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Abstract. In semiconductor electronics applications, line edge and linewidth roughness are generally measured using a root
mean square (RMS) metric. The true value of RMS roughness depends upon the length of edge or line that is measured and
the chosen sampling interval. Additionally, the true value is obscured by a number of measurement errors: Different finite-
length sections of line have randomly differing roughnesses, producing a sampling error, the expected magnitude of which
depends upon the length of line that is sampled and details of its roughness power spectrum. Noise in the microscope images
from which roughness is computed results in both a random measurement error and a non-random measurement bias. These
issues and proposed solutions in the literature are reviewed. It is also suggested that there may be a plausible role for non-
RMS metrics, for example estimation of the likelihood of width or edge position extremes based upon direct measurements
of the roughness amplitude density function.
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INTRODUCTION†

Integrated circuit functional structures are generally
designed with simple linear or smoothly curved shapes.
Thus, transistor gate edges are drawn linear and parallel,
as are the edges of lines in interconnect layers. Contact
holes are meant to be cylindrical, with smoothly
rounded edges. As is now widely appreciated, actual
printed features do not entirely preserve the smoothness
of their designs. A number of different materials,
chrome in the mask, photoresist, polycrystalline silicon,
each with its own characteristic roughness depending
upon an interplay of material properties and processing
conditions, contribute to the roughness of the final
device features. Material and process properties gener-
ally have little connection with the size of the devices,
so roughness does not scale with technology node. 

Yamaguchi et al. divide the effects of roughness into
two categories, degradation or variation of device prop-
erties.[1] A number of published studies have connected
roughness to device performance, either via simulation
or experiment. At the transistor gate level the most fre-
quently cited effects are variability in transistor thresh-
old voltage and a significant increase in off-state
leakage current.[1-9] Xiong et al.[4] additionally note
that high frequency roughness can lead to a decrease in

the length of the conducting channel due to enhanced
lateral diffusion of the self-aligned source/drain exten-
sion. Most studies to date concern transistor perfor-
mance. However, Lin et al.[6] note a surprising increase
of breakdown temperature with roughness for TaN bar-
riers used to prevent diffusion from Cu interconnect
lines into the surrounding low-K dielectric. They also
raise the possibility that Cu conductivity will suffer for
rough interconnects due to enhanced electron surface
scattering compared to smooth-edged conductors.

The need for roughness metrology is recognized in
the International Technology Roadmap for Semiconduc-
tors (ITRS).[10] Specifications for linewidth roughness
(LWR) control and metrology are contained in Table
117 of its Metrology section. In the ITRS, LWR is mea-
sured as 3 standard deviations of the linewidth (or CD,
for critical dimension) including all roughness wave-
lengths shorter than twice the technology node. The
specifications call for LWR control of 2.6 nm in 2005,
improving to 1.6 nm by 2009. To support this control,
the ITRS specifies that the metrology tool needs a 3
standard deviation repeatability of better than about
0.5 nm for LWR measurements in 2005, improving to
approximately 0.3 nm by 2009. The recognition of this
metrology need and these specifications are relatively
new. As recently as 1999, the Metrology section of the
ITRS contained no specifications for roughness mea-
surement. Specifications for line edge roughness (LER)
were first added in 2001. 

†.  Official contributions by the National Institute of Standards 
and Technology are not subject to copyright.
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Given the newness of concern about this issue, it is
not surprising that roughness metrology in semiconduc-
tor electronics applications exhibits some symptoms of
immaturity. For example, as we will see, a complete
measurement specification for root mean square (RMS)
roughness should specify both maximum and minimum
roughness wavelengths to include in the measurement.
The ITRS currently specifies only the longest roughness
wavelength. CD-SEM (critical dimension scanning
electron microscope) tools generally offer a RMS mea-
sure of LER or LWR, but the number and spacing of the
CD measurements from which this measure is computed
vary from tool to tool. The ITRS contains a specification
for maximum allowable bias for CD measurements, but
there is no similar requirement for roughness measure-
ments, maybe because the possibility that measurement
bias could be an important problem in LWR metrology
is not widely recognized.

The best roughness metric should be based upon a
theoretical and observed relationship between its mea-
sure of roughness and device properties. Despite the
good start in correlating RMS roughness to transistor
leakage and threshold voltage that was just described,
the mechanisms by which roughness propagates from
one manufacturing process step to the next and ulti-
mately affects performance are for the most part only
sketchily known. While almost all discussion of rough-
ness in semiconductor applications is currently in terms
of an RMS metric, other metrics exist. When more is
known, we may discover that one or more of these oth-
ers serve some of our purposes better. 

In the next section we review some metrology issues
for RMS measures of roughness from the literature.
These issues are the dependence of the measured value
upon sampling length and sampling interval, random
errors due to measurement noise and sampling, and non-
random (bias) errors due to noise. Afterwards, we con-
sider the possibility that non-RMS metrics may
sometimes be appropriate. This consideration is neces-
sarily somewhat speculative, since the present state of
the evidence is not sufficient to definitively establish the
superiority of another metric. Nevertheless, some exam-
ples are given that I hope are plausible enough to
encourage future open-mindedness on this subject.

SOME ISSUES FOR RMS ROUGHNESS 
METRICS

LWR can be quantified in a number of different
ways. Most begin by measuring the width of a line at N
positions separated by a distance ∆, representing a total

sampling length of  (Fig. 1). Let us call these
widths . Let the ith width residual be

 with  the average of the measured 
values. Most metrics are based upon these width residu-
als. Some that have been used are the average roughness
(i.e., ), the correlation length, the fractal
dimension, and the bearing ratio (among a much longer
possible list). In semiconductor industry applications,
however, only the familiar root mean square (RMS) or
standard deviation metric is encountered with any fre-
quency. If we call this metric R0 it is defined as

. (1)

(A similar definition applies for LER, except that the
wi are replaced by the edge position residuals, generally
determined by subtracting a best-fit line from the edge
positions, and the sum is divided by  instead of

 because the linear fit removes two degrees of
freedom instead of the average’s one.) As noted, the
ITRS specifications are stated in terms of three times
this standard deviation metric. In this section we make
note of three different issues in the measurement of R0.
These are (1) the dependence of R0 upon L and ∆, (2)
random errors associated with sampling, and (3) bias
due to noise in images from which R0 is determined. 

Dependence upon L and ∆. 

The value of R0 depends upon the metrologist’s
choice of L and ∆. (An example of the L dependence is
shown for self-affine edges by Constantoudis et al.[11])

L N∆=

FIGURE 1. Definition of width residuals used for determin-
ing various LWR metrics. Linewidths are measured at inter-
vals, ∆, along a sampled length, L (top). The average width is
subtracted, resulting in a curve (bottom) showing width resid-
uals vs. position along the line.
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This is not a measurement artifact. Rather, it reflects the
fact that different choices of L and ∆ cause the measure-
ment to sample different ranges of roughness frequen-
cies. This is best illustrated by considering the power
spectral density (PSD), which is proportional to the
square of the magnitude of the Fourier transform. Parse-
val’s theorem relates R0 to the area beneath the PSD
between frequency limits 1/L and 1/(2∆) (Fig. 2). Con-
ceptually, one may imagine a measurement of an infi-
nitely long line with perfect spatial resolution. The
resulting PSD would extend over all frequencies from 0
to infinity, and the area beneath it would correspond to
the RMS roughness with all frequencies included. In
practice, of course, we are limited by sample size,
instrument resolution, and finite time to finite nonzero
values for L and ∆. The resulting RMS roughness is
equivalent to integrating a finite interval of the PSD
curve between frequency limits 1/L and 1/(2∆), as indi-
cated by the area shaded with diagonal lines in Fig. 2.
Clearly, the value of such an integral depends upon the
frequency limits. 

Ignoring this dependence can lead to common mea-
surement “fallacies.” For example, it may be tempting
to compare R0 measured over some segment with a sec-
ond measurement made over only a subset of the seg-
ment, in an attempt to establish that the subset has a
roughness that differs from the segment as a whole.
Such a comparison is not valid, since the roughness
measure of the whole segment includes low frequency
roughness components that are excluded from the mea-
surement of the shorter segment. The differences in this
case may be large, because PSDs are typically largest at
low frequencies, as in Fig. 2. Similarly, SEMs currently
differ in their capabilities, so that measurements per-

formed with different instruments, even when they mea-
sure the same total length of line, may use different
values of N (and hence ∆). This can also in principle
invalidate the comparison, although the sensitivity of R0
to choice of ∆ tends to be low because the roughness
power at reasonably high frequencies is generally negli-
gible. In both cases, the measurements contain enough
data that a valid comparison can be made—but only if
one accounts for the different roughness frequency
intervals.

Because the roughness value depends upon L and ∆,
measurement specifications for RMS roughness should
include specification of these limits. How should these
limits be decided? An illustrative rationale is suggested
in Fig. 3 and Fig. 4. Figure 3 is a schematic showing
some aspects of transistor geometry. It shows roughness
along the long dimension of the transistor gate elec-
trode. The electrical properties of the transistor are
determined by dopant concentrations that are formed
when the dopant is implanted and then diffused. We
could identify the longest roughness wavelength of
interest with the long dimension of the transistor, or per-
haps with twice (or some other small multiple of) this
length. Roughness wavelengths much longer than this
cause variability in gate widths between transistors, but
are not responsible for significant intra-transistor vari-
ability, so they do not correspond to our intuitive notion
of roughness. For this reason, one possible scheme

FIGURE 2. Power spectrum derived from width residuals.
Parseval’s theorem relates the root mean square roughness to
the area under the PSD curve. Real measurements have finite
spacing, ∆, and sample length, L, so the measured roughness is
related to the area between the limits shown.

FIGURE 3. Transistor geometry. Should the longest rough-
ness wavelength of interest be defined as the long dimension
of the transistor (or some multiple of that length)?

FIGURE 4. Schematic top view of dopant after implant but
before diffusion (dark shading) and after diffusion (lighter
shading). Diffusion smooths roughness wavelengths that are
comparable to or smaller than the diffusion length.
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would account separately for long-wavelength rough-
ness as “within-chip CD variability.” 

A variety of physical processes may determine the
short wavelength limit. One natural length scale is set by
the average distance between dopant atoms, which is
typically in the range of several to several tens of
nanometers [12]. Another natural limit, as pointed out
by Xiong et al.[4], may be set by dopant diffusion
lengths on the order of 10 nm. This would naturally tend
to smooth the electrically relevant post-diffusion dopant
profile, even if the physical gate edge contained rough-
ness wavelengths shorter than this (Fig. 4). (However,
as Xiong et al. also point out, the average position of the
channel edge may be sensitive to shorter wavelengths,
even if these do not affect its variability.) We might set
the high frequency limit at a given ITRS technology
node to one of these lengths. The details of this argu-
ment would obviously change if we were to consider
roughness other than in the gate. For example, the short
wavelength cutoff for roughness in a photomask is
likely to be much larger than for a gate, since the expo-
sure process does not have the resolution to transfer the
shortest wavelengths. On the other hand, metal intercon-
nect conductivity may well be affected mainly by short-
wavelength roughness that scatters electrons near the
edges of the conductor. 

The best way to determine a roughness metric,
including frequency limits in the case of an RMS metric,
is by demonstrated experimental correlation of the can-
didate metric to important aspects of device perfor-
mance. The sorts of pre-experimental considerations
discussed here are meant to suggest possibilities to test
experimentally and to suggest that there is unlikely to be
one answer that serves for all device layers.

Random Errors Due to Noise and Sampling

One source of random error in roughness measure-
ments is the inevitable noise in images. As a result of
image noise, assigned linewidths or edge positions, even
for the same point on the sample, vary randomly from
one measurement to the next. If the linewidth determi-
nation at each position along a line has a normally dis-
tributed random component with standard deviation, σε,
and σε is small compared to R0, then the standard devia-
t i o n  o f  t h e  r o u g h n e s s  d e t e r m i n a t i o n  i s

.[13] For typical values of σε near
1 nm and N near 100 this results in a standard deviation
in the measured roughness on the order of 0.1 nm con-
tributed by this source.

A second source of error is the intrinsic randomness
of the roughness itself. The roughness of a given line
segment is one particular realization of a stochastic pro-

cess. Even in the absence of any measurement error, the
roughness of that segment will differ from that of
another randomly chosen segment. If the size of this
sampling uncertainty is larger than the allowed uncer-
tainty of our roughness measurement, then it can be
reduced by averaging the roughness variances from
multiple segments. This average will be more represen-
tative of the average roughness than would be the
roughness of a lone segment. It is convenient to express
the desired uncertainty in R0 in the form 
where η is a fraction smaller than 1. For example, the
ITRS calls for a roughness measurement precision of
20 % of the required roughness value, so . One
should then average the roughness values determined
from m segments, where [13]

(2)

Here the  are the average components of the PSD.
The dependence of m on 1/η2 means that halving the
uncertainty requires quadrupling the number of mea-
surements that must be included in the average. That is,
it is a manifestation of the familiar rule that the uncer-
tainty in an averaged quantity decreases like the square
root of the number of independent measurements
included in the average. The ratio of sums of PSD com-
ponents accounts for correlations in the width residuals.
The more uncorrelated are the width residuals at neigh-
boring measurement positions, the closer the PSD will
be to a white spectrum. (In a white spectrum the  are
all the same, regardless of k). In this case the N residuals
provide  independent estimates of the roughness,
reducing the number of repeats, m, that would otherwise
be required, a fact that is reflected in the small value of
the ratio of sums in Eq. (2) in the limit of white noise.
On the other hand, high correlation in the width residu-
als means the roughness power will reside in fewer
components in the PSD. This results in a larger ratio of
the sums, and a corresponding larger value for m. 

Figure 2 shows a typical power spectrum, but a typi-
cal size for sampling error depends upon our assump-
tions concerning the overall roughness, λmin, and λmax.
The wavelength limits, as we have seen, determine
which part of the power spectrum is relevant. The 2003
ITRS specifies that λmax should be twice the technology
node, i.e., 180 nm for the 90 nm node. If we take

nm then the PSD in Fig. 2 leads to a frac-
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tional sampling error for a single ( ) measure-
ment of R0 of almost 40 %. (For nm, as
required for the 90 nm node by the 2003 ITRS, one stan-
dard deviation of sampling uncertainty would be about
0.3 nm, which is larger than the uncertainty contributed
by noise.) This is larger than our required 20 %, so as
stated in Ref. 13 it is necessary to increase the number
of measurements to at least 4, for a total measured
length of line equal to 8 times the node. On the other
hand, if we take µm then Eq. (2) with the
same PSD says the sampling error is already only
0.12R0 even for a single segment of this length. For

nm sampling error now contributes a one
standard deviation uncertainty of 0.1 nm. This uncer-
tainty is comparable to that contributed by noise. (See
the discussion in the first paragraph of this section.)
However, the ITRS roughness requirement is often a
rather tight specification. It is a well-known problem
that roughnesses of some materials (resists for example)
often significantly exceed the specifications. Since the
sampling uncertainty scales with the roughness but the
noise uncertainty does not, this means that in many
practical situations the sampling error will be the domi-
nant source of random error.

Bias Due to Image Noise

The random measurement errors in edge positions
and linewidths discussed in the last section and repre-
sented by σε do more than introduce random errors in
R0. They also introduce a bias (sometimes called a “sys-
tematic” error).[13] This is because it is not possible on
the basis of a single measurement to distinguish ran-
domness in the true position or width from the apparent
randomness caused by noise. The “noise roughness”
variance, σε

2 adds to the true roughness, Rt
2 to produce

the measured R0
2. That is,

. (3)

This bias has been observed experimentally [14], as
reproduced (upper curve) in Fig. 5. This curve shows
the value of R0 measured from images of the same sam-
ple position with varying pixel integration time. Lower
pixel integration time results in noisier images, so the
data points on the left side of the graph correspond to
noisier images than those on the right. The vertical bars
indicate ±1 standard deviation of the repeatability in the
roughness measurement. The repeatability is obviously
poorer on the left, as one would expect. The bias mani-
fests itself in the fact that the average R0 is higher for the
noisier images on the left than for those on the right.
Since all of these images were of the same field of view,

the actual roughness is constant. Any observed differ-
ences are therefore measurement errors.

In practice the size of the bias is likely to be an
important measurement issue. For dense lines, for
example, the ITRS specification for CD “metrology tool
precision” in 2005 is 2 nm. The metrology tool preci-
sion is closely related to σε; 3σε is essentially the
metrology tool precision under the conditions employed
for a roughness measurement. These conditions are
likely to be somewhat more demanding than those for a
CD measurement, because CD measurements can afford
to average over some length of the line whereas such
spatial averaging removes short wavelength roughness
that might be of interest in a roughness measurement.
For this reason, it is quite likely that in 2005 3σε is 2 nm
or greater. Contrast this to the ITRS requirement that

nm in the same year. Since these numbers dif-
fer only a little, it means the true roughness term and the
bias term in Eq. (3) are comparable in size.

If repeated measurements of the same area are made,
the data contain the information that one needs to esti-
mate and correct for the bias. The steps in this process
are as follows [14]: (1) Divide the total electron dose per
pixel in two. (2) Instead of a single image at the full
dose, acquire two images each at half the dose. (3)
Determine the roughness variances, R01

2 and R02
2 from

these two images as before. (4) Determine the differ-
ences in CDs (or edge positions) at the same measure-
ment locations in the two images. The average square of
these differences is an estimate of 2σε

2. (5) Determine
t h e  b i a s - c o r r e c t e d  r o u g h n e s s  v a r i a n c e  a s

. In this way, randomness in
the measured linewidth at a fixed position on the line,

m 1=
3R0 2.6=

λmax 2=

3R0 2.6=

R0
2 Rt

2 σε
2+=

FIGURE 5. Measured LWR vs. pixel integration time for two
different LWR metrics. Vertical bars are ±1 standard deviation
of the observed repeatability. Since all measurements were at
the same location, any observed dependence of LWR upon
pixel integration time must be a measurement artifact. Figure
reproduced from Ref. 14.
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which can be observed by comparing one image to the
other, provides an estimate of σε

2. By subtracting the
bias term from the conventionally determined rough-
ness, one obtains a corrected roughness measure.
Roughness determined by this measure is shown by the
lower curve in Fig. 5. The corrected metric agrees with
the previous metric in the low noise limit, but maintains
the same average value as the noise level is increased.

IS RMS THE RIGHT METRIC?

In the previous section we devoted considerable
attention to measurement issues and solutions associ-
ated with the root mean square roughness metric. This
attention is justified by its near-exclusive use in semi-
conductor electronics applications. However, it is still
only a few years ago, in 2001, that LER and LWR made
their first appearance in the industry roadmap. Given the
recentness of the industry’s concern about edge and
width roughness, we may question whether the empha-
sis on this metric is the industry’s considered choice or,
rather, simply a kind of default choice resulting from its
greater familiarity. 

We have seen that R0 (or the bias-corrected version,
Rq) integrates all roughness frequencies between 1/λmax
and 1/λmin (Fig. 2). This means roughness frequencies
are effectively sorted into two kinds: those outside of
these limits, which are given no weight, and those
within these limits, all of which are given the same
weight. Is this a realistic description of how roughness
affects device performance? It seems unlikely. For
example, it seems likely that the fidelity with which
edge roughness transfers from a photomask line edge to
the resist pattern will vary continuously, from very high
at roughness wavelengths long to very low for wave-
lengths short compared to the exposure tool’s spatial
resolution. If this were the relevant process step, we
would need roughness frequencies to have smoothly
varying weights between 0 and 1. If we are considering
some different process step (gate leakage due to channel
length variation or interconnect conductivity due to dif-
fuse electron scattering from the conductor’s edges) we
should expect different weighting. Thus, one might
imagine a weighted RMS metric, with the weights deter-
mined by the process step under consideration.

There are other metrics that are not RMS-based at
all. Some that seem promising are based on the ampli-
tude density function (ADF). The ADF for width varia-
tion is the probability per unit length that a randomly
selected measured width will lie between W and

. It can be estimated by normalizing the histo-
gram of the binned widths:

(4)

Here,  is the histogram of the N measured
widths with bin size . The normalization insures
that the sum of  over all the bins is 1. An
example of an actual ADF taken from CD-SEM mea-
surements of five approximately 72 nm wide lines, mea-
sured at 2 nm intervals over a 2 µm length is shown (the
jagged curve) in Fig. 6a. 

It is often assumed that  is a normal (Gaus-
sian) distribution, and this appears to be true to a reason-
able approximation in Fig. 6a. If the mean and standard
deviation of the measured W values are used to plot a
normal probability function, that function (smooth curve
in Fig. 6a) fits the data as shown. However, it has been
remarked that real distributions are more often non-
Gaussian in the tails than near their centers.[15] Such is

W Wd+

ADF W( ) H W ∆W,( )
N∆W

-------------------------=

H W ∆W,( )
∆W

ADF W( )∆W

FIGURE 6. (a) Amplitude density function (the more jagged
curve) of a data set compared to the Gaussian with the same
average and standard deviation (smoother curve). (b) The low
width tail portion of the figure in a is shown enlarged. The
Gaussian fit is now shown with a dash-dot curve. The mea-
sured ADF (continuous curve) is shown inside a ±1 standard
deviation uncertainty interval (dashed curves).

(a)

(b)

ADF W( )
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the case for this one, as can be seen in Fig. 6b, which
enlarges the small rectangular region marked in the
lower left corner of Fig. 6a. Here the measured distribu-
tion is shown as a continuous line, with dashed lines
above and below representing a ±1 standard deviation
uncertainty interval. The Gaussian estimate of the distri-
bution (the dash-dot) line, lies for the most part below
the measured distribution and consistently outside of
this interval. The difference is reasonably large—the
Gaussian distribution underestimates the likelihood of
large deviations (widths 7 nm or more below the aver-
age width) by almost 40 % of the true likelihood. Is this
important? After all, this region accounts for only about
1 % of the measured widths. If the Gaussian estimate is
wrong in so few cases, then should we be concerned? 

Maybe so. One can imagine plausible scenarios in
which this part of the width distribution is nearly all-
important. Example 1: Consider off-state leakage in a
transistor gate. If the gate electrode has nonzero LWR
then the length of the conducting channel will vary. If
we model the various parts of the transistor as parallel
conductors (a model that appears to be only approxi-
mate,[4] but good enough for our present illustrative
purpose) then the total leakage is the integral of the
leakages from various infinitesimal segments:

(5)

Here W is the gate width (or channel length), 
is the off-state current appropriate to a transistor with
uniform channel length W, and  is the prob-
ability of encountering channel length W. Diaz et al.[2]
and Xiong et al.[4] both model leakage using a super-
exponential increase of leakage current with decreasing
gate length. The super-exponentially high values of cur-
rent for small W means the low width tail of the ADF is
significantly overweighted in this integral. That is, a sig-
nificant part of the leakage comes from just those
unusually narrow regions that the Gaussian curve in
Fig. 6 underrepresents. Example 2: Suppose we are con-
cerned about the impact of roughness on device yield.
Even without considering any specific mechanism by
which roughness affects the yield, we can say that for
any well-designed process the probability of a yield-
reducing event in a given transistor had better be very
low. We therefore expect to find such events in the tails
of the distribution.

If either of the above scenarios or another like them
turns out to be important, we will require our model
probability distribution to get the tails right. We have
seen that the SEM (or another high spatial resolution

microscopy, like atomic force microscopy) can provide
a direct measure of the ADF. Estimating the tail indi-
rectly by a parameter (such as the standard deviation)
determined from the main body of the distribution is
likely to be less valuable under this circumstance than a
metric determined directly from the tail. This will create
its own set of metrology challenges. Although unusual
but real width excursions inhabit the tails of the distribu-
tion, measurement outliers are also to be found there.
Good measurements of the actual distribution of rare
events will require robust metrology.

For some applications, such as rank ordering sam-
ples from least to most rough, a curve or function like
the ADF will not do. One needs a simple numerical met-
ric. There are a number of ways that such metrics can be
derived from the ADF. For example, one might define a
probability metric by summing the ADF over all bins
that correspond to widths smaller than a predetermined
width. For example, , could be the probability that a
measured width will be more than x nm below the aver-
age width. The larger the roughness, the larger the value
of . For the distribution in Fig. 6 it happens that

. Alternatively, one could define a percen-
tile metric, as the width deviation at which a particular
probability is reached. Thus, in the this example, a prob-
ability of 0.01 (the 1.0 percentile) corresponds to a
width deviation of nm. The larger (in magnitude) is
this deviation, the larger the roughness.

SUMMARY AND CONCLUSIONS

The standard deviation, a RMS measure of rough-
ness, is currently the most commonly used metric in
semiconductor electronics applications. Three problems
that arise in roughness metrology when using this metric
were reviewed. (1) The RMS roughness of a line is a
function of the length of line that is measured and the
sampling interval with which it is measured. (2) Image
noise and finite sampling result in random errors in the
measured roughness. These can be significant compared
to ITRS specifications for roughness measurement pre-
cision. (3) Image noise can result in a positive measure-
ment bias. The measured roughness is larger than the
true roughness because of a false “noise roughness.” In
practical measurements the noise roughness can be
comparable in size to the ITRS-specified sample rough-
ness. For this reason it should be regarded as a signifi-
cant issue, even though the ITRS does not have a
specification for maximum bias.

Solutions to these problems were also reviewed. (1)
Roughness comparisons should be based upon measure-
ments taken with the same sampling length and sam-

Ioff I W( )ADF W( ) Wd
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pling interval. The sampling length and interval should
be chosen purposefully, based upon some model of how
the various roughness frequencies affect device perfor-
mance. (2) Random errors can be reduced by averaging.
A simple expression, Eq. (2), allows a determination of
how much sampling must be done to achieve a desired
RMS roughness measurement repeatability. (3) Bias can
be reduced by slightly changing the measurement proce-
dure in a way that permits measurement of the bias.
With an estimate of the bias, a correction can be applied.

A metric should eventually be tied to device perfor-
mance (or something else that we care about) both theo-
ret ical ly,  through some reasonable model,  and
experimentally, through a demonstrated correlation. The
RMS roughness metric is not the only possible one, and
although it is currently the most commonly used, it is
not clear that it is the best—or that if it is the best for
some process steps it will be the best for all. Too little is
currently known about how roughness affects perfor-
mance to be certain. For some processes it may be nec-
essary to measure roughness in order to predict the
likelihood of rare but important excursions from aver-
age width or edge position. In such cases, to rely upon
the standard deviation is to extrapolate the behavior of
the bulk of the probability distribution to predict the
behavior of the tail. This extrapolation requires one to
assume a particular form for the distribution, for exam-
ple to assume that it is Gaussian. Such an assumption, as
we have seen, may not necessarily be correct in the tails
even when it is a good approximation elsewhere. It is,
moreover, not a necessary assumption, since the kind of
data we already acquire when determining LWR (at
least when using high spatial resolution microscopy like
SEM or atomic force microscopy) can be used to con-
struct the amplitude density function (ADF). The ADF
is an estimate of the probability distribution, tails and
all. (The amount of data and the robustness of the
metrology required to estimate the tails reliably was,
however, not explored for this report.) Since there exist
plausible scenarios in which other roughness metrics are
superior to the RMS metric, we should remain open-
minded about metrics until more is known about
whether these or similar scenarios are important.
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