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ABSTRACT 

The measurement of line-edge roughness (LER) has recently become a topic of concern in the litho-metrology 
community and the semiconductor industry as a whole. The Advanced Metrology Advisory Group (AMAG), a council 
composed of the chief metrologists from the International SEMATECH (ISMT) consortium’s Member Companies and 
from the National Institute of Standards and Technology (NIST), has a project to investigate LER metrics and to direct 
the critical dimension scanning electron microscope (CD-SEM) supplier community towards a semiconductor industry-
backed, standardized solution for implementation. The 2003 International Technology Roadmap for Semiconductors 
(ITRS) has included a new definition for roughness. The ITRS envisions root mean square measurements of edge and 
width roughness. There are other possible metrics, some of which are surveyed here. The ITRS envisions the root mean 
square measurements restricted to roughness wavelengths falling within a specified process-relevant range and with 
measurement repeatability better than a specified tolerance. This study addresses the measurement choices required to 
meet those specifications. An expression for the length of line that must be measured and the spacing of measurement 
positions along that length is derived. Noise in the image is shown to produce roughness measurement errors that have 
both random and nonrandom (i.e., bias) components. Measurements are reported on both UV resist and polycrystalline 
silicon in special test patterns with roughness typical for those materials. These measurements indicate that the 
sensitivity of a roughness measurement to noise depends importantly both on the choice of edge detection algorithm and 
the quality of the focus. Measurements are less sensitive to noise when a model-based or sigmoidal fit algorithm is used 
and when the images are in good focus. Using the measured roughness characteristics for UV resist lines and applying 
the ITRS requirements for the 90 nm technology node, the derived expression for sampling length and sampling interval 
implies that a length of line at least 8 times the node (i.e., 720 nm) must be measured at intervals of 7.5 nm or less. 

Keywords:  dimensional metrology, Line Edge Roughness (LER), Line Width Roughness (LWR), metrics, power 
spectral density (PSD), scanning electron microscopy (SEM). 

1. INTRODUCTION 

The sizes and shapes of MOS transistor gates define essential characteristics of the integrated circuit (IC). As gates 
shrink, even small departures from the intended shape and size may represent a significant fraction of the gate area. The 
phenomenon of variation of a linear feature’s width (also called CD, for critical dimension) along its length is called 
linewidth roughness (LWR). The one edge equivalent, the phenomenon of the meandering of a single edge along its 
length, is called line edge roughness (LER). 

Edge roughness needs to be measured and controlled because it has been observed to be detrimental to IC performance. 
[1] If a gate’s width is not constant, the narrowest section of the channel will carry a disproportionate share of the 
current. Roughness is a statistical phenomenon; it can cause variations in channel length from transistor to transistor that 
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may in turn result in circuit timing issues. Off-state leakage currents and device drive currents are thought to be 
affected. [2] Since the polycrystalline silicon (“poly”) gate acts as the mask for dopant implant, a rough edge will affect 
dopant distributions after diffusion. Roughness at wavelengths large compared to diffusion lengths affects the shape of 
the doped volume, while shorter wavelength roughness affects the dopant concentration gradient. Roughness metrology 
on resist is important because it is desirable to measure structures for screening purposes prior to etch. In turn, 
roughness in resist is thought to be caused by a multitude of variables, including aerial image fluctuations, resist 
material properties, acid diffusion, conditions during development, and possibly reticle roughness. [3] The extent to 
which roughness in resist transfers into silicon at etch probably depends upon the wavelength of the roughness, with 
short wavelengths likely transferring less than longer ones. 

As some of the preceding examples indicate, there are good reasons to measure roughness wavelengths (or frequencies) 
as well as amplitudes. With the 2003 edition of the International Technology Roadmap for Semiconductors (ITRS) [4] 
metrology specifications are evolving in recognition of this. As the linewidth variation is the determining factor of 
roughness effect on product, the ITRS now specifies LWR over a window of spatial frequencies. Previous versions 
specified LER with no frequency window. The 2003 roadmap requires that the “LWR litho control,” the amount of 
LWR tolerance in product for a given technology, be 8 % of the etched gate length (previous roadmap required 5 % of 
printed gate length). Precision (i.e., 3 standard deviation repeatability) is required to be no worse than 20 % of the 
manufacturing tolerance. Roadmap values for LWR control and required metrology precision can be seen in Fig. 1 
below. The lithography roadmap definition for the LWR metric is 3 standard deviations (3σ) of total linewidth 
variation, evaluated along a distance that allows assessment of spatial wavelengths up to two times the technology node, 
while sampling the low-end spatial wavelengths down to a limit defined by xj, the low-end-of-range of the drain 
extension found in the Thermal and Thin Film, Doping and Etching Technology Requirements Table in the ITRS. When 
LER is of concern, its metric is defined as LER=LWR/√2, assuming uncorrelated edges.  

Technology Node 130nm 115nm 100nm 90nm 65nm 45nm 32nm 22nm 18nm
Year of Production 2001 2002 2003 2004 2007 2010 2013 2016 2018
DRAM 1/2 pitch [nm] 130 115 100 90 65 45 32 22 18
MPU printed gate length [nm] 90 75 65 53 35 25 18 13 10
MPU etched gate length [nm] 65 53 45 37 25 18 13 9 7
3σ LWR control, <8% of etched gate [nm] 5.2 4.2 3.6 3.0 2.0 1.44 1.04 0.72 0.56
Precision of LWR measurement [nm] 1.0 0.85 0.72 0.59 0.40 0.29 0.21 0.14 0.11
Precision of LER measurement [nm] 0.74 0.60 0.51 0.42 0.28 0.20 0.15 0.10 0.08

DRAM pitch [nm] 260 230 200 180 130 90 64 44 36
xj (low end) [nm] 27 22 19 15 10 7 5 4 3

Length of Segment [nm] 260 230 200 180 130 90 64 44 36
Sampling Distance [nm] 13.5 11.0 9.5 7.5 5.0 3.5 2.5 2.0 1.5  

Fig. 1. Selected sections of the 2003 International Roadmap for Semiconductors (ITRS) [4] for CD Metrology that are 
applicable to roughness. Note: the terms “Length of Segment” and Sampling Distance” here (tabulated from above 
ITRS quantities) are equivalent to “Evaluation Length” and “Sampling Interval” in traditional surface roughness 
standards [5]. 

Thus the range of spatial frequencies is 1/xj to 1/pitch. The rationale for this range is as follows. The smallest spatial 
frequency (longest wavelength) is chosen to distinguish LWR from CD variation. If one considers a transistor gate that 
serially overlaps different active regions, the average gate length may be different over each active region. Changes in 
width from transistor to transistor are considered as CD variation, while changes in width within a single transistor are 
included in LWR. The upper end of the spatial frequency range (small wavelength) represents considerations of 
diffusion. Dopants will diffuse more under fast-varying roughness than under the rough parts of the gate. 

In this study, we address some of the issues in the metrology of linewidth and line edge roughness. In Sec. 2 we discuss 
a number of metrics, paying particular attention to careful definition of the ones we use in this report, but also including 
a few metrics that we are not currently using, in order to illustrate some of the options. In Sec. 3 we address the question 
of how to choose the length of line to measure and the sampling distance in order for the measurement to meet the 
frequency range and precision requirements given in the ITRS. The roughness values so determined may still be subject 

516     Proc. of SPIE Vol. 5375



 

 

to measurement artifacts. In Sec. 4 we discuss the effect of noise on roughness determination. We have performed 
measurements on roughness test patterns. These measurements included studies of the repeatability of roughness 
measurements in the presence of varying amounts of noise and as a function of instrument focus. These measurements 
and the results are described in Sec. 5.  

In this paper, we discuss roughness measurement in terms of SEM measurement, but the derivations and conclusions 
related to signal processing may also be applied to data obtained from other scanning or profiling techniques such as 
scanned probes. LER characterization techniques using atomic force microscopes have been reviewed by Orji et al.[9] 

2. METRICS 

It is conceptually useful to distinguish between a phenomenon and the various ways the phenomenon may be measured 
(various metrics). To take a familiar case by way of analogy, we observe that distributions of measured values have a 
center. There are a number of metrics, including the mean, the median, and the most likely value, that quantify the 
position of such a center. Similarly, we observe that fabricated structures exhibit random differences from their design. 
When the structures were intended to have straight edges and uniform width, we refer to this phenomenon as line edge 
or linewidth roughness (LER or LWR). For all of the metrics given below, we assume we have measured N edge 
positions, Xi, or widths, Wi, at measurement interval, ∆. We further assume that we subtract a line of best fit from the 
edge positions, or an average value from the widths, to produce edge residuals, xi, or width residuals, wi. (See an 
example in Fig. 4B.) That is,  

 ( )i ix X ai b= − +  (1) 

where a and b are determined by a linear least squares fit to the Xi vs. i curve. Similarly 

 i iw W W= −  (2) 

with W  the average width defined in the usual way as /iW N∑ . 

Although major CD-SEM suppliers now offer various LER measurement solutions, definitions and sampling 
capabilities are not standardized. The measurement metrics typically offered are combinations of LWR, LER of a single 
edge, total LER (2 edges summed in quadrature), or range roughness, although leading edge tools are starting to offer 
more capability. The following list of metrics is not exhaustive, and not all are available on existing tools. We are 
particularly interested in the root mean square measures (Sec. 2.3) and the power spectral measures (Sec. 2.4) for the 
current report. The others are included in order to provide some of the flavor of what is possible. 

2.1. Range 

For a given sampled line segment the range is 

 For LER: E max( ) min( )R x x= −  (3) 

 For LWR: W max( ) min( )R w w= −  (4) 

where the max and min operations are understood to cover all xi and wi within the specified segment. Here and 
throughout, the “E” and “W” subscripts refer to the edge and width measures. 

2.2. Average roughness 

 For LER:
1
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These are arithmetic measures of average roughness, hence the “a” subscript. These definitions follow a published 
standard for surface roughness [5], though there is some question whether they might be better with N-2 and N-1 in 
their respective denominators. 

2.3. Mean square roughness 
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These are quadratic measures of roughness, hence the “q” subscript. They are standard deviations, with the factors of N-
1 and N-2 reflecting the number of degrees of freedom, as reduced by the 1 parameter (i.e., averaging) or 2 parameter 
(i.e., linear) fits in Eq. (2) and Eq. (1). The ITRS linewidth roughness definition appears to be essentially 3RWq.  

Some instrument manufacturers supply a “total line edge roughness” metric. 

 2 2 2
E _ left E _rightT q qR R R= +  (9) 

Here the “left” and “right” subscripts refer to the left and right edges of a line. For a line without taper the total 
roughness is related to WqR by 2 2

W E _left E _right2q T q qR R cR R= −  with c being the correlation coefficient between the two 

edges [6]. (See also Appendix I) If the left and right edges are uncorrelated, as is normally assumed, then the total 
roughness is equal to WqR . However, we believe it is just as easy, and safer, to determine WqR  from Eq. (8), which is 

valid even if there are nonzero correlations. 

RWq is a function of REq_right, REq_left and c. Examples of the effect of c upon RWq is given in Fig. 2 for the simple case of 
equal left and right edge roughness, reduced for illustrative purposes to a single sine wave each. The graph on the left 
shows non-correlated edges (c=0, sine waves 90° out of phase). RWq is the quadrature sum of each REq, so RWq = REq√2. 
The middle graph shows perfectly correlated edges (c=1, sine waves in phase). RWq = 0, since CD (distance between 
edges) is constant. The graph on the right shows perfectly anti-correlated edges ( 1c = − , sine waves 180° out of phase). 
RWq = 2REq, as when two periodic functions add in superposition. 
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Fig. 2. Left: Non-correlated sine waves (90° out of phase). Center: Correlated sine waves (in phase). Right: 
Anticorrelated sine waves (180° out of phase). 

Anticorrelated edges (at the right) are much more of an issue than correlated edges (middle), since anticorrelated edges 
result in more RWq. Used with care, the correlation coefficient can be a good diagnostic. Correlation c might be 
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significantly non-zero due to non-random factors such as optical proximity effects, topography, granularity of resist or 
poly-Si, or due to a line being close to a random defect or particle. Before concluding, however, that a given nonzero 
value of c points to such an effect, consider that c determined from a finite sample is an estimate and is itself a random 
variable. A set of edges that, taken together, appear to have an average correlation coefficient close to 0 (e.g., the many 
edges forming the distribution in Fig. 3, with correlation centered near c=0) may nevertheless have individual members 
with rather large correlation coefficients (the wide tails). This implies that RWq is a better measure than REq since 
correlation is included. Likewise, RT should thus be avoided, as the correlation information is lost. 
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Fig. 3. Histogram of correlation values observed in 982 different isolated resist lines, shown both smoothed and 
unsmoothed. Correlation coefficient is called “r” in the graph; it is the same as “c” mentioned above. 

2.4. Amplitude Density Functions 

All of the previous metrics have been attempts to characterize by a single number a distribution around a central value. 
It is also possible to characterize this distribution with a function, ADF(z). In this function, z is a value for the residual. 
“ADF” stands for amplitude density function. ADF(z)dz is the probability that a particular measured residual will lie 
between z and z+dz. (See Fig. 4 C, D, and E.) In practice ADF(z) is estimated by normalizing the histogram of the 
binned residuals: 

 
( ),

ADF( )
H z z

z
N z

∆
=

∆
 (10) 

There are edge and width versions of the ADF function, depending upon which list of residuals, wi or xi, are used. Here 

( ),H z z∆  is the histogram, i.e., the number of residuals that lie between z and z+∆z. ∆z is the bin size. The 

normalization insures that the sum of ADF(z)∆z over all the bins (or in the limit ∆z→0, the integral of ADF(z)∆z over 
all z) is 1. For a good estimate the bin size must be judiciously chosen, small enough for good resolution but large 
enough for good statistics in each bin.  

2.5. Power Spectral Density 

The foregoing have all been amplitude measures of roughness. They contain no information about roughness 
wavelengths or characteristic sizes of roughness asperities in the direction parallel to the line. Because the effect of 
roughness on a device may depend upon its wavelength as well as its amplitude, it is important to have measures that 
include such information. One of these is the power spectral density, or PSD [7,8,9] which is related to the Fourier 
transform. We will have use for the PSD in Sec. 3. The coefficients of the discrete Fourier transform of a series, wj, are 
given by [10] 
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These may be conveniently calculated using a fast Fourier transform (FFT) algorithm. Since the width residuals (or 
edge position residuals) are real valued, this transform has even symmetry around k = 0. The periodogram estimate of 
the power spectral density may then be defined in terms of the Fourier transform coefficients as 
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where  

 k

k
f

N
=

∆
        0,1,..., / 2k N= . (13) 

The middle expression in Eq. (12) sums contributions from both the positive and negative frequencies present in the 
Fourier transform, to produce a one-sided (positive frequencies only) PSD. The above definition follows Ref. 10 except 
for the factor of the sampling interval, ∆, which is required on dimensional grounds for real profiles. Like the ADF, the 
PSD is not a single number but a curve (Fig. 4G). The discrete form of Parseval’s theorem is 

 
1 / 2

2

0 0

1N N

k k
k k

w P
N

−

= =

=
∆∑ ∑  (14) 

It is easy to see by comparison to the definition of RWq in Eq. (8) that the PSD is related to our rms LWR metric by 

 
/ 2

2
W

0

1

( 1)

N

q k
k

R P
N N =

=
− ∆∑  (15) 

The expression for 2
EqR is similar, except the factor of N-1 in the denominator becomes N-2 and the Pk must be defined in 

terms of the edge residuals instead of the width residuals. This means the area under the PSD curve is related to the rms 
measure of roughness. We can generalize this by summing only those Pk between specified limits corresponding to 

min maxf f f< <  to determine the rms roughness contributed only by relevant frequencies. 

2.6. Autocorrelation function and correlation length 

The autocorrelation function can be calculated from the inverse Fourier transform of the PSD. Alternatively, it can be 

computed directly from the measured widths by 
2
W

1
( )

( 1) i k k
kq

c i w w
N R +=

− ∑ . A similar definition applies for the edge 

correlation function except for the use of edge instead of width residuals and a factor of N-2 in the denominator instead 
of N-1. The amount, i, by which one copy of the curve is shifted with respect to itself before multiplying is referred to as 
the lag. It may be positive or negative. The autocorrelation has its maximum value of 1 at a lag of 0. For randomly 
rough (nonperiodic) edges produced by a stationary process the autocorrelation is expected to tend towards zero for 
increasing lag. (There are, however, practical issues in the estimation of correlation functions from finite length series. 
For instance, background subtraction can produce artifacts in the curve. [11,12]) The decrease in c occurs over a 
characteristic distance, called the correlation length. This length may be characteristic of a grain size or other physical 
phenomenon that sets a lateral distance scale for the roughness. As with line edge roughness, there are different metrics 
for the correlation length. It may be defined as the point at which the correlation decreases below a threshold such as 
1/e, or it may be determined by fitting an exponential or other suitable function to the neighborhood around zero lag. 
(See Fig. 4H.) 
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Fig. 4. Example of roughness metrics applied to the line shown at the bottom. The case shown is one of our etched 
poly repeatability images of a dense line. A: Line edges, a on bottom, b on top. B: Blow-up of residuals, a on bottom, b 
on top, w in middle (labeled “CD”). C, D, & E: histograms of the edge locations a, b, and CD, respectively. All have a 
roughly Gaussian behavior (but this is not always so). F: Calculated metrics; note that r=0.093 for this example, so 
these edges are uncorrelated; this is not always so. G: Fourier Power Spectral Density. Note the 1/f2.3 slope on the 
log/log plot. H: Autocorrelation functions for edges a, b and CD. The 1/e (~0.36) crossing is a measure of the 
“correlation length”. I: Scatter plot of correlation between edges. All dimensions are in nanometers. 
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3. HOW TO SAMPLE LINES FOR ROUGHNESS MEASUREMENT 

The ITRS, as we saw in the introduction, requires us to estimate that part of the roughness that occurs between specified 
frequency limits, min maxf f f< < , and it requires us to do so with a specified precision. Suppose we measure the widths 

(or edge positions) at N positions over a length, L, of the line. From these we subtract the average width, leaving us with 
width residuals, wk, corresponding to positions k∆, k = 0, 1, … N-1 with /L N∆ = . The question we address in this 
section is, how should we choose ∆ and N to meet the requirements?  

We have already pointed out that we can generalize Eq. (15) by summing only those Pk between the specified frequency 
limits to determine the root mean square roughness contributed only by relevant frequencies. The first constraint upon 
our choice of N and L is determined by the requirement that the full frequency range of interest be contained within our 
PSD. The largest frequency in the PSD is the Nyquist frequency, 1/(2 )cf = ∆ . The requirement that this frequency be 

greater than or equal to fmax translates to ( )max1/ 2 f∆ ≤ . The smallest nonzero frequency component of the PSD is 1/L. If 

this is to be less than or equal to fmin we must have min1/L f≥ . These conditions are necessary but perhaps not 

sufficient. Our line segment of length L is a finite sample, so the corresponding roughness estimate is subject to 
sampling error. If the corresponding uncertainty is not good enough, we may wish to impose yet stricter sampling 
requirements. There is an extensive literature concerning uncertainty in PSD estimation [13,14], and the details may 
depend upon how one chooses to process the measured data. For our present purpose, which is to elucidate rules of 
thumb for the choice of N and L, the differences between these do not concern us. For the sake of simplicity we 
therefore choose Bartlett’s method of measuring a trace with length some integer multiple of min1/ f . This trace has mN 

points that will then be subdivided into m traces, each consisting of N points over the length 1/fmin. The PSDs of these 
subdivided traces are summed. (An alternative is to smooth the PSD of the undivided trace. Different choices of 
windowing functions for the Fourier transform, or overlapping the subdivided segments are other variants.) Therefore 
we choose 

 max
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1

2 f

m
L

f

∆ =

=
 (16) 

and increase m as required to improve the uncertainty.  

The PSDs of the subdivided profile then each satisfy an equation like Eq. (14). Adding those m equations together 
yields 
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where 1,2,...,i m=  indexes the subdivisions. Because of the choices in Eq. (16), P1,i and PN/2,i correspond (for all i) to 
the frequencies fmin and fmax that form the bounds of the frequency window we want to measure. If the residuals are with 
respect to the average width (or best fit line for edges) for each segment individually, then P0i will be identically equal 
to 0, so the sum over k includes exactly those roughness frequencies that we care about. The left side is just m(N-1)rWq

2 
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In the second form on the right, 1/m times the sum over i has been replaced by the average of the m PSDs, kP . 
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The uncertainty in Rq can be found straightforwardly if the uncertainties in the P’s are known. The uncertainty in X as a 
result of an uncertain parameter, p, is ( / )X pU u dX dp= . When there are many parameters with uncorrelated errors the 

uncertainties are added in quadrature. Applying this to Eq. (18) produces 
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The variance of each point in a single unaveraged periodogram is approximately the square of the spectrum. [13] That 

is, 
kiP kiu P≈ . By averaging m spectra we reduce the uncertainty by a factor of m . Replacing 

kP
u with /kP m in 

Eq. (19), bringing the 2(2 )qR to the right, and dividing by an extra factor of Rq
2 produces 
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The reason for dividing by the extra factor of Rq
2 is that this now becomes an expression for the relative uncertainty, in 

which form the expression shortly becomes very simple. Substituting for Rq
2 from Eq.(15), most of the leading 

coefficients cancel to produce 
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The leading factor of 1/m means that if we pick m large enough, we can satisfy the measurement’s precision 
requirement. Let us state that requirement in the form 

 qR

q

u

R
η≤  (22) 

For example, the ITRS requires that 
qRu be 20 % of the roughness tolerance for a given node. It seems reasonable 

therefore to set η to 0.2. Then when the roughness is at the tolerance, the statistical uncertainty also is, and the statistical 
uncertainty becomes better as the roughness gets smaller. 

It is instructive to look at some special cases. Often the PSD approximately follows a power law, / z
kP A k= (for k>0 

and all i), over a frequency range of interest. If we substitute the power law into Eq. (21), the requirement for m 
becomes  
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Table 1: Properties of ξ(z) and their implications 
The ratio of sums, ξ(N,z), for a given N and z 
is a dimensionless number less than or equal 
to 1. Its behavior for various values of N and 
z is illustrated in Fig. 5. It is desirable that the 
ratio be as small as possible, since this makes 
for a smaller value of m (i.e., the length of 
line we need to measure is fewer multiples of 
the basic length). Table 1 shows approximate 
limiting values for several values of z and the 
corresponding value of m when 0.2η = . We 

see that for z>1 the ratio never approaches 0. 
It approaches (quickly for z large, less so as z approaches 1) a nonzero limit as N increases. In the large N limit the sums 
become Riemann Zeta functions. (See Eq. 9.522 in Ref. 15.) For z=1 (a 1/f spectrum), the ratio approaches 0, but slowly 
(as / ln( )C N , C a constant, see Ref. 15 Eq. 0.131.) For a flat, or white noise spectrum, corresponding to z=0), 

(0) 2 / Nξ = . 

Many of the resist edges measured for this study have z=2.5 or so for a substantial range of frequencies (see Fig. 4). 
Rounding up the value in Table 1, this means we need m=4. According to the ITRS table in Fig. 1, at the 90 nm node 
the highest and lowest frequencies of interest are 1/(15 nm) (i.e., the reciprocal of the low-end-of-range drain extension) 
and 1/(180 nm) (i.e., 1/DRAM pitch). Using these values in Eq. (23) results in the following measurement specification: 
We should measure a length of line at least L=720 nm at intervals of ∆=7.5 nm (i.e., 96 measurement positions) in order 
for uncertainty associated with sampling to be within the desired tolerance.  

 
Fig. 5. Values of the ratio of sums in Eq. (23) for various z and N. 

This length of line is 8 times the node length. The way to make sense of the requirement for long distance 
measurements is this: Closely spaced samples provide information about high frequency components of roughness. 
However, when the PSD is decreasing sufficiently quickly, the rms roughness is dominated by only a few low 
frequency components that have very high relative amplitudes. The extra knowledge provided by our closely spaced 
points does not improve our estimate of these. The only way to improve the estimate for these relevant components is to 
measure long distances to sample many wavelengths. 

z Limiting value of ξ(z) Corresponding value of m for η=0.2 

1.5 0.185 1.2 

2.0 0.400 2.5 

2.5 0.576 3.6 

3.0 0.704 4.4 
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This section has outlined the means to satisfy the requirements for adequately sampling the roughness. However, the 
effect of noise on the roughness is an additional complication that still must be addressed. We discuss this in the next 
section. 

4. EFFECT OF NOISE ON ROUGHNESS DETERMINATION 

Determination of edge positions or linewidths requires use of an edge assignment algorithm. If there are random errors 
(noise) in the image, there will be a resulting random error in the edge assignments and linewidths, more or less error 
depending upon the sensitivity of the chosen algorithm to noise. Let us say the width determination error that results 
from a particular set of conditions to be εi and that these errors are distributed with a standard deviation σε (Fig. 6). 
What is the effect on our roughness determination, for example using Eq. (8)? We will add the sum of squares of the 
measured widths instead of the actual widths and obtain a measured roughness given by 
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The right side decomposes into 3 terms when expanded. The sum of the wi
2 becomes ( ) 2

W1 qN R−  by definition. The 

sum of ( )2

iε ε− becomes (N-1)σε
2, also by definition. The expectation value of the cross term vanishes because the 

noise and the roughness are uncorrelated. Thus, the simple result: 

 2 2 2
_measq qR R εσ= +  (25) 

where < > denotes the expectation value. We have left out the “W” in the subscript because the same result can be 
shown to apply for the case of edge roughness, Eq. (5), provided σε is understood to be the standard deviation of the 
distribution of edge errors instead of width errors. 
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Fig. 6. Schematic for problem of considering how noise effects the apparent measured position of a real line edge. 
The thick meandering line represents the real edge. The slimmer meandering line represents one measured edge out of 
infinite possibilities. The Gaussian curves overlaid on each linescan represent the distribution of measured edge 
locations. 

This result means random errors in the edge roughness bias the measurement—they add root sum of squares fashion 
with the true roughness to bias the measured result. If the σε are known (for example, by estimation from repeated 
measurements of the same sample, or by estimation of the noise floor in the PSD), σε

2 can be subtracted from the 
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measured square of the roughness to obtain a corrected estimate of the actual squared roughness. Such correction is 
reasonable when the edge assignment repeatability is smaller than or comparable to the roughness. However, when it 
becomes much larger than the roughness, discerning the roughness above the noise “background” is likely to become 
increasingly difficult. 

Noise also affects the repeatability of the roughness measurement. Since WqR  is essentially a standard deviation, its 

repeatability is the standard deviation of a standard deviation. The algebra is therefore a bit more involved than usual 
[16], but assuming σε is small compared to the roughness, the result is  

 
W _meas 1qR N

εσσ =
−

 (26) 

We have not derived an expression for the case when εσ  is comparable to or greater than qR . However, the following 

relationship matches simulation results for the more general case, and it agrees with Eq. (26) in the appropriate limit: 
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The behavior of Eq. (25) through Eq. (27) is illustrated graphically in Fig. 7. 

Rqmeas vs N [Rqreal=10, noise=1]
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Fig. 7. Example of bias and uncertainty, i.e., Eq. (25) through Eq. (27), as functions of the number of linescans for a 
LWR measurement with noise equal to 10 % of RWq. The central line is the expected value for infinitely many repeated 
measurements. Note that it is biased with respect to the true value (10 in this example). The spread between the outer 
lines represents the expected scatter (±1 standard deviation) for a single LWR measurement. 

Some CD-SEMs allow for “binning”, i.e. measuring an edge’s position at the site of N “bins” with results from n 
linescans averaged together. This has the effect of reducing σε as √n, with the penalty of less spatial frequency 
sensitivity. 
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With the repeatability of the measurement of RWq known in the limit of σε<< RWq, the ramifications to meeting the ITRS 
LWR measurement precision specifications are calculated below. 

Technology Node 130nm 115nm 100nm 90nm 65nm 45nm 32nm 22nm 18nm
Year of Production 2001 2002 2003 2004 2007 2010 2013 2016 2018
3s LWR control, <8% of etched gate [nm] 5.2 4.2 3.6 3.0 2.0 1.44 1.04 0.72 0.56
1s LWR control, <8% of etched gate [nm] 1.7 1.4 1.2 1.0 0.7 0.48 0.35 0.24 0.19
3s Precision of LER measurement [nm] 0.74 0.60 0.51 0.42 0.28 0.20 0.15 0.10 0.08
1s Precision of LER measurement [nm] 0.25 0.20 0.17 0.14 0.09 0.07 0.05 0.03 0.03

Linescan Reproducibility, σε [nm] Minimum # of Linescans to Meet ITRS Precision Spec
0.25 4 4 5 6 10 16 29 57 92
0.50 7 9 11 15 31 57 107 220 361
0.75 12 17 22 31 66 125 237 491 810
1.00 19 28 37 54 115 220 419 871 1437
1.50 40 59 81 118 256 491 939 1956 3231
2.00 69 103 141 208 452 871 1667 3475 5742  

Fig. 8. Minimum number of linescans necessary to meet ITRS LWR measurement precision specifications, for 
different values of σε. 

As we have just seen, the effect of noise on roughness metrics is different than on many other more familiar 
measurements. For example, measuring CDs means measuring average positions of edges. In a CD-SEM, this involves 
performing a number of linescans to collect an image. Linescans may be binned to improve signal to noise, or the CDs 
of many linescans may be averaged. Positive excursions from the average value cancel negative excursions to first 
order, thereby diluting the effect of outliers. Roughness, on the other hand, is a dispersion. Both positive and negative 
excursions from the mean position of the edge add to the total roughness. Since noise always adds to the apparent 
roughness, the average of N repeated measurements does not tend to the correct value as N goes to infinity. This places 
a premium on reducing random errors in edge positions or linewidths before the determination of roughness begins. 
Some of the strategies for noise reduction employed with other measurements have a steeper cost when measuring 
roughness. For example, binning of linescans reduces the effective spatial resolution along the edge, thereby impairing 
measurement of high spatial frequency components of roughness.  

In the following section we experimentally investigate some of the variables that appear to impact the magnitude of 
random errors in edge assignment. These include signal to noise, choice of edge algorithm, and quality of focus. 

5. EXPERIMENTAL 

5.1. Instruments/Samples/Measurements in general 

The measured features consisted of either resist on poly-Si, or etched 1500 Å Poly-Si on 20 Å gate oxide. The resist 
used was 2700 Å Sumitomo PAR-810 193 nm resist [17]. Structures were exposed using ISMT’s AMAG-4L reticle. 
The targets imaged were isolated and dense lines in scatterometry patterns of 150 nm line width with 450 nm pitch for 
the dense case, and 1500 nm pitch for the isolated case. Also, special test structures with induced roughness at designed 
wavelengths of 50 nm, 200 nm, and 250 nm [18] were imaged. 

All data in this work were collected in the form of tiff images of features for offline analysis. The CD-SEM used was a 
recent model CD-SEM in ISMT’s ATDF (ISMT’s fab). As the resolution of the CD-SEM is on the order of 2-2.5 nm, 
the measurement technique was designed to sample 1 nm pixels to assure proper Nyquist sampling of all observable 
roughness features. Thus, each image scanned a 1000 nm × 1000 nm region, with 960 pixels in the x-direction and 1024 
pixels in the y-direction. All filtering was turned off to acquire the raw signal in the imaging. The averaging factor was 
set to 1 linescan per bin. 

Slightly different conditions were used for etched poly than for resist. For etched poly imaging, the accelerating voltage 
was 800 V with 10 pA beam current and 3.2 µs beam dwell time per pixel. For resist imaging, the accelerating voltage 
was 500 V with 10 pA beam current and 2.3 µs beam dwell time per pixel. One interesting point here is that the beam 
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condition for measuring LER on resist was significantly different than the typical condition used to measure CDs, where 
193 nm resist shrinkage must be minimized; a pixel dwell time of ~0.8 µs is much better for reducing shrinkage of this 
resist. However, as mentioned in previous work [18], the LER measurement is less prone to shrinkage / reproducibility 
issues by virtue of the fact that all features along the same sidewall shrink in the same direction (versus the CD 
measurement case, where two edges shrink in opposite directions). 

From the acquired images, edges were located using offline software. Four edge detection algorithms were used: 

• Maximum derivative (MAXD), based on a threshold algorithm. 

• Regression-to-baseline (REGR), based on fitting the waveform peak edge with a line and intersecting with a 
baseline value. 

• Sigmoidal fit (SIGM), based on fitting a sigmoidal mathematical function to the peak of the waveform. 

• Model-Base Library fit (MBL), based on physics simulations. 

Note that the first three were designed to mimic those used in typical current-model CD-SEMs. All four edge algorithms 
have been described in a recent related work [19]. The edge algorithms were applied to each image along each linescan 
(no binning). The results files included edge locations of all edges in an image, PSDs of each edge and linewidth, and 
autocorrelation functions of each edge and linewidth. 

Images were acquired of many targets for a larger study, but the ones used in this work are poly and resist images of the 
following experiments: 

• Repeatability—five images were taken (static mode) of the same segment of line, at optimal image quality, at 
the standard conditions described above. 

• Image integration time variation—images were taken (static mode) of the same segment of line, at optimal 
image quality, with varying beam dwell time per pixel. 

• Image focus variation—images were taken (static mode) of the same segment of line, at varying image quality 
due to intentional defocusing, at the standard conditions described above. 

• Long line length—six 1000 nm × 1000 nm images were taken in “tiled” fashion with 100 nm overlap; 
matching the images together allows for a ~5500 nm long image of lines to be analyzed, with 1 nm pixel size 
in both x- and y-directions. 

5.2. Repeatability and Image Integration Time Variation 

Using the principles described in the noise discussion above, we wish to evaluate the performance and optimal 
operating conditions of our edge detection algorithms. From the repeatability images, edge locations between 
consecutive runs were correlated to one another to compensate for possible image shift between images. Linescans were 
thus matched up, and a variance of the residuals of each linescan’s edge location from the line of best fit for each edge 
was calculated. The square root of the average of these linescan variances yields the σε value, defined earlier as the 1σ 
repeatability of edge location on a single linescan. With 1024 linescans, the error of the measurement of this value is 
quite small (a few linescans were “lost” due to image shifting between observations—the calculation was done over the 
linescans which each image had in common). This was executed for each of the four edge detection algorithms for the 
standard repeatability condition. Also, from Eq. (25), if the actual Rq can be assumed to be unchanged between two 
images, the relative values of σε between the two images can be calculated with the two values of Rq_meas. This was done 
through the series of images with varying image integration time and focus. Since the absolute value of σε was found for 
the repeatability condition, the relative value for σε for each of the other images can be thus referenced back to the value 
at the repeatability condition, and thus made absolute, also. Results for computed values of σε are shown in Fig. 9. Also, 
relative noise was measured on the different images through image integration time, using the Measure software 
package by Spectel Research [17]. The noise decreases as ~t-1/2, as should be expected. 

To verify that the assumption of ~constant Rq is valid, an extra image at the nominal condition was taken at end of the 
integration time runs, and the measurement reproduced the one from the beginning of the runs. 
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Fig. 9. Left: σε as function of image integration time for different edge algorithms on etched poly. Right: more time 
means less noise relative to signal. Note that 3.2 µs is the nominal value we use for roughness measurement on etched 
poly (EP). Results for higher values of pixel time could be computed, but problems with the data collection prevented 
this. Note that the curves begin a slight upward trend at higher pixel times, where charging or vibrations can cause an 
“edge blurring” effect, which raises σε. At the nominal 3.2 µs pixel time, the order of the performance of the edge 
algorithms, in increasing σε, is MBL (best, at σε=~0.8 nm) closely followed by sigmoidal, with regression and max 
derivative performing with higher σε.  

Notice that from the image on the left in Fig. 9 that the sigmoidal and MBL edge algorithms demonstrate better 
performance, as these algorithms make more use of the information in the entire waveform. Thus, they are better suited 
to LER measurement (and, arguably, CD measurement as well, edge location bias issues aside, since better noise 
performance is desirable for the case of CD measurement also). Notice that σε does not go to 0 in the limit of large pixel 
time. At values higher than an optimum value (between 3 µs and 4 µs in this case) it begins to trend slowly upwards 
again, perhaps due to vibration, charging, or contamination. Notice that in our experience with these samples, 3σε is 
already close to 3 nm, whih is the roughness tolerance for the 90 nm technology node. This means the roughness 
“background” produced by noise is already comparable to the roughness we need to measure. 

5.3. Defocus Variation 

This analysis was repeated for the set of images of varying defocus in Fig. 10. We see that noise in the intensity values 
(graph on the right) remains relatively constant with defocus, while σε increases dramatically. This effect was seen in 
simulations a year ago [19], where it was attributed to smearing of the edge. (Edge detection is improved when edges 
are sharp because the contrast between the intensity gradient signal and false gradients due to noise is greatest then.) 
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Fig. 10. σε as function of image defocus for three edge algorithms on etched poly. At the nominal 0 µm focus, the 
order of the performance of the edge algorithms, in increasing σε, is sigmoidal (best, at σε=~0.8 nm), with regression 
close behind and max derivative performing with higher σε. Also note that noise does not change measurably with 
focus. The noise graph is scaled the same as the noise vs. integration time results to demonstrate this. 
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Since defocus effectively increases the electron beam spot size, it also degrades the resolution. Thus, defocus has two 
effects on roughness measurement. On the one hand, it increases the sensitivity of the measurement to image noise, 
tending to increase the apparent (i.e., measured) roughness. On the other hand, loss of resolution causes high frequency 
roughness to be missed, tending to decrease the apparent roughness. Neither of these is good. Though their opposite 
signs mean that fortuitous cancellation of errors can occur, measurements in better focus measure more of the actual 
roughness and less of the noise. 
 
5.4. Illustration of Sampling Statistics on Long Tiled Lines 

As an example of calculating uncertainty for a PSD, we have analyzed one of our long tiled lines. The edges were 
located for the entire line, and these were segmented into smaller pieces. Let’s assume that the frequency window of 
interest is 2 nm through 250 nm. The 4 µm long line is segmented into 16 of these 250 nm pieces. We then calculate 
RWq and the PSD for each of the 16 segments. The standard deviation of these sixteen RWq’s is 0.74 nm. The standard 

deviation of the mean is therefore 0.74 nm / 16 0.185= nm. 
 
From the PSD of each segment, we then calculate uRq using Eq.(21). The value is 0.187 nm. Thus we have good 
agreement between the predicted and actual observed standard deviation using multiple segments of the same line. 

Note that the rms average RWq of the segments is 2.91 nm, while the RWq of the 4 µm long (unsubdivided) line is 
3.27 nm. The reason for the difference is that the measurement on the long line includes some long wavelength 
roughness that is excluded from the measurement of the shorter segments. If the length and number of the segments is 
chosen as dictated by Eq. (16), these neglected longer wavelengths will be precisely those wavelengths that we intend to 
neglect because they are outside of the range of roughness that is relevant to the manufacturing process. 

From the PSD results on the right in Fig. 11, it can also be seen that the average PSD of the multiple segments overlays 
the PSD of the longer line, as expected, only the frequency window of the function for the segments is a subset of the 
frequency window for the longer line. Also, the curve is much more smooth since it is averaged.  
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Fig. 11. Top: Tiled image of etched poly dense lines. Lower Left: CD of bottom line of tiled image; the bright lines 
show where this function was segmented into 16 smaller images. Bottom Right: PSD of entire 4 µm line (dark) and 
average PSD of 16 250 nm segments (yellow). 
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6. SUMMARY AND CONCLUSIONS  

There are a number of ways that LER and LWR can be quantified. We discussed some of the available metrics in Sec 2. 
The various metrics capture different aspects of roughness, some, for example, emphasizing aspects of roughness 
amplitude while others measure characteristic roughness wavelengths or correlation lengths. It is not yet always known 
which of these measures captures those aspects of roughness that are most relevant to device performance. Indeed, 
different devices or different processes may require different metrics. It therefore seems advantageous for measuring 
tools to offer the manufacturing process designer flexibility in the form of a suite of metrics. CD-SEMs [20] used for 
monitoring production could then be programmed to use whichever metric or set of metrics had proven most useful 
during process development. Of course, with more than one metric it will be important to have consistent and 
standardized definitions for each one in order to avoid confusion.  

We have paid particular attention in this report to the root mean square measures of edge and linewidth roughness, 
because these are given prominence in the 2003 ITRS. The repeatability of determining edge positions and adequate 
sampling are significant determinants of the quality of a rms roughness measurement. 

Edge position repeatability, what we have called here σε, may be ascertained by repeated measurements of the same part 
of a line. Once the measurements are corrected for any drift that may have occurred between them, the average rms 
differences at each point on the line provide a measure of σε. This metric should be considered a basic ”building block” 
of CD-SEM (or any scanning probe-based) metrology. The magnitude of σε  is important because it adds in quadrature 
with the true rms roughness to produce the measured roughness. This means the measured roughness is always larger 
than the true value by an amount determined by σε, unless σε is known or measured so a correction can be applied. This 
is unlike the case with most familiar measurements, in which noise is equally likely to cause negative errors as positive 
ones. In our sample measurements, this roughness “background” was already comparable to the roughness tolerance 
specified in the ITRS for the 90 nm technology node. Currently the only way to reduce this background is to average 
edge positions determined from repeated linescans at each measurement location. 

Factors that must be optimized to improve edge detection repeatability include the edge detection algorithm, image 
resolution, and noise. Noise is a function of integration time, electron dose (charge per unit area, which is current × time 
/ irradiated area), and sample charging. Resolution is a function of the interaction of the beam with the sample, the beam 
control settings, such as focus and stigmation, and other tool-related variables such as stage vibration. Selection of a tool 
with better resolution and control over filtering are thus very important. In illustrative measurements of resist lines 
performed for this study, the best value of σε was not much better than 1 nm for single unbinned linescans. This 
repeatability level dictates that roughness measurements be based upon a minimum of approximately 50 linescans in 
order to meet the precision requirements of the roadmap for the current node. The number of linescans needed will 
increase with each succeeding node, unless the edge detection repeatability improves proportionally. 

ITRS specifications imply the need to measure root mean square roughness between specified frequency limits with a 
specified repeatability. Roughness is a random phenomenon. For a particular sampled length of line to be adequately 
representative of other, unmeasured lengths, the sampled length must be long enough to be representative. We have 
derived expressions for the length of line that should be measured and the sampling distance along that line in order to 
meet the ITRS requirements (or any other desired spatial frequency window and repeatability). The solution indicates 
that for edges with power spectra that slope downward more steeply than 1/f the roughness is determined mainly by low 
spatial frequency components. Reducing the uncertainty of these requires long lengths of line to be sampled. With lines 
with roughness like those in our test samples, lengths equal to 8 times the technology node are required. The number of 
needed measurement positions within this length of line is close to 100. It may be desirable for future versions of the 
ITRS to take note of this requirement, as well as the need for better edge detection repeatability. 
 

7. APPENDIX I: THE RELATIONSHIP BETWEEN WqR  AND EqR  

Consider the two edges of a long segment of untapered line. At any position along the line, the edges have positions x1 
and x2, respectively. Over the line segment being considered, the edges have lines of least square fit of f1 and f2 
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respectively. By an untapered line we mean the left and right edges are parallel to each other on average, so that for the 
long segment under consideration the fits have approximately equal slope. We consider the large N limit, so we may 
ignore differences between N, N-1, and N-2. In this approximation the LER of each edge is: 
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All sums are over all sampled positions of each edge, i.e. at each scan line. Also note the statistical definition of the 
linear correlation coefficient (c): 
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The CD at any position along the line is x1 – x2 and RWq is the standard deviation of the CD. Again, using the definition 
of the standard deviation, the RWq can be expressed as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
W

2
2

1 2 1 2 1 1 2 22

2 2

1 1 2 2 1 1 2 22

q

x x x x x f x f
R

N N

x f x f x f x f

N N N

 − − − − − −    = ≈

− − − −
= + −

∑ ∑

∑ ∑ ∑
 (30) 

In the first line, 1 2 1 2x x x x− = −  is the average CD. In the second form we use the fact that for parallel edges the 
average CD is also the difference between the linear fits to the separate edges. In the final form, the first two terms are, 
by identity, 2

W 1qR  and 2
E 2qR . The third term can be strategically split: 
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Resubstituting the identities of c, REq1 and REq2, yields the desired result: 

 2 2
W E 1 E 2 E 1 E 22q q q q qR R R cR R= + −  (32) 
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