loop (δ) is performed tfinal iterations,
where tfinal is the predetermined time in the future
that we wish to predict.

4.1. POSSIBLE VEHICLE ACTIONS

For the purpose of the algorithms, we have discretized the
possible actions that a vehicle can make at any given time.
Note that for this exercise, we have not accounted for
intersections. All of the examples occur on a continuous
stretch of roadway. 3. Using the costs found in step 2, the algorithm

computes the probability for each movements of
the vehicle (ε). In Figure 6, ten possible positions
are shown for the vehicle (a) A, (b) B, and (c) C at
time tfinal.

 A vehicle can execute two types of actions. The first
type of action is regarding its velocity, namely, quick
acceleration (QA), slow acceleration (SA), constant velocity
(CV), slow deceleration (SD) and quick deceleration (QD).

4. The width of each dot in Figure 6 represents the
relative probability of each action with respect to
the others, where the bigger the dot, the higher the
probability.

 The second type of action is regarding lane changing,
namely, changing to the left lane (CL), staying in the same
lane (SL) and changing to the right lane (CR). These are
shown in Figure 3.

Begin
 Loop
 For each vehicle (α)
 Get Current Position (β)
 For each time in the future (χ)
 For each possible actions (δ)
 Compute All Moves
 Calculate Cost Action
 Calculate Cost Static Obstacle
 End for
 Calculate Probabilities Action (ε)
 End for
 Build Predicted Vehicle Trajectory (ξ)
 End for
 For each Predicted Vehicle Trajectory (η)
 If Probable Vehicle Collision
 Then Calculate Cost Collision
 End if
 End for
 Calculate Final Probabilities (θ)
 End Loop
End.

Figure 5 (a) (above) schematic of overall process, (b) (below) pseudo code

5. The algorithm then builds the Predicted Vehicle

Trajectories (ξ) which will be used to evaluate the
possibly of colliding with another vehicle. The
Predicted Vehicle Trajectory notion is explained
later in this document.

6. For each pair of Predicted Vehicle Trajectory (η),
the algorithm checks if there is a probable collision
and assigns a cost to the collision.

7. In the example, for the vehicles A and C, Figure 7
shows that one possible trajectory for A intersects a
possible trajectory for C, thus resulting in a
collision.

Figure 6: Predicted Positions of (a) (top) Vehicle A, (b) (middle) Vehicle B,

and (c) (bottom) Vehicle C.

8. The probabilities (θ) based on the costs of each

action are recalculated based upon the collision
information. Figure 8 shows the final vehicle
probabilities for Vehicles A, B, and C. Notice how
the size of the dots have changed from Figure 5,
thus accounting for the cost due to possible
collisions.

Figure 7: Possible Collision Between A and C

At the end of the main loop, the path with the highest
probability for each vehicle represents the most likely
location where the vehicles will be in tfinal in the future.

Figure 8: Final Vehicle Probabilities for (a) Vehicle A, (b) Vehicle B, and

(c) Vehicle C.

4.3. COST MODEL AND PROBABILITY

The moving object prediction (MOP) algorithms can be
separated in two parts, the first one is the creation of a set a
predicted positions for each vehicle and the second is the
evaluation of the interaction between each vehicle on the
road. Every evaluation is based on costs that are converted
to probabilities.
 The Cost Model (CM) assigns danger ratings (cost) to
each action that a vehicle can perform and the states that it

x1 t1 xPP1t1 xIP1 1 t1
y1 t1 yPP1t1 yIP1 1 t1

where t1 0,1
occupies after performing that action. This exact cost
assigned to each action and state depends upon the
aggressivity of the driver.

 The cost of an action is the sum of the costs that are
encountered by performing that action, which could include
a cost for changing lanes, a cost for accelerating, a cost for
going over the speed limit, etc. The cost of the state is
described in the next section. This approach for building
costs is based upon work performed in [2].

x2 t2 xPP2t2 xIP2 1 t2
y2 t2 yPP2t2 yIP2 1 t2

where t2 0,1

where t1 and t2 are the parameters of each PVT.

By using the Theorem of Cramer, t1 and t2 can be
determined:

4.4. PREDICTED VEHICLE TRAJECTORY

The Predicted Vehicle Trajectory (PVT) represents the
possible movements of a vehicle throughout the time period
being analyzed. The PVT is a representation of the
trajectory, as shown in Figure 9.

xPP1 t1 xIP1 1 t1 xPP2t2 xIP2 1 t2
yPP1t1 yIP1 1 t1 yPP2 t2 yIP2 1 t2

xPP1 xIP1 t1 xIP2 xPP2 t2 xIP2 xIP1
yPP1 yIP1 t1 yIP2 yPP2 t2 yIP2 yIP1

Figure 9: Predicted Vehicle Trajectory.

t1

xIP2 xIP1 xIP2 xPP2
yIP2 yIP1 yIP2 yPP2
xPP1 xIP1 xIP2 xPP2
yPP1 yIP1 yIP2 yPP2

The PVT is built with the origin position {xIP, yIP, tIP = 0} at
time = 0 and the predicted position {xPP, yPP, tPP = tfinal}
where tfinal is the predetermined time in the future for the
prediction process. It also contains the action-cost and
action-probability information.

t2

xPP1 xIP1 xIP2 xIP1
yPP1 yIP1 yIP2 yIP1
xPP1 xIP1 xIP2 xPP2
yPP1 yIP1 yIP2 yPP2

 The PVT is used to determine possible collisions.
Because the PVT represents a trajectory of one vehicle
(origin to predicted), we can determine possible collision
between any two vehicles by determining if two PVTs
cross.

Figure 10: Two PVTs Crossing.

So the two vehicles will cross each other at two different
times t1tfinal for the first vehicle and t2tfinal for the second one.
For a small difference between the two time, the collision is
highly likely. Conversely, if the difference is large collision
is improbable. The inverse of the difference between the two collision
times represents the coefficient of the collision cost: When two PVTs are crossing each other (Figure 10), it is

important to know where are they crossing. This
information can be obtained by using a parametrization of
each PVT.

CollisionCost M
t final t1 t2

 where M is a preset of the Cost Model for collision costs.

The parametrization: 5. APPLYING TRAFFIC SIMULATION TO

PERFORMANCE METRICS

Now that we’ve described how we can simulate traffic
patterns, we will discuss how this could be used to associate
performance metrics to an autonomous vehicle. In
evaluating how an autonomous vehicle is performing during
on-road driving, we need the ability to test that vehicle in
various driving situations. Those situations could be a
function of the environment (e.g., winding roads, steep
slopes, traffic signals, intersections), weather conditions
(e.g., rain, fog, ice on the roadway), and static and dynamic
objects in the environment (e.g., traffic barrels, pedestrians,
other vehicles). The traffic simulator allows us the ability to
dynamically change information about static and dynamic
objects in the environment in order to introduce a variety of
situations that we can evaluate the autonomous vehicle
against.
 The traffic simulator allows one to have repeatable,
realistic traffic patterns that only vary in response to the
autonomous vehicle motions. As such, one would be able to
place two different autonomous vehicles in an identical
traffic environment to evaluate how each performs. If the
two autonomous vehicles behaved in identical fashion, the
entire flow of traffic would be identical. Conversely, if the
two autonomous vehicles’ behaviors differed in any way,
the flow of traffic would most likely differ (since other
vehicles in the traffic pattern may be reacting to the actions
of the autonomous vehicle). Metrics could be assigned to
the autonomous vehicle’s actions, based on a number of
criteria, including proximity to other vehicles, staying
within the speed limit, number of lane changes, obeying
traffic signs and signals, etc.
 The traffic simulator also allows for the ability to vary
the aggressivity of drivers on the road. Using this capability,
we could have different difficulties of driving scenarios,
based, in part, on the aggressivity of the drivers on the road,
where the higher the aggressivity, the harder the course.
One could even imagine situations where an accident
among a pair of traffic vehicles is imminent. The
autonomous vehicle could then be evaluated based upon its
ability to predict this accident and take precautions in time.

6. CONCLUSION

In this paper, we have described the PRIDE framework,
which was developed to perform moving object prediction
for unmanned ground vehicles. PRIDE is based upon a
multi-resolutional, hierarchical approach that incorporates
multiple prediction algorithms into a single, unifying
framework. The lower levels of the framework (not
discussed in detail in the paper) utilize estimation-theoretic
short-term predictions while the upper levels utilize a
probabilistic prediction approach based on situation
recognition with an underlying cost model. We showed the
results achieved from applying PRIDE in a simulated
environment.

 We have then shown how PRIDE can be extended to
simulate traffic patterns during on-road navigation. The
PRIDE algorithms are used to provide the underlying logic
to control vehicles in the environment, thus generating a
realistic flow of traffic. We use the prediction algorithms
within PRIDE to determine the probability that a vehicle
will exhibit a certain behavior given a set of environmental
conditions, and then command the vehicle to perform the
action which has the greatest probability. By doing this, we
are able to create realistic, repeatable, and non-scripted
traffic patterns that closely mimic the types of traffic flow
expected to be encountered during on-road driving.
 We then explore how the PRIDE-based traffic control
algorithms can be applied to performance evaluation of
autonomous vehicles. Through the use of repeatable and
realistic traffic flow simulation, one is able to evaluate the
performance of an autonomous vehicle in an on-road
driving scenario without the risk involved with introducing
the vehicle into a potentially dangerous roadway situation.
In addition, by varying a single vehicle’s parameters (e.g.
aggressivity, speed, location) with the traffic flow, we can
show how the entire traffic pattern is affected.

The goal of this paper was to describe how the work to
date in moving object prediction could contribute to
performance metrics for autonomous systems. Though the
algorithms described in this paper have been developed and
implemented, there is still much work to be accomplished.
For one, the metrics that should be applied when evaluating
an autonomous system in the presence of traffic situations
being generated by these algorithms need to be determined.
This will be the topic of future work and will be realized in
the NIST On-Road Driving Arenas mentioned earlier in the
paper. Also, these set of algorithms have been shown to
work successfully on straight roads, but have not been fully
tested on intersections. This will also be a topic of future
research.

REFERENCES

 1. Albus, J. and et.al., "4D/RCS Version 2.0: A

Reference Model Architecture for Unmanned
Vehicle Systems," NISTIR 6910, National Institute
of Standards and Technology, Gaithersburg, MD,
2002.

 2. Balakirsky, S., A Framework for Planning with
Incrementally Created Graphs in Attributed Problem
Spaces, IOS Press, Berlin, 2003.

 3. Champion, A., Espie, S., and Auberlet, J.,
"Behavioral Road Traffic Simulation with
ARCHISM," Proceedings of the Summer Computer
Simulation Conference, USA, 2001.

 4. Dickmanns, E. D., "An Expectation-Based Multi-
Focal Saccadic (EMS) Vision System for Vehicle
Guidance," Proceedings of the 9th International

Symposium on Robotics Research (ISRR'99), Salt
Lake City, 1999.

 5. Espie, S., Saad, F., and Schnetler, B., "Microscopic
traffic simulation and driver behaviro modeling: the
ARCHISM project," Proceedings of the Strategic
Highway Research Program and Traffic Safety on
Two Continents, Lille, France, 1994.

 6. Kalman, R., "A New Approach to Linear Filtering
and Prediction Problems," Transactions of the ASME
Journal of Basic Engineering, Vol. 82, No. Series D,
1960, pp. 35-45.

 7. Madhavan, R. and Schlenoff, C., "The Effect of
Process Models on Short-term Prediction of Moving
Objects for Unmanned Ground Vehicles," Submitted
to the 7th International IEEE Conference on
Intelligent Transportation Systems, Washington DC,
2004.

 8. Schlenoff, C., Madhavan, R., and Barbera, T., "A
Hierarchical, Multi-Resolutional Moving Object
Prediction Approach for Autonomous On-Road
Driving," Proceedings of the 2004 ICRA Conference,
2004.

 9. Scrapper, C., Balakirsky, S., and Weiss, B.,
"Autonomous Road Driving Arenas for Perfomance
Evaluation," To be published in the Proceedings of
the Perfomance Metrics for Autonomous Systems
(PerMIS) 2004 workshop, 2004.

 10. Shoemaker, C. and Bornstein, J. A., "Overview of
the Demo III UGV Program," Proceedings of the
SPIE Robotic and Semi-Robotic Ground Vehicle
Technology Conference, Vol. 3366, 1998, pp. 202-
211.

i Certain software tools are identified in this paper in order to explain our
research. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor
does it imply that the software tools identified are necessarily the best
available for the purpose.

	Craig Schlenoff, Jerome Ajot, and Raj Madhavan
	ABSTRACT
	REFERENCES

