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The semiconductor electronics industry places significant demands upon secondary electron imaging to
obtain dimensional measurements that are used for process control or failure analysis. Tolerances for
measurement uncertainty and repeatability are smaller than the spatial resolution of edges in the scanning
electron microscope (SEM) that is used to perform the measurements. Image processing techniques,
historically used to identify edge locations, are inadequate under these conditions. An alternative approach,
based upon Monte Carlo electron transport modeling to assign edge positions, has been developed. The
specimen shape is parameterized, and parameters are iteratively adjusted to produce the best least squares
fit to the measured image. Because Monte Carlo simulators are too slow to be used directly in such an
iterative calculation, the Monte Carlo technique is used relatively few times to construct a library of
results for parameters spanning the process space of interest. A function that interpolates the library then
becomes a surrogate that is used to rapidly compute the model function as needed. This procedure has
yielded measurement results from top-down SEM images that are in good agreement with cross-section
measurements and that have as much as a factor of 3 better same-site repeatability than the more traditional
techniques. Published in 2005 by John Wiley & Sons, Ltd.
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INTRODUCTION

The dimensions of transistor gates, currently at less than
40 nm according to the International Technology Roadmap
for Semiconductors (ITRS),! are among the smallest routinely
manufactured objects for which strict dimensional control is
required. Transistor gates are among the smallest features
that are designed for printing. For this reason, and because
their dimensions are directly tied to device performance,
the gate size is the main ‘critical dimension’ (CD) that
is tracked in order to stabilize the manufacturing process
against drift and to provide early warning of more serious
process variations. The features themselves are already small
and the allowable uncertainty in their measurements is
smaller yet. As circuit feature sizes decrease, the amount
of memory that can be packed onto a semiconductor chip
increases and the microprocessor speeds increase. Both these
outcomes represent increased value, so economic incentives
push the semiconductor electronics industry to produce
the smallest features that are technically feasible. In 1998,
Ausschnitt and Lagus estimated that a 10 nm difference
in gate size resulted in a microprocessor speed difference
that in turn made a $100 difference in the market value
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of the device.? On this basis, they estimated the value of
CD control to be $10/nm per microprocessor, a figure they
estimated would increase to $20/nm when gate dimensions
declined by another factor of 2, as they have today. With
microprocessor annual sales in hundreds of millions of
units (273 million in 2003; see Ref.3) the economic value
of reduced dimensions is measured in billions of dollars per
nanometer. This is a significant incentive for manufacturers
to push lithographic and measurement technologies to their
limits.

Thus, it is nearly inevitable that there are technical
measurement problems to overcome. These are described
in more detail in the next section. Following this, we
describe a solution based upon a model-based library (MBL)
approach to dimensional measurements in the scanning
electron microscope (SEM). Results of several recent tests
of this method are reviewed and discussed in the final two
sections.

THE PROBLEM

Routine CD measurements during production must be non-
destructive and fast. The requirement for speed means
that secondary electron imaging is generally preferred to
backscattered electron or other imaging modes since sec-
ondary electron count rates are generally higher, producing
a better signal-to-noise ratio for a given measurement time.
In a secondary electron image, the steep edges of a gate or
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line appear brighter than horizontal surfaces like the line top
or substrate. This is because electrons incident at the top and
just inside of the line edge produce secondary electrons that
escape the specimen through both the side and the top of the
line, instead of only through the latter as is the case for elec-
trons incident far from the edge. This additional brightness
is the so-called ‘bloom” at an edge (Fig. 1a).

The standard measurement algorithms in use today
assign the edge position by using image-processing methods
to locate the bloom peak. For example, a tangent line
can be drawn at the outside edge of the bloom peak and
another through the background farther from the peak, as
in Fig. 1(b). The intersection of these two lines is the edge
position, according to the regression to baseline method.
Other methods might choose the position where the tangent
line crosses a different intensity threshold (e.g. half way
between the baseline and the maximum) or the position
where the slope of the intensity curve is the greatest. Of
course, the true edge position might be elsewhere within
the bloom peak, the width of which is essentially the
microscope’s spatial resolution for edges. When lines were
wider and measurement tolerances were more relaxed, this
uncertainty was not considered significant.

However, measurement errors must be small com-
pared to feature size. With transistor gates now narrower
than 40 nm, the industry’s most demanding measurement
requirements! are for a 3-standard-deviation repeatability
and total measurement bias approaching 0.5 nm and 3 nm
respectively. These tolerances are marked in Fig. 1(b) for
comparison with the edge bloom width. It is evident from this
comparison that today’s tolerances are significantly tighter
than the instrument’s spatial resolution for edges. The most
obvious effect of edge assignment error is that the computed
gate width differs from the correct value. If the average mea-
surement error, or bias, for a right edge is ¢, then the bias for
the corresponding mirror image left edge would be —& and
the measurement error in the difference between the two
would be 2¢; that is, the left/right mirror symmetry ensures

(b)

Edge bloom -

. ITRS edge
accuracy spec

ITRS edge
repeatability spec

1 1 [
1425 1450 1475
x (nm)

Figure 1. (a) lllustration of an edge bloom. The line’s left and
right edges are brighter than the background. (b) The intensity
profile across such an edge exhibits this characteristic peak
with a finite width. ITRS measurement requirements! are
shown at the same scale. The regression to baseline method
assigns the edge position to the intersection between the
background and a line tangent at the outside edge of the peak.
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that the measurement errors add rather than cancel when
gate width is determined.

Sometimes — for example, the manufacturing process
control example mentioned in the introduction — only rel-
ative measurements are needed. We wish to know only
whether the gate size has changed from one manufactur-
ing lot to the next. In such cases, if the measurement bias
described in the previous paragraph were constant, it might
not be of great importance. Unfortunately, it is not likely to be
constant. The size of the error is expected to depend upon sec-
ondary specimen characteristics. A secondary characteristic
is a feature of the specimen that we do not wish to measure.
From the point of view of a measurement of the bottom width
of a gate, for example, the rounding of specimen corners or
slopes of the edges are secondary characteristics. Although
these secondary characteristics can change without changing
the actual gate width, any such change may very well affect
the image and thereby change the measured gate width. Mea-
surement bias as a function of sidewall angle for four edge
assignment methods is reproduced from a simulation study*
in Fig. 2. These results indicate that the rate of change in
bias with sidewall angle is 1 nm/1° to 2 nm/1° for the most
commonly used methods of edge assignment, a result that
was also corroborated experimentally.’ Therefore, reduction
of edge assignment errors is important for relative as well as
absolute measurements.

MODEL-BASED LIBRARY APPROACH

We have been implementing an alternative measurement
approach. The essential components are (1) a physics-based
model that simulates the image for a given parameterized
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Figure 2. Bias (i.e. average error) in widths determined using
four different edge assignment methods generally changes as
the specimen sidewall angle changes. The methods were
applied to simulated noisy images, so the true width was
known. Curves are for a fixed noise level and beam size. Some
other parameters (e.g. e-beam cone angle, line separation,
corner radius) were varied — hence the scatter in the data
within each curve. (For details, see Ref. 4.) Note that the
simulation used the same model as the MBL method, so the
favorable MBL result is meant to indicate performance that is
possible when the model matches reality, not to prove that it
does. (From Ref. 4).
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specimen shape, composition, and imaging conditions and
(2)a capability to invert the model to determine the
parameters, given its measured image. Since, as we will
see, the model in component (1) is a time-consuming Monte
Carlo simulation and the inversion in component (2) requires
many evaluations of the model, a third component is of great
practical benefit. This component (3) is the approximation of
the model by interpolation of a library of simulation results.
These three components are now explained in more detail.

Forward modeling

The first component is an imaging simulator. This simulator
embodies a model of the physics of the interaction between
the SEM and the specimen in a computer code. For
our modeling, we use the MONSEL Monte Carlo—based
simulator.® This simulator uses Mott elastic scattering,
includes explicit treatment of Moller (sometimes also called
inelastic Mott in the nonrelativistic limit that we use) and
plasmon-mediated generation of secondary electrons, and
approximates electron energy losses with a modified Bethe
continuous energy loss formula. Incident electrons and all
generations of secondary electrons are followed individually
until they either escape the specimen or their energies
fall below the work function, making escape impossible.
Secondary electrons (i.e. electrons with kinetic energies less
than 50 eV) that leave from the upper surface of the specimen
are counted, and the ratio of the count to the number
of incident electrons (the yield) is reported. According to
one recently added option, an electron that leaves from
the upper surface is always deemed to have escaped the
sample entirely. This option approximates an idealized
critical dimension SEM. These instruments are typically
operated with high external electric fields that are intended
to pull all escaping low-energy electrons into the detector,
regardless of their initial trajectories. As per an older option,
an electron that leaves the upper surface is assumed to
travel in a trajectory that is approximately straight on the
scale of specimen topography, and it is deemed to have
escaped if that straight trajectory does not reintersect another
part of the specimen. This option allows for the possibility
that electrons will be recaptured and is appropriate when
electric fields outside the specimen are low. We currently
approximate situations intermediate between these extremes
by interpolating between these two solutions. Let us call the
secondary electron yield predicted by such a Monte Carlo
simulation for an idealized zero-diameter beam, Y (x;g:).
Here x denotes the landing position of the incident electron
beam and g; denotes a set of parameters, both geometrical
(line height, edge positions, edge angles, radii of corner
curvatures, etc.) and instrumental (incident beam energy
and angle, etc.). Then our model, M(x; g;, b;), of a linescan
produced by an SEM measurement is

M(x; i bi) = sYm(x — x0;&:) * B(x; bi) + yo ™
Here the convolution with B(x;b;) accounts for the
nonideal distribution of electrons in a real beam. It represents

the distribution of electrons as a function of the distance,
x, from the targeted landing spot. The b; represent some
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parameters of this function. Currently, we use

B(X'b)—il ex (_x:) (2)
P TP

This is a normalized Gaussian with b as its standard
deviation. The parameters s and y, in Eqn (1) account for the
fact that the SEM does not output the absolute yield. Rather,
the measured secondary electron count is typically scaled
and offset (a contrast and brightness adjustment) to make
best use of the available range of the instrument’s analog-to-
digital converter. The parameter x, produces a lateral shift
of the model result that allows it to be matched with the
features’ positions in the image.

Inversion

If the parameters s, o, b;, and g; that describe the instrument
and specimen are known, then Eqn (1) provides a way to
calculate the image. In practice, however, we usually want to
do the reverse. We have a measured image, I(x), and we need
to solve for any unknown parameters, particularly those that
describe the specimen. We do this in the usual least squares
fashion by finding parameters that minimize

X = () — M(x; g, b)]* 3)

X

There are a number of standard algorithms to solve
this minimization problem by iterative adjustment of the
parameters. We use the method of Levenberg-Marquardt.”—°
This method approaches a gradient (steepest descents) search
for the minimum of the x> surface when far from the
minimum and converts smoothly to the analytical solution
for a parabolic surface as the minimum is approached. It
is efficient in the sense that it converges with far fewer
evaluations of the model function than many alternative
methods. Nevertheless, the number of iterations required
increases with the number of parameters, and many of
our fits require tens to hundreds of evaluations per image
linescan. Therefore, computation time of the model function
is an important consideration.

Using a model-based library

Iterative minimization of an expression (Eqn (3)) that con-
tains a Monte Carlo simulation, each evaluation of which
may require an appreciable fraction of an hour, is unaccept-
ably slow. Accordingly, we developed an MBL method that
is an extension of a concept published for SEM by Davidson
and Vladar' in 1999. As they implemented it, the part of the
model that we have called Yu(x — xo; gi) * B(x; b;) in Eqn (1)
was evaluated for an assumed beam shape and for all com-
binations of a discrete sampling of the parameters, {xo, gi}.
(The beam parameters, b;, could have been included in this
sampling, if desired.) Each of the curves in this ‘library’
was fit to the measured linescan by the best choice of s and
Yo (Solving for these only is a quickly solvable linear least
squares problem.) The result was a sampling of the x* func-
tion on a discrete regular grid in a chosen neighborhood. The
parameters that correspond to the minimum x? on this grid
are assumed to be the best estimate of the target geometry.

Surf. Interface Anal. 2005; 37: 951-958
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The method produced a predicted geometry for a photoresist
line that agreed well with a cross section of the line.!

However, in this version of the method, the output
parameters cannot be between the sampled grid points,
so measurement resolution is limited by grid spacing.
Tabulation of all x*> values in a neighborhood is not as
efficient as the more targeted search provided by standard
nonlinear least squares methods, but these methods require
the model function to be available for any parameter values,
not just those on a discrete grid. The number of simulations
required to build the library is of order MY, where M is the
number of values for each parameter and N is the number
of parameters. If the library must include simulations of
the entire specimen (i.e. the entire Yy (x — xo;gi) * B(x; b)),
function), this rapidly becomes very large for specimens
more complex than an edge. For example, if each line has
2 wall angles, 2 top corner radii, and a width, a linescan of
10 lines will have N = 59 (5 parameters for each of 10 lines
plus 9 line separations).

The situation is greatly improved by two extensions we
have made to the method: image stitching and interpolation
of the library. In our implementation, the library contains
only individual edges rather than the entire structure. The
yield function for right edges at x = 0 is computed by
MONSEL at values of geometrical parameters only for
a single edge (Fig.3). For example, the sidewall angle
parameter could vary from 0° to 10° in 1° steps and the
corner radius from 0 nm to 100 nm in 10-nm steps (although
there is no requirement that the steps be all the same size).

Yield curves for structures containing multiple lines
are constructed using the edge library multiple times. For
each edge in the target, the curve with the same edge
geometry parameters is retrieved from the library. The

library is interpolated when the required parameter values
lie between entries. If a left edge is required, it is formed
from its right edge counterpart by reflection. This edge is
then positioned at the required location. By this stitching
procedure, the yield curve Yy (x — x¢; ;) can be constructed
for any combination of lines and trenches. A relatively small
single-edge library can be used to simulate structures with
a parameter space of much larger dimension. In the 10-line
example given in the preceding text, a 2-dimensional library
suffices for a 59-dimensional parameter space. Stitching
is justified when either (a)the shape of an edge’s yield
curve does not depend upon the edge’s position within the
image or (b) when any such positional dependence is taken
into account by the introduction of a suitable parameter
in the model. An example of (a) would be isolated lines
that are too wide for electrons generated near one edge
to leave the line via the other. In this case, only bloom
separation but not bloom shape is a function of linewidth.
This should be true in Si for linewidths down at least to
35 nm with 1keV incident electrons, and smaller than that
with lower energies.!! An example of (b) might be edges
on opposite sides of a trench such as will be discussed in
the next section when we discuss Fig. 6. Such edges do
interact because the intervening vacuum does not impede
electrons. However, it is easy to account for the interaction by
explicitly including edge separation in the structure modeled
by MONSEL. Knowing an approximate separation, such as
can be determined directly from the unmodeled image, is
good enough because the bloom shape varies rather slowly
as the separation changes.

Standard methods (e.g. Ref.8, Sec.3.6) are used to
linearly interpolate the multidimensional library when
required. Interpolation provides a continuous rather than
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Figure 3. Schematic illustrating measurement using an edge library. Linescans computed for edges with varying parameters (wall
angle and corner radius here) comprise the library. Parameters for the unknown specimen are determined by matching, with

interpolation as needed. From Ref. 12.
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discrete model function, permitting the use of efficient least
squares algorithms. Parameter increments can be chosen as
needed to give an accurate interpolation, without regard to
measurement resolution since this resolution is no longer
limited by the grid interval. Fortunately, the yield function
appears to change slowly and continuously enough that
parameters need not be too tightly spaced. Accuracy can be
checked by comparing the interpolation results to results of a
full calculation at a sampled set of points. We obtained quite
good agreement between the interpolation and full Monte
Carlo simulation even when sidewall angle spacings in excess
of 1° were used.! Since a 10° range has, in our experience,
been enough to cover the expected manufacturing process
variation, the library can contain relatively few entries.

Interpolation and stitching of an MBL can be considered
a surrogate model function, replacing the full Monte Carlo
calculation for the purpose of iterative least squares. After
the comparatively modest initial time investment to construct
the library, it offers large speed improvements (a factor of
10° is typical in our experience) with negligible difference in
output values.

TESTS OF THE APPROACH

Accuracy
Does the accuracy of the MBL method meet the requirements
of the ITRS? In order to answer this question, it is necessary
to compare the MBL measurement to the result of some
other more trusted measurement technique. Unfortunately,
this is difficult. At the nanometer accuracy level desired
by the ITRS, other techniques have their own important
measurement artifacts. For example, atomic force microscope
images of lines are wider than the actual lines by an amount
determined by the tip size.!® The corrected width is uncertain
by at least the uncertainty with which the tip size can be
determined.

We chose to make comparisons of MBL to cross-sectional
SEM, which is a standard practice in the semiconductor

ion SEM view from this direction
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industry. For such a measurement, the specimen is cleaved
at right angles to the line. The specimen is repositioned
to view the line from the end. (The viewing direction is
indicated by an arrow in Fig. 4(a).) There are a number of
important error sources in cross-sectional SEM that such a
comparison must account for: (1) The cross section provides
a width at a single position along the line. It is generally
difficult to accurately identify this position with a position
in the top-down image. To the extent that the measurements
occur at different locations, differences in linewidth from
place to place are a source of error. This generally (i.e.
as long as the registration uncertainty is larger than the
roughness correlation length) produces an uncertainty that
is equal to the linewidth roughness. (2) The cross-section
SEM image is subject to edge bloom and must be modeled
in a way similar to the top-down image. The modeling for
this configuration is arguably simpler. Since the electron
beam travels along the length of the line, parallel to the
sidewalls, more of the relevant geometry is known a priori.
A library-based approach is not required. Once the beam
scans past the edge of the line, there is no obstacle to the
electrons for a considerable distance. In effect, there is no
substrate. On the one hand, this removes any complications
that would otherwise be introduced by scattering there. On
the other hand, it means that (3) the cross-section geometry
is more sensitive to the instrument’s depth of field (caused
by divergence of the electrons from the point of best focus)
than is the top-down geometry.!* In our first test, lines in
polycrystalline Si were cleaved and then imaged top down
near the cleavage plane (Fig.4(a)). An area of the image
slightly away from the cleaved edge —a distance sufficient
to eliminate bloom effect from the edge — was analyzed by
MBL. A typical fit of the model to a measured linescan
is shown at the top of Fig. 4(b), with the corresponding
library line profile at the bottom. The scale of the top-down
and cross-section images was matched independently of this
measurement by imaging a nearby periodic array of lines and
requiring the periodicity to be the same. The MBL line profile

(b)

Image
&
Model Fit

Fitted
Line Shape

1000 1200 1400 1600

x (nm)

Figure 4. (a) Geometry for comparison of MBL to cross-section measurements. A cleaved polycrystalline Si line is imaged top down
and the area (box) near the cleaved edge is analyzed. The specimen is also imaged (resulting in Fig. 5(a)) in cross section from the
direction indicated. (b) A typical model fit to a linescan is shown above the simulation input line shape that produced it. From Ref. 12.
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Figure 5. (a) Cross-section image of the line, with its assigned edge (noisy curve) upon which the MBL profile is superimposed for
comparison. Edge regions are expanded in (b) for a better view. Uncertainty bands due to line roughness are shown. From Ref. 12.

is overlaid on the cross-section image in Fig. 5(a). (This is the
smooth trapezoidal line.) The edge assignment from the
cross-section image (a rougher line) is also shown. The edge
regions are expanded in Fig. 5(b), where uncertainty bands of
£3.6 nm, equivalent to £2 standard deviations of line edge
roughness are shown. The average widths determined by
the two methods differed by 1.4 & 4 nm. The left edge angles
differed by 0.2 4+ 0.4 and the right edge angles differed by
0.1 £ 0.3. Details are in Ref. 12.

When lines are close to each other there are proximity
effects in an SEM image. These arise from competing effects.
On the one hand, slow electrons that leave one line and might
have escaped to the detector may be captured by a nearby
neighboring line. This shadowing effect tends to decrease
the detected signal. On the other hand, fast backscattered
electrons that leave the first line and hit the second may
generate additional secondary electrons that would not
otherwise have existed, tending to increase the signal. For
this reason, modeling a dense array of lines is a different
problem from modeling an isolated line. An MBL result for
such an array of polycrystalline Si lines is shown overlaid
on a cross-sectional image in Fig. 6. There are two kinds of
edges in the sample. Interior edges face a nearby neighboring
edge across a trench. The first and last edge in the pattern
are exterior edges, which do not have nearby neighbors. Both
these kinds of edges were modeled and included in the
library, so edge separation is a library parameter. Unlike the
other library parameters, we know in advance which edges
are interior and which are exterior, so the separation for
each edge was pinned to the appropriate value. Pinning is
not mandatory of course. The separation could have been
treated as a free parameter like all the others. However, as we
will discuss later, limiting fitting parameters to the minimum

number necessary is a good practice. There are five lines in the
image, therefore five differences between the cross-section
and MBL linewidth determinations. The average of these
differences was 0.7 nm, indicating relatively little systematic
bias between the measurements. The standard deviation
of the differences was 3 nm, an amount of random error
consistent with the linewidth roughness of these lines.

A similar comparison was also performed!* for lines
in Sumitomo PAR-810 photoresist.! Resist is an important
target in the semiconductor industry, but is potentially
problematic inasmuch as it is an insulator that may charge
during imaging, and it shrinks when exposed to an electron
beam. Results of this comparison are shown in Fig. 7. Top-
down images were performed first. Then the specimens
were cross sectioned and imaged. The MBL widths averaged
3.5 nm larger than the cross-section widths. If the lines shrink
during e-beam exposure, the MBL widths should be larger,
since the cross-sectioned specimen has received electron
dose twice (once each during the top-down and cross-section
images). The magnitude of the difference is consistent with
previously observed shrinkage rates.’>1¢ The methods had a
random difference with standard deviation of 5 nm, 3 nm of
which is expected from the observed linewidth roughness.

Repeatability
The tightest CD tolerances in the ITRS, now approach-
ing 0.5nm, are not for bias, but for measurement tool

*Certain commercial equipment or materials are identified in this
report in order to describe the experimental and analytical
procedures adequately. Such identification does not imply
recommendation or endorsement by NIST nor does it imply that the
items identified are necessarily the best available for the purpose.

Figure 6. MBL result (smooth trapezoids) for a dense array of lines, superimposed upon a cross-section image.
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Figure 7. MBL results on an insulating photoresist surface
compared to cross section. The lower, middle, and upper
arrays are examples of the range of match quality that was
observed. They correspond from bottom to top in 10th, 50th,
and 90th percentile in X2- The inset shows an enlargement of
the median match. From Ref. 14.

repeatability. Repeatability (or precision as it is known in
the industry) is assessed by performing multiple measure-
ments on the same specimen and then calculating 30, where o
is the standard deviation of the measurements. This assesses
the sensitivity of the measurement to a limited number of
random error sources, mainly image noise and, if the speci-
men is reloaded between measurements, pattern recognition
to reacquire the correct measurement target. As we noted in
Fig. 2 and the accompanying discussion, it does not assess
other sources of random error that may be relevant in an
actual process control application. However, in the absence
of an easy way to assess accuracy, much of the empha-
sis of CD-SEM development has been upon measurement
repeatability. A priori, there is a good chance that an MBL
measurement algorithm will have better noise immunity
than the image-processing edge assignment methods cur-
rently employed. This is because the current methods use a
relatively small part of the data within a linescan in order
to assign the edge. The regression to baseline method illus-
trated in Fig. 1(b), for example, fits a tangent line to the
linear part of the outside edge of the bloom peak. Since
the MBL approach fits the entire peak, it includes a larger
number of data points to make the edge assignment, in effect
performing more averaging within the linescan.

This was tested by taking four repeated images of a
polycrystalline Si specimen. One of these is shown in Fig. 8.
This data set was analyzed two ways, once with regression
to baseline and once by using MBL to determine the bottom
width. Edge assignments are superimposed on the image.
The resulting widths are shown in Fig. 9. There are two
groups of curves. The upper four are the widths determined
by regression to baseline. The lower set is the MBL group.
Some of the width variation within each curve is actual
linewidth roughness that can be seen in Fig. 8 and some is

Published in 2005 by John Wiley & Sons, Ltd.
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Figure 8. Example of one of four images of the same area that
were used to measure repeatability. Edge assignments are
shown. The inner smoother curves are assigned by MBL. The
outer edge assignments are by regression to baseline.

Repeatability of MBL vs. Regress to Baseline
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Figure 9. Repeatability of two edge assignment methods. The
curves are linewidth as a function of position along the line. The
upper group had edges assigned by regression to baseline.
The lower group shows bottom widths assigned by MBL.

edge assignment error due to noise. It is evident in the figure
that there is more curve-to-curve scatter in the upper set than
in the MBL group. This difference was quantified as follows:
Curves 2 through 4 within each group in Fig. 9 were shifted
left or right as required for maximum correlation with curve
1. In this way, any small drift between images was removed.
At the first position along the line, the standard deviation
of the four width values was determined. This standard
deviation was then averaged with the standard deviations

Surf. Interface Anal. 2005; 37: 951-958
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determined at each of the other line positions. The standard
deviation so determined for the regression to baseline curves
was 8.1 nm. For the MBL curves it was 2.4 nm. Incidentally,
the average separation between the two groups is about
15 nm. In light of the agreement between MBL and cross
sections, we interpret this to mean that for this line the
regression method has about 15 nm of bias.

DISCUSSION

It should be noted that what we have loosely been calling
‘inversion by least squares’ is not guaranteed to be unique.
The instrument function modeled by Eqn (1) is, in the
strictest mathematical sense, not invertible. Such functions
are usually many-to-one mappings; thatis, there is more than
one specimen configuration that can produce the same image.
A trivial example would be a specimen with a buried void at
a depth not reached by the electron beam and that, therefore,
does not influence the image. Other specimen configurations,
though distinguishable in principle, may produce images
that are so close to one another that they are difficult to
distinguish in the presence of noise. Undercut sidewalls
(in which the bottom of the line is narrower than the top)
are difficult to distinguish from each other or from vertical
ones, for example. Since the typically low-energy incident
electrons do not penetrate, the only thing to distinguish one
undercut specimen from another is the signal that derives
from electrons backscattered from the substrate. These
create secondary electrons when they strike the (possibly
undercut) sidewall. Such images change only slightly when
the magnitude of the undercut changes, so sensitivity is
low. Nonuniqueness of solutions is not so much an issue
with the analysis method as with the amount of information
available in the image, regardless of how it is analyzed.
Fortunately, the typical application for CD measurements
is in manufactured structures with a well-defined target
geometry and with relatively small process variation. Only
candidate solutions that span the range of reasonable process
variation need to be considered. In the MBL approach, this
is what determines the region of parameter space that must
be spanned by the library. When this restricted solution
set can be characterized by a suitably small number of
parameters, the solution can be expected to be unique. If
the number of parameters becomes large for the information
in the image, one begins to notice correlations among sets
of parameters such that different combinations yield similar
images.!! For a linescan across a line feature like the one
in Fig. 1(a), which has a bloom peak for each of two edges,
seven parameters are easily justified. These are background
levels common to both edges, and three parameters for each
bloom peak. The three parameters needed to describe a peak
are the peak position, width, and height above background.
In the SEM, these seem to be closely related to specimen
edge position, beam size, and sidewall angle, although the
relationship is not 1:1. (Beam size and sidewall angle each
affect both peak height and width, but in different ways such
that it is possible to distinguish them.) Beyond these easy
parameters, if the signal-to-noise ratio is good enough, it may
be possible to justify one or more additional ones, like corner
radii, that affect peak symmetry, but sensitivity for these is
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generally lower because their effect on the image is more
subtle. To minimize parameter correlations, it is important
to avoid unnecessary parameters. For example, instrument
parameters (s, o, and the b; in Eqn (1)) are determined from
the image as a whole, rather than allowed to vary from
linescan to linescan. Because independent sets of parameters
can be derived from parts of the specimen separated by
more than the spatial resolution of the instrument (a few
nanometers), the number of parameters that can be validly
assigned to a sample area can be very large. In the rare cases
when there are multiple solutions within the parameter
subspace for a particular manufacturing process, the MBL
approach offers the opportunity to discover this fact by
checking for more than one local minimum within the library.
Then the result can be reported with a suitably increased
uncertainty. If that uncertainty is too large, it may be possible
toresolve the ambiguity by finding imaging conditions under
which the candidate structures image differently. There is
no reason in principle why the MBL approach cannot be
extended to stereo pairs of images (i.e. pairs with different
incidence angles), for example.
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