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ABSTRACT 
 
We are developing a novel framework, PRIDE (PRediction In 
Dynamic Environments), to perform moving object prediction for 
unmanned ground vehicles. The underlying concept is based upon 
a multi-resolutional, hierarchical approach that incorporates 
multiple prediction algorithms into a single, unifying framework. 
The lower levels of the framework utilize estimation-theoretic 
short-term predictions while the upper levels utilize a probabilistic 
prediction approach based on situation recognition with an 
underlying cost model.  
 In addition to predicting the location of moving objects in the 
environment, we have extended PRIDE to generate simulated 
traffic flow during on-road driving. In this paper, we explore 
applying the PRIDE-based traffic control algorithms for the 
purpose of performance evaluation of autonomous vehicles. 
Through the use of repeatable and realistic traffic flow simulation, 
one is able to evaluate the performance of an autonomous vehicle 
in an on-road driving scenario without the risk involved with 
introducing the vehicle into a potentially dangerous roadway 
situation. In addition, by varying a single vehicle’s parameters 
(e.g. aggressivity, speed, location) with the traffic flow, we can 
show how the entire traffic pattern is affected. We will show the 
successes that have been achieved to date in a simulated 
environment, as well as enhancements that are currently being 
researched and expected in the near future. 
 
KEYWORDS: autonomous vehicle, on-road driving, traffic 
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1.0 Introduction/Problem Statement 
 
The field of autonomous systems is continuing to gain 
traction both with researchers and practitioners. Funding for 
research is this area has continued to grow over the past few 
years, and recent high profile funding opportunities have 
started to push theoretical research efforts into practical use. 
Autonomous systems in this context refer to embodied 
intelligent systems that can operate fairly independently 
from human supervision.  
 Many believe that the DEMO III Experimental 
Unmanned Vehicle (XUV) effort represents the state of the 
art in autonomous off-road driving [10]. This effort seeks to 
develop and demonstrate new and evolving autonomous 
vehicle technology, emphasizing perception, navigation, 
intelligent system architecture, and planning. It should be 
noted the DEMO-III XUV has only been tested in static 

environments. It has not been tested in on-road driving 
situations, which include pedestrians and oncoming traffic. 
 There have been experiments performed with 
autonomous vehicles during on-road navigation. Perhaps the 
most successful has been that of Dickmanns [4] as part of 
the European Prometheus project in which the autonomous 
vehicle performed a trip from Munich to Odense (over 
1,600 kilometers) at a maximum velocity of 180 km/hr. 
Although the vehicle was able to identify and track other 
moving vehicles in the environment, it could only make 
basic predictions of where those vehicles were expected to 
be at points in the future, considering the vehicle’s current 
velocity and acceleration. 
 What is missing from all of these experiments is a level 
of situation awareness of how other vehicles in the 
environment are expected to behave considering the 
situation in which they find themselves. When humans 
drive, we often have expectations of how each object in the 
environment is expected to move based upon the situation. 
When a vehicle is approaching an object that is stopped in 
the road, we expect it to slow down behind the object or try 
to pass it. When we see a vehicle with its blinker on, we 
expect it to turn or change lanes. When we see a vehicle 
traveling behind another vehicle at a constant speed, we 
expect it to continue traveling at that speed. The decisions 
that we make in our vehicle are largely a function of the 
assumptions we make about the behavior of other vehicles.  
 To date, the authors are not aware of any autonomous 
vehicle efforts that account for this information when 
performing path planning. To address this need, we have 
developed a framework, called PRIDE (PRediction in 
Dynamic Environments) that provides an autonomous 
vehicle’s planning system with information that it needs to 
perform path planning in the presence of moving objects 
[8]. In this paper, we describe how we leveraged the 
algorithms in the PRIDE framework to simulate traffic 
patterns during on-road driving. We can then use these 
simulated traffic patterns to control vehicles in the 
environment in an on-road driving arena being developed at 
NIST [9] in a way to assess the performance of autonomous 
vehicles being tested within these arenas.  
 In Section 2, we survey some related work in traffic 
simulation. In Section 3, we describe the various 
components of the PRIDE framework. In Section 4, we 
show how the PRIDE framework can be applied to traffic 
simulation for on-road driving. In Section 5, we explain 
how this traffic simulation can be used to apply 



performance metrics for autonomous vehicles. Section 6 
concludes the paper. 
 
2. RELATED WORK 
 
Most of the work in the literature dealing with drivers’ 
actions and predicted behavior has been performed by 
psychologists in an attempt to explain drivers' behaviors and 
to identify the reasons of certain dysfunctions.  
 
There have been a few efforts that have tried to simulate 
traffic patterns. One of more prominent ones in the literature 
is ARCHISM [3,5], but even this effort is based upon 
driving psychology studies. These traffic simulations use 
laws that can be applied for a specific environment or a 
specific situation. Some of those postulates can be expand 
to generic situations but still attached to a kind of situation. 
 
3. THE PRIDE FRAMEWORK 
 
We are using the 4D/RCS (Real-Time Control System) 
reference model architecture [1] as the basis in which to 
apply the representational approaches that are being 
developed in this effort. 4D/RCS was chosen due to its 
explicit and well-defined world modeling capabilities and 
interfaces, as well as its multi-resolution, hierarchical 
planning approach. Specifically, 4D/RCS allows for 
planning at multiple levels of abstraction, using different 
planning approaches as well as utilizing inherently different 
world model representation requirements. By applying this 
architecture, we can ensure that the representations being 
developed for representing moving objects can 
accommodate different types of planners that have different 
representational requirements. 
 The RCS architecture supports multiple behavior 
generation (BG) systems working cooperatively to compute 
a final plan for the autonomous system. The spatial and 
temporal resolution of the individual BG systems along with 
the amount of time allowed for each BG system to compute 
a solution are specified by the level of the architecture 
where it resides. In addition to multiple BG systems, 
multiple world models are supported with each world 
model’s content being tailored to the systems that it 
supports (in this case the BG system). As such, it is 
necessary for moving objects to be represented differently at 
the different levels of the architecture. 
 To support this requirement, NIST has developed the 
PRIDE (PRediction In Dynamic Environments) framework. 
The underlying concept is based upon a multi-resolutional, 
hierarchical approach that incorporates multiple prediction 
algorithms into a single, unifying framework. This 
framework supports the prediction of the future location of 
moving objects at various levels of resolution, thus 
providing prediction information at the frequency and level 
of abstraction necessary for planners at different levels 

within the hierarchy. To date, two prediction approaches 
have been applied to this framework.  
 At the lowers levels, we utilize estimation theoretic 
short-term predictions via an extended Kalman filter-based 
algorithm using sensor data to predict the future location of 
moving objects with an associated confidence measure. 
Estimation-theoretic schemes using Kalman Filters (KFs) 
are well established recursive state estimation techniques 
where estimates the states of a system are computed using 
the process and observation models [6]. The recursive 
nature of the algorithm utilizes the system's CPU more 
uniformly to provide estimates without the latency resulting 
from batch processing techniques. The (linear) KF is simply 
a recursive estimation algorithm that provides minimum 
mean squared estimates (MMSE) of the states of a linear 
system utilizing knowledge about the process and 
measurement dynamics, process and measurement noise 
statistics subject to Gaussian assumptions and initial 
condition information. When these assumptions are 
satisfied, the estimates provided by the Kalman filter are 
optimal. The extension of the linear Kalman filtering ideas 
to a non-linear system is termed extended Kalman filtering. 
 The Extended Kalman Filter (EKF) is a linear estimator 
for a non-linear system obtained by linearization of the 
nonlinear state and observation equations. For any non-
linear system, the EKF is the best linear unbiased estimator 
with respect to minimum mean squared error criteria. 
Within the on-road driving hierarchy, short-term prediction 
of objects moving at variable speeds and at given look-
ahead time instants are predicted using the EKF. More 
information about this approach can be found in [7]. 
 At the higher levels of the framework, moving object 
prediction needs to occur at a much lower frequency and a 
greater level of inaccuracy is tolerable. At these levels, 
moving objects are identified as far as the sensors can 
detect, and a determination is made as to which objects 
should be classified as “objects of interest”. In this context, 
an object of interest is an object that has a possibility of 
affecting our path in the time horizon in which we are 
planning. At this level, we use a moving object prediction 
approach based on situation recognition and probabilistic 
prediction algorithms to predict where we expect that object 
to be at various time steps into the future. Situation 
recognition is performed using spatio-temporal reasoning 
and pattern matching with an a priori database of situations 
that are expected to be seen in the environment. In these 
algorithms, we are typically looking at planning horizons on 
the order of tens of seconds into the future with plan steps at 
about one second intervals. At this level, we are not looking 
to predict the exact location of the moving object. Instead, 
we are attempting to characterize the types of actions we 
expect the moving object to take and the approximate 
location the moving object would be in if it took that action. 
More information about this approach is included in the 
follow section. 



 Active research is exploring the integration of these two 
prediction approaches in a way that the predictions from one 
can help to enforce or not enforce the predictions of the 
other.  
 Both of these prediction methods have been 
implemented in two different simulation environments. The 
EKF approach has been implemented in the OneSaf testbed 
(www.onesaf.com). OneSaf is a composable, next 
generation computer generated forces (CGF) that represents 
a full range of operations, systems, and control process from 
individual combatant and platform to battalion level, with a 
variable level of fidelity. OneSaf is able to represent moving 
objects and provide the object's location and velocity at any 
point in time, through custom-developed Application 
Programmers’ Interface (API) calls. A user-interface was 
built on top of OneSaf to display the predicted locations of 
the moving objects. 
 In Figure 1, the triangle represents the moving object 
whose future location is to be predicted. The large circle in 
front of the triangle is the area in which we are 99 % 
confident that the object will be in two seconds and the 
small shaded circle is the area in which we are 50 % 
confident that the object will be in two seconds. For our 
implementation, we found that the EKF provided reasonable 
predictions within a two second horizon. A horizon greater 
than two seconds introduced too much uncertainty to be 
useful for our autonomous driving scenarios. 
 The situation-based probabilistic prediction approach 
has been implemented in the AutoSim simulation package 
developed by Advanced Technology Research Corporationi. 
AutoSim is a high-fidelity simulation tool which models 
details about road networks, including individual lanes, lane 
markings, intersections, legal intersection traversibility, etc. 
Using this package, we have simulated typical traffic 
situations (e.g., multiple cars negotiating around obstacles 
in the roadway, bi-directional opposing traffic, etc.) and 
have predicted the future location of individual vehicles on 
the roadway based upon the prediction of where other 
vehicles are expected to be. 
 At the point this paper was written, we have simulated 
a handful of driving situations and have used approximately 
a dozen costs to determine the probabilities of one action 

over another. In this context, a cost is a penalty that is 
incurred by performing a maneuver or occupying a state. 
Current costs are incurred based on: 1) proximity to other 
objects in the environment as a function of necessary 
stopping distance, 2) exceeding or going below the speed 
limit by a given threshold, 3) changing lanes, 4) not being in 
the rightmost lane, 5) rapidly accelerating or decelerating, 
and 6) changing lanes where double yellow lines in the road 
exist, among other costs. 
 It should be emphasized that costs are not static 
numbers. The cost that a vehicle incurs by taking an action 
is heavily a function of the perceived personality and 
intention of the moving objects. Using these costs, we are 
able to predict up to ten seconds into the future at a rate of 
two predictions per second. A snapshot of the 
implementation is shown in Figure 2 (a) and (b). 
 
4. APPLYING THE PRIDE FRAMEWORK 
TO TRAFFIC SIMULATION 
 
Although the PRIDE framework was originally developed 
to inform a planner about the future position of moving 

Figure 2: Situation-based probablistic prediction. (a) above and (b) 
below show a vehicle performing a passing operation around stationary 

obstacles.  
Figure 1: Short-term Prediction. 



objects for the purpose of path planning and collision 
avoidance, we have found that the same set of algorithms 
could be applied to simulating traffic patterns during on-
road driving. More specifically, we applied the situation 
recognition and probabilistic algorithms to determine the 
likely actions that a vehicle in the environment would take 
when confronted with a specific situation, and then 
command that vehicle to perform that action. By doing this 
with multiple vehicles, we are able to simulate fairly 
sophisticated traffic situations in which vehicles behave in a 
way that is very similar to how a human would behave. 
Vehicles will slow down and/or pass when approaching a 
stopped or slow object in their lane, they will typically only 
change lanes when the next lane is clear and they are going 
slower than desired, they will keep a safe follow distance, 
etc. By providing realistic simulations of traffic situations, 
we are able to test the autonomous vehicle during realistic 
on-road driving situations, without having to place the 
vehicle on a potentially dangerous city street or highway. 

 
Figure 3: Discretized Vehicle’s Actions. 

 
 

As shown, at any point in time, the vehicle can have up to 
15 possible future actions. 
 
4.2. THE PRIDE ALGORITHMS 
 
 In this section, we will use the following scenario as 
shown in Figure 4 to explain the concepts in the algorithms. 
This scenario is composed by three vehicles, two (A and B) 
on the same lane (L1) and another one (C) on the opposite 
lane (L2) and a static obstacle (D) on the lane L1.  The vision is that we will use these algorithms 

originally in simulated environments (such as the OneSaf 
and AutoSim simulation environments discussed above) to 
test out the planning algorithms in the presence of moving 
objects. Then, when the NIST On-Road Driving Arenas 
(which are described in another paper in this conference), 
are completed, these algorithms will be used to control 
“environmental” vehicles in the arena to simulate on-road 
traffic. 

 

 
Figure 4: Scenario 

 
Figure 5 shows the overall process for the algorithms (a) 
graphically and (b) in pseudo-code. The algorithm proceeds 
as follows: 

 The remainder of this section describes the details of 
how the situation recognition and probabilistic algorithms 
are used to simulate on-road traffic. 

1. For each vehicle on the road (α), the algorithm gets 
the current position and velocity from external 
programs/sensors (β). 

 The basic assumption behind this situation-based 
probabilistic prediction approach is a driver’s behavior can 
be quantified using costs. In general, a driver will prefer an 
action that minimizes its cost. With this assumption, the cost 
can be converted to probabilities, where the higher the cost, 
the lower the probability that the driver will execute that 
action. 

2. For each time in the future and for each starting 
position (χ), the algorithm creates a set of next 
possible positions in the future and assigns a cost 
to each of them corresponding to the action 
performed and the state occupied. At the end of the 
first prediction, each ending position is set at the 
starting positions at time t are used as “starting 
position” to build the next set of future position for 
time t+1. This loop (δ) is performed tfinal iterations, 
where tfinal is the predetermined time in the future 
that we wish to predict. 

 
4.1. POSSIBLE VEHICLE ACTIONS 
 
For the purpose of the algorithms, we have discretized the 
possible actions that a vehicle can make at any given time. 
Note that for this exercise, we have not accounted for 
intersections. All of the examples occur on a continuous 
stretch of roadway.   3. Using the costs found in step 2, the algorithm 

computes the probability for each movements of 
the vehicle (ε). In Figure 6, ten possible positions 
are shown for the vehicle (a) A, (b) B, and (c) C at 
time tfinal. 

 A vehicle can execute two types of actions. The first 
type of action is regarding its velocity, namely, quick 
acceleration (QA), slow acceleration (SA), constant velocity 
(CV), slow deceleration (SD) and quick deceleration (QD). 

4. The width of each dot in Figure 6 represents the 
relative probability of each action with respect to 
the others, where the bigger the dot, the higher the 
probability. 

 The second type of action is regarding lane changing, 
namely, changing to the left lane (CL), staying in the same 
lane (SL) and changing to the right lane (CR). These are 
shown in Figure 3. 

  
 



Begin 
  Loop 
    For each vehicle (α) 
      Get Current Position (β) 
      For each time in the future (χ) 
        For each possible actions (δ) 
          Compute All Moves 
          Calculate Cost Action 
          Calculate Cost Static Obstacle 
        End for 
        Calculate Probabilities Action (ε) 
      End for 
      Build Predicted Vehicle Trajectory (ξ) 
    End for 
    For each Predicted Vehicle Trajectory (η) 
      If Probable Vehicle Collision 
        Then Calculate Cost Collision 
      End if 
    End for 
    Calculate Final Probabilities (θ) 
  End Loop 
End. 

 
Figure 5 (a) (above) schematic of overall process, (b) (below) pseudo code 

 
5. The algorithm then builds the Predicted Vehicle 

Trajectories (ξ) which will be used to evaluate the 
possibly of colliding with another vehicle. The 
Predicted Vehicle Trajectory notion is explained 
later in this document. 

6. For each pair of Predicted Vehicle Trajectory (η), 
the algorithm checks if there is a probable collision 
and assigns a cost to the collision. 

7. In the example, for the vehicles A and C, Figure 7 
shows that one possible trajectory for A intersects a 
possible trajectory for C, thus resulting in a 
collision. 

 

 

 

 
Figure 6: Predicted Positions of (a) (top) Vehicle A, (b) (middle) Vehicle B, 

and (c) (bottom) Vehicle C. 
 

 
8. The probabilities (θ) based on the costs of each 

action are recalculated based upon the collision 
information. Figure 8 shows the final vehicle 
probabilities for Vehicles A, B, and C. Notice how 
the size of the dots have changed from Figure 5, 
thus accounting for the cost due to possible 
collisions. 

 

 
Figure 7: Possible Collision Between A and C 

 
At the end of the main loop, the path with the highest 
probability for each vehicle represents the most likely 
location where the vehicles will be in tfinal in the future. 
 

 

 

 
Figure 8: Final Vehicle Probabilities for (a) Vehicle A, (b) Vehicle B, and 

(c) Vehicle C.  
 
4.3. COST MODEL AND PROBABILITY 
 
The moving object prediction (MOP) algorithms can be 
separated in two parts, the first one is the creation of a set a 
predicted positions for each vehicle and the second is the 
evaluation of the interaction between each vehicle on the 
road. Every evaluation is based on costs that are converted 
to probabilities. 
 The Cost Model (CM) assigns danger ratings (cost) to 
each action that a vehicle can perform and the states that it 



x1 t1 xPP1t1 xIP1 1 t1
y1 t1 yPP1t1 yIP1 1 t1

where t1 0,1  
occupies after performing that action. This exact cost 
assigned to each action and state depends upon the 
aggressivity of the driver. 

  The cost of an action is the sum of the costs that are 
encountered by performing that action, which could include 
a cost for changing lanes, a cost for accelerating, a cost for 
going over the speed limit, etc. The cost of the state is 
described in the next section. This approach for building 
costs is based upon work performed in [2]. 

x2 t2 xPP2t2 xIP2 1 t2
y2 t2 yPP2t2 yIP2 1 t2

where t2 0,1  

 
where t1 and t2 are the parameters of each PVT. 
  
By using the Theorem of Cramer, t1 and t2 can be 
determined: 

4.4. PREDICTED VEHICLE TRAJECTORY 
  
The Predicted Vehicle Trajectory (PVT) represents the 
possible movements of a vehicle throughout the time period 
being analyzed. The PVT is a representation of the 
trajectory, as shown in Figure 9. 

xPP1 t1 xIP1 1 t1 xPP2t2 xIP2 1 t2
yPP1t1 yIP1 1 t1 yPP2 t2 yIP2 1 t2

 

xPP1 xIP1 t1 xIP2 xPP2 t2 xIP2 xIP1
yPP1 yIP1 t1 yIP2 yPP2 t2 yIP2 yIP1

  

 
Figure 9: Predicted Vehicle Trajectory. 

 

t1

xIP2 xIP1 xIP2 xPP2
yIP2 yIP1 yIP2 yPP2
xPP1 xIP1 xIP2 xPP2
yPP1 yIP1 yIP2 yPP2

 

 
 

The PVT is built with the origin position {xIP, yIP, tIP = 0} at 
time = 0 and the predicted position {xPP, yPP, tPP = tfinal} 
where tfinal is the predetermined time in the future for the 
prediction process. It also contains the action-cost and 
action-probability information.  

t2

xPP1 xIP1 xIP2 xIP1
yPP1 yIP1 yIP2 yIP1
xPP1 xIP1 xIP2 xPP2
yPP1 yIP1 yIP2 yPP2

 

 The PVT is used to determine possible collisions. 
Because the PVT represents a trajectory of one vehicle 
(origin to predicted), we can determine possible collision 
between any two vehicles by determining if two PVTs 
cross.  
 

 
Figure 10: Two PVTs Crossing. 

 
So the two vehicles will cross each other at two different 
times t1tfinal for the first vehicle and t2tfinal for the second one. 
For a small difference between the two time, the collision is 
highly likely. Conversely, if the difference is large collision 
is improbable.  The inverse of the difference between the two collision 
times represents the coefficient of the collision cost: When two PVTs are crossing each other (Figure 10), it is 

important to know where are they crossing. This 
information can be obtained by using a parametrization of 
each PVT. 

CollisionCost M
t final t1 t2

 
   where M is a preset of the Cost Model for collision costs.    

  
  

  
The parametrization:   5. APPLYING TRAFFIC SIMULATION TO 

PERFORMANCE METRICS 



 
Now that we’ve described how we can simulate traffic 
patterns, we will discuss how this could be used to associate 
performance metrics to an autonomous vehicle. In 
evaluating how an autonomous vehicle is performing during 
on-road driving, we need the ability to test that vehicle in 
various driving situations. Those situations could be a 
function of the environment (e.g., winding roads, steep 
slopes, traffic signals, intersections), weather conditions 
(e.g., rain, fog, ice on the roadway), and static and dynamic 
objects in the environment (e.g., traffic barrels, pedestrians, 
other vehicles). The traffic simulator allows us the ability to 
dynamically change information about static and dynamic 
objects in the environment in order to introduce a variety of 
situations that we can evaluate the autonomous vehicle 
against. 
 The traffic simulator allows one to have repeatable, 
realistic traffic patterns that only vary in response to the 
autonomous vehicle motions. As such, one would be able to 
place two different autonomous vehicles in an identical 
traffic environment to evaluate how each performs. If the 
two autonomous vehicles behaved in identical fashion, the 
entire flow of traffic would be identical. Conversely, if the 
two autonomous vehicles’ behaviors differed in any way, 
the flow of traffic would most likely differ (since other 
vehicles in the traffic pattern may be reacting to the actions 
of the autonomous vehicle). Metrics could be assigned to 
the autonomous vehicle’s actions, based on a number of 
criteria, including proximity to other vehicles, staying 
within the speed limit, number of lane changes, obeying 
traffic signs and signals, etc. 
 The traffic simulator also allows for the ability to vary 
the aggressivity of drivers on the road. Using this capability, 
we could have different difficulties of driving scenarios, 
based, in part, on the aggressivity of the drivers on the road, 
where the higher the aggressivity, the harder the course. 
One could even imagine situations where an accident 
among a pair of traffic vehicles is imminent. The 
autonomous vehicle could then be evaluated based upon its 
ability to predict this accident and take precautions in time. 
 
6. CONCLUSION 
  
In this paper, we have described the PRIDE framework, 
which was developed to perform moving object prediction 
for unmanned ground vehicles. PRIDE is based upon a 
multi-resolutional, hierarchical approach that incorporates 
multiple prediction algorithms into a single, unifying 
framework. The lower levels of the framework (not 
discussed in detail in the paper) utilize estimation-theoretic 
short-term predictions while the upper levels utilize a 
probabilistic prediction approach based on situation 
recognition with an underlying cost model.  We showed the 
results achieved from applying PRIDE in a simulated 
environment. 

 We have then shown how PRIDE can be extended to 
simulate traffic patterns during on-road navigation. The 
PRIDE algorithms are used to provide the underlying logic 
to control vehicles in the environment, thus generating a 
realistic flow of traffic. We use the prediction algorithms 
within PRIDE to determine the probability that a vehicle 
will exhibit a certain behavior given a set of environmental 
conditions, and then command the vehicle to perform the 
action which has the greatest probability. By doing this, we 
are able to create realistic, repeatable, and non-scripted 
traffic patterns that closely mimic the types of traffic flow 
expected to be encountered during on-road driving. 
 We then explore how the PRIDE-based traffic control 
algorithms can be applied to performance evaluation of 
autonomous vehicles. Through the use of repeatable and 
realistic traffic flow simulation, one is able to evaluate the 
performance of an autonomous vehicle in an on-road 
driving scenario without the risk involved with introducing 
the vehicle into a potentially dangerous roadway situation. 
In addition, by varying a single vehicle’s parameters (e.g. 
aggressivity, speed, location) with the traffic flow, we can 
show how the entire traffic pattern is affected.  

The goal of this paper was to describe how the work to 
date in moving object prediction could contribute to 
performance metrics for autonomous systems. Though the 
algorithms described in this paper have been developed and 
implemented, there is still much work to be accomplished. 
For one, the metrics that should be applied when evaluating 
an autonomous system in the presence of traffic situations 
being generated by these algorithms need to be determined. 
This will be the topic of future work and will be realized in 
the NIST On-Road Driving Arenas mentioned earlier in the 
paper. Also, these set of algorithms have been shown to 
work successfully on straight roads, but have not been fully 
tested on intersections. This will also be a topic of future 
research. 
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