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Abstract. The ability of a critical dimension scanning electron micro-
scope �CD-SEM� to resolve differences in the widths of two lines de-
pends on the instrument’s measurement repeatability and any sample-
dependent biases. The dependence of repeatability and bias on eight
different parameters is studied using the MONSEL Monte Carlo electron
simulator. For each of 14,400 different combinations of values of eight
parameters, three describing the sample and five describing character-
istics of the instrument or measurement condition, an image is simulated,
noise is added, and the edge positions are “measured” as would be done
in a CD-SEM. From 100 repetitions of noise, the repeatability of such CD
determinations is ascertained. Biases �i.e., average errors� are also de-
termined. Noise amplitude, edge detection algorithm, and beam size are
shown to be significant factors in measurement repeatability. The CD-
SEM’s measurement repeatability may be an order of magnitude better
than its spatial resolution. For standard edge detection methods, the bias
depends on the sample. This means that in a manufacturing environ-
ment in which the sample shape varies, there will be a random compo-
nent of error that is not measured by the industry’s usual same-sample
tests of instrument precision. �DOI: 10.1117/1.2037447�
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1 Introduction
It is frequently necessary to compare widths of different
features, for example chip to chip or wafer to wafer differ-
ences in transistor gate width �the critical dimension or
CD�. Since great efforts are made to keep manufacturing
process variation to a minimum, measured differences are
often small. The question of whether a particular such dif-
ference is real or a measurement artifact frequently arises,
and the answer may provide the justification for a decision
to alter process variables to keep the product dimensions
acceptably close to their target values. The International
Technology Roadmap for Semiconductors �ITRS�1 calls
“the ability of a CD measurement tool to distinguish be-
tween lines that differ in width” by the name “microscopy
resolution.” This ability is also sometimes called the line-
width or CD “measurement resolution,” a term we prefer.
We use the two terms interchangeably here.

According to the most recent ITRS, the “in-line nonde-
structive microscopy resolution” requirement for critical di-
mension �CD� measurements in 2005 is 0.29 nm, decreas-
ing to 0.2 nm by 2008. The ITRS closely associates
microscopy resolution with measurement “precision,” that
is, three standard deviation repeatability. Repeatability is a
measure of random error associated with a measurement,
1537-1646/2005/$22.00 © 2005 SPIE

J. Microlith., Microfab., Microsyst. 033002-
the amount of spread in the distribution of measured values
when a measurement on the same sample is repeated many
times. The results of this study call attention to a depen-
dence that may be less widely appreciated: the relationship
between measurement bias and measurement resolution.
Bias in a width measurement is the difference between the
average measured width and the true width. The difference
w1−w2 is not affected by a bias that changes w1 and w2 by
the same amount, but it is affected by any sample-
dependent bias that affects the two widths differently.

The ITRS shows all microscopy resolution requirements
�tables begin with the year 2003� in red, indicating that
manufacturable solutions are not known. The question
therefore naturally arises: Is microscopy resolution funda-
mentally limited near current levels by the physics of the
critical dimension scanning electron microscope �CD-
SEM� technology that is employed for these measure-
ments? Or is current performance the result of less than
optimal use of a technology that is fundamentally still good
enough? Approaching fundamental physical limits to the
spatial resolution of the SEM2 are taken by some as support
for the first point of view. But is spatial resolution the same
as microscopy resolution? What are the other, if any, sig-
nificant variables on which microscopy resolution depends?

To these questions, a simulation study has much to con-

tribute. In such a study images are simulated for a variety
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of sample shapes, instrument conditions, and noise ampli-
tudes. The edges of these images are then located using
various edge-finding algorithms. The reproducibility of re-
peated measurements �with varying noise� can be ascer-
tained from such results. Unlike the situation experimen-
tally, it is possible to hold all but one variable truly
constant, thereby truly isolating the contributions of indi-
vidual variables. In a simulation, unlike an experiment, one
knows the true edge positions. It is therefore possible to
quantify the bias and observe whether it changes as a func-
tion of sample shape or other relevant variables.

In Sec. 2 we describe the method of our simulation
study. Section 3 gives the results, followed by discussion
and conclusions in the sections that follow.

2 Study Approach

2.1 Overview
We identify measurement resolution for a linewidth mea-
surement with the uncertainty in the measured difference
w1−w2. In the appendix in Sec. 5, under assumptions that
are described there, we derive the following expression for
the measurement resolution R:

R2 = 2P2 + 2� �w

��
U��2

+ … . �1�

Here P is the precision, �w /�� measures the sensitivity of
the width measurement to a parameter � �e.g., sidewall
angle�, and U� is the 3 standard deviation uncertainty in �
for the two lines being measured.

Note that there are two types of terms that determine the
measurement resolution. The first is a random component
associated with the repeatability of measurements made on
the same sample, the second with any measurement bias
that differs between the measurements on the two samples.

Both of these types of components of measurement reso-
lution were observed and measured in our simulation ex-
periment. We first provide an overview of our procedure in
this paragraph and in Fig. 1. This is followed by a more
detailed explanation of the individual steps. For each itera-
tion of the outermost loop, the inputs were a set of instru-
ment, sample, noise, and data analysis parameters. Soft-
ware that simulates electron trajectories and secondary
electron generation was used to generate a simulated noise-
less linescan. In the interior �noise� loop, simulated CD-
SEM noise is generated and added to the linescan. The
resulting noisy image is then measured by a procedure that
depends on the initial choice of analysis parameters. This
produces one width value for each iteration of the loop.
After many iterations, the repeatability and bias are deter-
mined from the measured width values and the actual
width. The outer loop is then repeated for other choices of
input parameters. The result is a dataset showing measure-
ment bias and repeatability under a variety of measurement
conditions.

2.2 Sample and Instrument Parameters
The first step in Fig. 1 includes choice of noise and analysis
parameters, but we postpone a description of these until
Secs. 2.4 and 2.5, respectively. We discuss here those inputs

that specify the sample and characteristics of the SEM. To
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make the simulation as relevant as possible to actual indus-
trial processes, we modeled many of our sample and instru-
ment parameters on measurements made for us on a CD-
SEM at International SEMATECH. For those
measurements, the samples consisted of PAR 810 UV resist
lines on an antireflective layer �Brewer Science ARC 25�
on silicon, as shown in Fig. 2�a�. �Certain commercial
equipment or materials are identified in this work to de-
scribe the experimental and analytical procedures ad-
equately. Such identification does not imply recommenda-
tion or endorsement by NIST, nor does it imply that the
items identified are necessarily the best available for the
purpose.� The electron trajectory simulation used material
properties �e.g., density and elemental composition� consis-
tent with these samples. The ARC layer thickness t and the
line height h were also fixed at values derived from this
sample �t=86 nm,h=270 nm�. The sidewall angle �, cor-
ner radius r, and line separation s were permitted to vary as
indicated in Table 1.

Fixed parameters related to the instrument settings in-
cluded the electron beam energy of 800 eV, pixel size of 1
nm, and best-focus position at the top of the line. We per-
formed simulations under two secondary electron collection
scenarios. In one, secondary electrons were assumed to
travel in straight lines as they leave the sample. Some of
these trajectories intersect the substrate or adjacent lines
and re-enter the sample. In the other, secondary electrons
were assumed to be collected as soon as they emerged from
the sample. Although both scenarios were calculated, in this

Fig. 1 Schematic of the design of the study.
study consideration is restricted only to results of the sec-
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ond scenario because we deem it more relevant for a CD-
SEM, which normally operates with an extraction field for
efficient collection of the relatively low energy secondary
electrons. In addition to these fixed parameters, there were
two variable parameters associated with the instrument.
These are defined in Fig. 2�b�, with values listed in Table 1.
One of these was the beam size wb, the standard deviation
of the assumed normal distribution of electrons within the
landing spot. The second, �b, is the half angle of the as-
sumed conical distribution of incoming electron trajecto-
ries. This angular distribution accounts for the microscope’s
depth of focus. When �b=0°, the incoming electron trajec-
tories are parallel and the depth of focus infinite. The other

Fig. 2 Schematic of sample and beam parameters. �a� Simulated sa
of focused electron beam: the hourglass shape �bold lines� with con
minimum spot of size wb.

Table 1 Variable input parameters. As indicated in Fig. 2, the side-
wall angles represent the deviation of the sidewall from the vertical.
Negative angles represent undercuts.

Parameter
description

Symbol in
Fig. 2

Number
of values Values

Sidewall angle � 8 �−3, −1, 0, 1, 3, 5,
7, 9�°

Corner radius r 3 �0, 10, 20� nm

Line separation s 2 Isolated �5 mm� and
dense �200 nm�

Beam half angle �b 3 �0, 1.06, 2.12�°

Beam half width wb 5 �0, 1, 3, 7, 15� nm

rms noise
amplitude

— 5 0.01, 0.025, 0.063,
0.159, 0.40 in
arbitrary intensity
units �see Fig. 5�

Power spectrum
�PSD�

— 2 Flat, sloped �see
discussion�

Edge detection
method

— 4 Maximum derivative,
regression to
baseline, sigmoidal
fit, model-based
library
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two values of �b listed in the table correspond respectively
to spot sizes 10 nm and 20 nm larger at the bottom of the
line than at the top.

2.3 Simulating Linescans
Given the inputs as just described, an image linescan is
calculated using MONSEL,3,4 a Monte Carlo electron tra-
jectory simulator. MONSEL uses Browning’s interpolation
formula5 for the Mott elastic scattering cross section and
continuous energy losses as specified by the Bethe formula
modified6 for improved accuracy in the low energy limit.
Secondary electron generation via the plasmon7 and
Möller8 �also called Mott-Williams9 in the nonrelativistic
limit that we use� mechanisms are included. Individual in-
cident electrons and all of their offspring �due to secondary
electron generation� are followed through elastic and in-
elastic scattering events until they either escape the sample
or their energies fall below the sample’s work function,
making escape impossible. For each electron beam landing
position, 10,000 incident electrons were followed for the
simulations in this study. A graphical representation of
MONSEL trajectories for the first 200 of these is shown in
Fig. 3 for an electron beam landing position near the line’s
edge. The dense �in this case approximately 10 nm wide�
vertical column above the top of the line is mainly com-
posed of electrons in the incident beam. These electrons
scatter within the sample, forming the roughly 30 nm di-
ameter active volume inside the line. When this active vol-
ume makes contact with the sample surface, backscattered
and secondary electrons emerge. These are visible as the
long straight trajectories at varying angles in the vacuum
region outside of the line. The characteristic bright line
edges in a secondary electron image are due to the addi-
tional secondary electrons that escape the sample when the
sidewall is within the active volume. The total number of
secondary electrons emitted from the sample at each beam
position determines the intensity at the corresponding point
on the linescan. To produce each simulated linescan, a cal-
culation like this one was performed at 201 landing posi-
tions spaced 1 nm apart.

The relevance of a simulation study like this one de-
pends on the degree to which the simulated instrument is a
good approximation of the real one. Experimental valida-

resist lines on antireflective coating on a silicon substrate. �b� Model
e �b indicates how the electrons first converge, then diverge from a
mple:
e angl
tion of models of secondary electron imaging are in their
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early stages. However, the early results10,11 are promising.
Figure 4 shows a good match, apart from noise, between a
simulated linescan and the experimentally measured one.
The line shape that gave rise to this simulated linescan was
observed in the same experiment to agree well with a cross-
section of the measured line.11

2.4 Simulating and Adding Noise
After production of the linescan, the next step in Fig. 1 is
the noise loop. Simulated noise was generated using soft-
ware that uses a random number generator to produce noise
profiles that have a power spectral density �PSD� that
matches a desired one. To produce realistic simulated noise,
International SEMATECH provided us with images of re-
sist samples measured by CD-SEMs from three different
manufacturers. We measured the power spectra of the im-
age intensity in nominally featureless areas of these images.
Even when normalized to the same root mean square �rms�

Fig. 3 Electron trajectories near the edge of a UV resist line as
simulated by MONSEL.

Fig. 4 Match between simulated and measured linescans. The
measured linescan is the noisier of the two upper curves. The simu-
lation is the smoother one. The line shape that produces the simu-

lated linescan is also shown �bottom�.
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total noise level, there were differences in the power spec-
tra of the different tools. One had a relatively flat power
spectrum up to a high frequency cutoff. Others had more
noise at low frequency and correspondingly less at higher
frequencies. We chose two of these power spectra, the flat-
test and the least flat, to represent the range of possibilities.
The choice of which of these to use is labeled the “power
spectrum” variable in Table 1. This variable determines the
frequency distribution of the noise, but because the power
spectra are normalized to the same total power, this vari-
able has no effect on the total rms noise level. To account
for different noise levels, a second variable, termed noise
amplitude in Table 1, was used. After random noise with
the chosen PSD is generated, it is multiplied by the chosen
noise amplitude and added to the linescan determined in the
last step. The range of noise amplitudes employed in our
simulations is illustrated in Fig. 5. The top profile corre-
sponds roughly to the amount of noise in a single unaver-
aged noisy linescan. The bottom profile corresponds to
what one might expect with significant frame averaging in
the CD-SEM. There are three intermediate levels as shown.

2.5 Determining the Edge Positions
As is evident in the Figs. 4 and 5 linescans, the bright
image peaks produced by the line’s edges have a finite
width. This width is large compared to the desired measure-
ment resolution, so the measured value of the linewidth
depends, in an important way, on how within this peak the
edge is assigned. Commercial CD-SEMs may make this
assignment in a number of ways. Instruments generally of-
fer the metrology engineer a choice of algorithm. The prin-
ciples by which the methods operate are generally known,
but the details are proprietary. Accordingly, we developed
our own software to implement four methods: maximum
derivative, regression to baseline, sigmoidal fit, and model-

Fig. 5 Range of noise amplitudes used in the simulations.
based library �MBL�.
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The first three of these are based on the same principles
as methods with similar names available on commercial
CD-SEMs. These principles are illustrated in Fig. 6. The
noisy peaked curve is a linescan centered on the right edge
of a line. The maximum derivative method assigns the edge
position on the point on the outside half of the peak �i.e.,
the half farthest from the center of the line� where the mag-
nitude of the slope is greatest. Since derivatives tend to
exaggerate noise, in practice algorithms smooth the data
before differentiation. Generally, the more smoothing, the
better the repeatability; but too large a smoothing window
distorts the peak shape and changes the measurement bias.
This leads to an important choice for this study. Some of
the variables in our study affect the width of the peak that is
being fit. For example, an edge with a vertical sidewall
exhibits a narrower intensity peak than does an edge with a
sloped sidewall. We can choose either to smooth all images
with smoothing windows of the same size or to smooth
each image with the largest window that does not signifi-
cantly distort the peak shape. The former choice results in
very little smoothing because it must treat all edges the
same as the narrowest ones. We believe that a metrology
engineer would more likely choose an amount of smooth-
ing based on the characteristics of the samples produced by
the manufacturing process, with more smoothing when the
images are amenable to it. Therefore, this is the choice that
we made.

If we draw a line tangent to the edge at the maximum
derivative point �the straight, sloped line in Fig. 6� and
draw a horizontal line at the background level �the baseline,
also shown�, their intersection is the position of the edge as
assigned by the regression to baseline method.

The s-shaped �or sigmoid� curve in the figure is a func-
tion of the form

y = a +
b − a

1 + exp�− c�x − x0��
, �2�

where a, b, c, and x0 are parameters. This function is fit to
the outer edge of the peak by least squares, and the best

Fig. 6 Various methods for edge assignment. The sloped line is
tangent to the outside edge of the intensity peak at the position of
the maximum slope. The intersection of this line with the horizontal
baseline is the position assigned by the regression to baseline
method. The sigmoidal fit method fits an s-shaped curve through the
data, and takes the edge position from a parameter of this fit.
value of x0, which corresponds to an intensity level midway
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between the sigmoid’s maximum and minimum values, is
assigned as the edge location. Smoothing is implicit in the
fitting process, so this method should not benefit much
from smoothing the data. Accordingly, we smoothed much
less to avoid changing the peak shape. On the other hand,
there are other choices that must be made. In Fig. 6, it is
obvious that the sigmoid curve does not even approxi-
mately fit the data to the left of the peak. To obtain a good
fit on the right, the data on the left must therefore not be
included in the fit. In our implementation, the fit window
includes the point of maximum intensity and beyond. The
small amount of smoothing that we employ allows several
data points near the maximum to be averaged for determin-
ing the maximum intensity level and its position. The ab-
sence in the data of the sigmoid’s plateau on the left may,
because of noise, result in some spurious fits in which the
best sigmoid plateaus well above the intensity maximum in
the data. To prevent this, the value of a is fixed at the
maximum intensity, and the least squares procedure is per-
mitted to vary only the other three parameters in Eq. �2�.

The MBL method is an experimental method that was
developed relatively recently. In this method, a range of
edge shapes is simulated in advance using an electron tra-
jectory simulator like MONSEL. These shapes and their
images form a database, or library. Measured images are
compared to the library, which may be interpolated, to find
the parameters, including edge position, that produce the
best match. Like the sigmoidal fit, smoothing is implicit in
the fitting process, so images were not otherwise smoothed.
Unlike the sigmoidal fit, the library entries are peaks; in-
stead of starting the fitting window at mid-peak, all of the
data near the edge can be included in the fit. More details
are available elsewhere.11–13

2.6 Computing Repeatability and Bias
After noise was added to the simulated linescan and the
edge positions were determined by the chosen algorithm,
the linewidth was determined as the difference between the
left and right edge positions. The noise loop was repeated
100 times, resulting in 100 linewidth determinations. The
standard deviation of these is the recorded repeatability.
The difference between their average and the actual width
of our simulated sample is the recorded bias.

3 Results and Discussion
The summary of input parameters in Table 1 includes the
number of different values for each of the parameters.
There are 28,800 possible combinations of the different pa-
rameter values. However, MONSEL does not permit non-
zero corner radii to be combined either with undercut wall
angles or nonzero �b, so simulations for these combinations
were not performed. Excluding these, we simulated 14,400
different combinations of sample, instrument, noise, and
data analysis parameters. For each of these, 100 different
random instances of noise were added and two edge posi-
tions �left and right� were determined, for a total of close to
three million edge determinations. The results constitute a
multidimensional data set giving the repeatability and bias
as functions of the eight parameters listed in the table. We
do not attempt to summarize all of the results here. Instead,
we limit discussion to three important results: repeatability

as a function of noise amplitude, repeatability as a function
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of beam size, and bias as a function of sidewall angle. All
of these are shown for each of the four edge-determination
algorithms.

The precision as a function of noise amplitude is shown
in Fig. 7. The figure summarizes a large amount of simula-
tion data. To produce this plot, we extracted from the simu-
lation results all of those linewidth determinations for
which the beam spread was Gaussian with 3-nm width
�wb=3 nm�, and the line’s sidewalls were angled at 3 deg
from the vertical ��=3 deg�. For each noise amplitude,
there were a number of sets of simulation results satisfying
these conditions, corresponding to the various values of the
other parameters �e.g., power spectrum shape, corner ra-
dius, whether the lines were isolated or dense�. These other
parameters had relatively small effects on the measurement
repeatability, allowing them all to be plotted on the same
graph. This is the reason each curve has many symbols
clustered at each noise amplitude. The lines are drawn
through the average position within each cluster. The four
curves correspond to the four different edge algorithms.
Unsurprisingly, the curves all have positive slopes, indicat-
ing that the precision gets worse as the noise amplitude
increases. It is worth noting that the noise amplitude is to a
certain extent under the control of the metrology engineer.
It may be reduced by increasing pixel dwell times or the
amount of frame averaging, thereby improving measure-
ment repeatability up to a limit imposed by throughput re-
quirements or avoidance of sample damage.

The magnitude of the repeatabilities derived from our
simulation study is comparable to that observed under
manufacturing conditions. A notable feature of this result is
that the repeatability depends strongly on the choice of
measurement algorithm. Those algorithms that are based on
fitting curves to the image have better repeatabilities than
those that depend on differentiation. Between the two
methods that use fitting, it appears that the more data are
included in the fit, the better the repeatability. The most
repeatable of these methods was a factor of 3 to 8 better

Fig. 7 Precision �three standard deviation repeatability� versus
noise amplitude for four measurement algorithms. For this plot, the
sidewall angle was held constant at �=3 deg and the beam size was
wb=3 nm.
than the least repeatable, depending on the noise amplitude.
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Attention to the measurement algorithm therefore offers the
potential for improved repeatability without the lower
throughput or increased potential for sample damage that
accompanies longer pixel dwell times or more frame aver-
aging.

The precision as a function of beam size is shown in Fig.
8. This result sheds light on the question we raised in the
introduction about the relationship between spatial resolu-
tion and microscopy resolution, as defined in the ITRS.
Consider first the relationship between the beam size and
the instrument’s spatial resolution. The resolution may be
worse than the beam size if other phenomena �e.g., scatter-
ing of the electrons within the sample as illustrated in Fig.
3� degrade it by increasing the part of the sample with
which the instrument interacts, but it is hard to imagine the
interaction region being smaller than the beam size. Thus,
the beam size plotted along the horizontal axis in Fig. 8
represents a reasonable lower bound on the CD-SEM’s spa-
tial resolution. The precision, plotted along the vertical
axis, is implicitly �but incorrectly� identified by the ITRS
with microscopy resolution. �The values tabulated in the
ITRS are said to correspond to a specified precision to tol-
erance ratio, and they agree quantitatively with the preci-
sion values tabulated in another ITRS table.� The four
curves have positive slope, indicating that measurement
resolution declines as spatial resolution declines. This in
itself is unsurprising. Poorer spatial resolution corresponds
to more smearing of the edge in the image. Finding its
location in the presence of noise becomes more subject to
random error. However, the relative magnitudes immedi-
ately indicate that precision is not the same as spatial reso-
lution. At wb=15 nm for example, P�3 nm for the sigmoi-
dal fit method and �1 nm for the MBL method. Thus, for
these methods at this noise amplitude wb / P equals 5 and
15, respectively. This indicates that the precision can be
more than an order of magnitude better than the spatial
resolution. �If the spatial resolution had been worse—
assuming it is as good as the spot size is an ideal case—this

Fig. 8 Precision �three standard deviation repeatability� versus
electron beam size for four measurement algorithms. The sidewall
angle was �=3 deg and the noise amplitude corresponded to the
middle curve in Fig. 5.
ratio would have been even larger. Similarly, more signal
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averaging would decrease the noise and increase the ratio.�
Thus, spatial resolutions on the order of a few nanometers
need not pose an inherent limitation on achieving the
ITRS’s desired levels of precision.

The measurement bias as a function of sidewall angle is
shown for positive angles in Fig. 9. The most biased
method for this sample was regression to baseline. Its curve
was shifted down by 15 nm to get it on the graph. The
maximum derivative and sigmoidal fit methods were unbi-
ased for sidewall angles near 5° but had biases of 6 nm to
12 nm for vertical sidewalls ��=0°�. As we have seen,
however �Eq. �1��, for a comparative measurement it is the
slopes that are important, not the absolute bias levels. Pro-
cess variation can produce a range of sidewall angles, and it
is generally not known that the angles of lines being com-
pared are the same. Under this circumstance, the biases are
not known to cancel, and there is a corresponding level of
uncertainty in the width difference. The slopes are gener-
ally steepest for sidewalls closest to vertical, but are in the
range of 1 nm/1° to 2 nm/1° for all but the MBL method.
These slopes are consistent with experimental results14 that
were obtained contemporaneously with our study. For the
methods in common use, uncertainty of 2° in the sidewall
angle becomes an uncertainty of 2 nm to 4 nm in the line-
width. If the precision is around 1 nm, then clearly the
measurement resolution in this example is dominated by
the differential bias term in Eq. �1�, not the precision term.
As long as �w /�� remains at 1 nm/1° to 2 nm/1°, the
differential bias term continues to dominate until the side-
wall angle process variation becomes smaller than 0.5° to
1° �three standard deviations�.

Measurement errors are either varying or constant.
Sometimes it is assumed that the former are measurable
using the industry’s standard test of precision and the latter
are irrelevant. Constant errors are assumed to be either cor-
rected by building in a constant offset �determined, for ex-
ample, to force agreement with cross section for a test mea-

Fig. 9 Linewidth measurement bias as a function of sidewall angle
for four measurement algorithms. For this plot, the beam size was
wb=7 nm and the noise amplitude corresponded to the second
curve from the top in Fig. 5. The regression to baseline curve was
shifted down by 15 nm.
surement� when reporting measurement results, or if not
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corrected at least of no consequence for measuring changes
in linewidth. As Fig. 9 and our example illustrate, this view
overlooks another possibility, namely that some compo-
nents of bias, while constant for a given sample, vary from
one sample to another. This variation cannot be measured
in the industry’s standard same-sample precision test, but it
is potentially more significant than precision as a constraint
on measurement resolution for real manufacturing pro-
cesses in which different lines are being compared.

As shown in Fig. 9, the MBL method had slope close to
zero for all positive angles. The model employed to gener-
ate the model-based library was the same MONSEL simu-
lator used to produce our test images, except that the library
did not include corner radius or depth of focus variation.
Consequently, our library is a closer match to our test im-
ages than it is likely to be to real unsimulated images. The
results show the kind of bias and repeatability that can be
achieved by an MBL method when the model is closely
matched to what nature does in the CD-SEM. They are not
meant to show, indeed a simulation cannot show, that the
particular model we used is itself such a close match. For
that, one needs experimental evidence, to which we have
made reference in Sec. 2.3. In practice, we expect that the
better the model approximates nature, the nearer the MBL
method’s performance will approach that exhibited here.

4 Summary and Conclusions

Measurement repeatability �or precision� and measurement
bias are both important components of a CD-SEM’s ability
to distinguish between lines with different widths. We de-
scribe a simulation study of these phenomena. For this
study, image linescans are simulated for particular sample
and instrument operating conditions. Random noise is
added to these images, which are then analyzed to deter-
mine the linewidths.

Simulations are a complement to, not a replacement for,
actual measurements. Without measurements, the relevance
of the simulation to an actual manufacturing environment
would be in doubt. On the other hand, simulation can ex-
plore a vast array of sample and instrument conditions that
would be prohibitively time consuming to duplicate experi-
mentally, and some things, e.g., the determination of bias,
are more difficult experimentally than in simulations, where
everything is known about the sample and measurement
conditions. To keep the study as relevant as possible to
current semiconductor manufacturing applications, the
sample is chosen to be UV resist on an antireflective layer
on a silicon wafer. Simulations are performed with a Monte
Carlo electron trajectory simulator that has been demon-
strated to produce image linescans closely resembling ex-
perimentally measured ones. The random noise added to
the images is chosen to have the same power spectrum as
noise measured in commercial CD-SEMs in a fabrication
facility environment.

We determine measurement bias and repeatability for
14,400 combinations of values of eight variables: sidewall
angle, top corner radius, line separation �isolated or dense�,
beam half angle �i.e., depth of focus�, beam width, noise
amplitude, the shape of the noise power spectrum, and the
measurement algorithm. Among the more important results

to emerge are these:
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1. Microscopy resolution, defined by the ITRS as the
ability to distinguish between linewidths that are
nearly the same, does not depend only on instrument
precision, but also on any sample-dependent mea-
surement biases. We express this relationship in Eq.
�1�; which is derived in the appendix in Sec. 5.

2. Instrument precision gets worse as noise amplitudes
get worse �e.g., as the amount of averaging is de-
creased�, but for a given noise amplitude, there are
significant differences in the precision achieved by
different analysis algorithms. The model-based li-
brary algorithm was best in our simulations, with the
sigmoidal fit second. These algorithms use more of
the data within a given linescan to form the estimate
of edge position than do many other industry-
standard algorithms, such as maximum derivative.

3. Instrument precision gets worse as the spot size gets
larger �i.e., spatial resolution gets worse�. However, it
is not inconsistent to have microscopy resolution a
factor of 10 or more better than the beam size. Mi-
croscopy resolution under the ITRS definition is not
the same as a microscope’s spatial resolution. Be-
cause of the potential for confusion, we prefer the
term “measurement resolution” to “microscopy reso-
lution.”

4. Sample-dependent measurement biases exist for the
three common measurement algorithms we tried, and
probably exist in all those in common use by the
industry today. These have the potential to signifi-
cantly degrade the ability to distinguish one linewidth
from another, but they are an artifact of the measure-
ment algorithm, not an inherent limitation of the CD-
SEM. A model-based algorithm, to the extent the
model is a good approximation, can be significantly
less biased.

5 Appendix: Relationship between Measurement
Resolution, Precision, and Measurement
Biases

We derive the relationship between measurement resolu-
tion, which we take to be the uncertainty in the measure-
ment of a width difference, �w=w1−w2, the measurement
precision, and sample-dependent biases. The difference is
normally obtained by subtracting the individually measured
values of w1 and w2. Let us suppose that our measurement
is sensitive to a number of parameters, such that in a series
of measurements

w1i = w1t + ��qi,�1� . �3�

Here w1i is the i’th measured value of the width of the first
line, w1t is the true value of the width, and � is the differ-
ence between the two �the error�. For the sake of simplicity,
we limit consideration to two parameters, on which � �and
hence w1� depend. We label them q and �. The generaliza-
tion to more than two will be obvious. We choose these
parameters to be representative of two different types. The
parameter q represents parameters, the variations of which
are sampled during repeated width measurements on the
same sample, i.e., during the course of the semiconductor

industry’s defined precision measurement. Parameters of
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this type would be, for example, relative position of the
sample and the electron gun, the electric and magnetic
fields through which the beam must pass to reach the
sample, voltage levels in the electronics that process the
signal, etc. These vary due to vibration, electrical noise,
shot or thermal noise in electronics, etc., and will as a rule
differ from one measurement to the next �hence qi instead
of simply q in Eq. �3��. The parameter � represents param-
eters that are not expected to vary during the precision mea-
surement, but which may differ between measurements on
samples 1 and 2 �hence �1 rather than simply ��. For the
sake of concreteness, we may think of � as the sidewall
angle, but any other sample-dependent property �e.g., cor-
ner radii, proximity of neighboring lines, sample composi-
tion� will be represented by a parameter like this one. Non-
sample parameters �e.g., beam size� might be of this type
under some circumstances, for instance if w1 and w2 are
measured on different instruments that are not known to be
perfectly matched.

Subtracting from Eq. �3� the analogous expression for
sample 2, the i’th measurement of �w can be written as

�wi = w1t + ��qi,�1� − �w2t + ��qi�,�2�� . �4�

We put a prime on qi the second time it appears because the
measurements of w1i and w2i are not simultaneous and the
q’s do not therefore have the same value. Expand the right
side of Eq. �4� around the average value of q during a
measurement. Then to first order

�wi = �wt + ���q	,�1� − ���q	,�2� + �qi − �q	�
 ��

�q



�q	,�1

− �qi� − �q	�
 ��

�q



�q	,�2

. �5�

We have defined the true value of the width difference by
�wt=w1t−w2t and used �	 to denote the average. Obtaining
the average and standard deviation of the �wi is straight-
forward. The average is obtained by summing both sides
over all i and dividing by the number of measurements. The
first three terms do not depend on i, so they survive un-
scathed. The last two terms have averages of 0, so

��w	 = �wt + ���q	,�1� − ���q	,�2� . �6�

The standard deviation is defined such that ��w
2 = ���wi

− ��wi	�2	. Using Eqs. �5� and �6� to evaluate this yields

��w
2 =��qi − �q	�2�
 ��

�q



�q	,�1

�2�
+��qi� − �q	�2�
 ��

�q



�q	,�2

�2� . �7�

The cross-term vanishes because qi and qi� are uncorrelated.
Calling the first term on the right �1

2 and the second one �2
2,
we can write
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��w
2 = �1

2 + �2
2. �8�

The two terms on the right are the repeatabilities of mea-
surements on a single sample. That is, they are the standard
deviations that would be measured on the two samples dur-
ing the industry’s same-sample precision measurement. �To
see this, expand Eq. �3�, which describes a single-sample
width determination rather than a width difference, to first
order and then calculate its standard deviation, analogously
to what we have just done starting with Eq. �4�. The result
would be identical to the first term in Eq. �7�. The second
term follows in the same way from measurements on the
second sample.�

If, in Eq. �6�, the angles �1 and �2 differ by only small
amounts from the average ��	 for samples produced by the
manufacturing process, then we can expand the error terms
around ��	 and solve for �wt to get to first order

�wt = ��w	 − ��1 − ��	�
 ��

��



�q	,��	
+ ��2 − ��	�
 ��

��



�q	,��	
.

�9�

This is our best estimate for the true value of the width
difference. In this form it contains three terms, two of
which constitute a correction for measurement bias. In
practice, we usually do not have independent information
about �1 and �2. In that case our best estimate will be that
they are equal to ��	, since that is the average value pro-
duced by the manufacturing process. With this, the bias
terms in Eq. �9� are each 0, and our best estimate of the
width difference becomes

�wt = ��w	 . �10�

Our uncertainty in the estimates of �1 and �2 will be equal
to the standard deviation �� of our process. The remaining
term on the right side of Eq. �9� is the measured width. If it
is determined by a single measurement of w1 and w2, this
uncertainty is just the standard deviation, Eq. �8�. The total
uncertainty u�w in our estimate of �wt is obtained in the
usual way15 by adding the uncertainties of the individual
terms in quadrature.

u�w
2 = ��w

2 + 2� ��

��
���2

= �1
2 + �2

2 + 2� ��

��
���2

. �11�

The derivatives are evaluated at the average values, �q	 and
��	, as in Eq. �9�, though we have dropped the explicit
specification of where the derivatives are to be evaluated to
simplify the notation. It remains only to clean this up a bit
for the sake of clarity. Since � differs from the measured
width only by a constant term �the true width, see Eq. �3��,
we can replace �� /�� with �w /��. Since we have assumed
�1 and �2 are both close to ��	, we expect �1��2. The
semiconductor industry multiplies standard deviations by
three to obtain precisions �P=3�1�3�2�, so let us use the
same factor for all uncertainties. We let U�=3�� and iden-
tify the measurement resolution R with 3u�w. Then Eq. �11�

becomes
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R2 = 2P2 + 2� �w

��
U��2

+ … . �12�

Obviously, if there are other differences between the mea-
surements of the two widths that are not sampled by the
precision measurement, there would be additional terms of
the same form as the second one. We have appended the …
to denote such other possible terms. This result is the same
as Eq. �1�.
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